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ABSTRACT

Human music annotation is one of the most important tasks
in music information retrieval (MIR) research. Results of
labeling, tagging, assessment, and evaluation can be used
as training data for machine learning models that estimate
them automatically. For such machine learning purposes,
a single target (e.g., song) is usually annotated by multiple
human annotators, and the results are aggregated by major-
ity voting or averaging. Majority voting, however, requires
the number of annotators to be an odd number, which is
not always possible. And averaging is sensitive to differ-
ences in the judgmental characteristics of each annotator
and cannot be used for ordinal scales. This paper there-
fore proposes that the item response theory (IRT) be used
to aggregate the music annotation results of multiple anno-
tators. IRT-based models can jointly estimate annotators’
characteristics and latent scores (i.e., aggregations of anno-
tation results) of the targets, and they are also applicable to
ordinal scales. We evaluated the IRT-based models in two
actual cases of music annotation — semantic tagging of
music and Likert scale-based evaluation of singing skill —
and compared those models with their simplified models
that do not consider the characteristics of each annotator.

1. INTRODUCTION

Various annotations of music, such as song structure, beat
timing, emotion, genre, singing phoneme, tempo, F0,
singing skill, and preference, play essential roles in music
information retrieval (MIR). The results of these annota-
tions can be used not only for training machine learning
models, such as deep learning models, but also for ana-
lyzing music characteristics. The results of annotations by
different annotators, however, are not necessarily the same
due to the ambiguity in music interpretation as well as to
differences in annotators’ characteristics that are individual
biases stemming from factors like the experience, ability,
and situation of each annotator.

Therefore, in music annotation, multiple annotators are
usually assigned to the same target (e.g., a song or part
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Figure 1. Examples of music annotation results of three
annotators. Results of music tagging (binary rating) are ag-
gregated by majority voting. Results of singing skill eval-
uation (7-point Likert rating) are aggregated by averaging.

of a song). Many studies have used multiple annotators
in annotations such as singing semantic tag [1], singing
ability/quality [2, 3], absolute valence-arousal annotation
[4], relative valence-arousal annotation [5], song structure
[6, 7], beat timing [8, 9], music semantic tag [10], and mu-
sical concept [11].

Figure 1 shows two annotation examples by multiple
annotators. The first example, of music tagging, shows that
annotation results of three annotators are aggregated using
majority voting. Each annotator judges whether or not the
semantic tag (music genre tag) “Pop” is applicable to each
of the three target songs. The second example, of singing
skill evaluation, shows that annotation results of three an-
notators are aggregated using averaging. Each annotator
assigns a 7-point Likert rating to assess the singing skill
in each of the three target songs. Multiple music annota-
tion results are thus usually aggregated by two methods,
majority voting [1, 5, 8, 10] and averaging [2–4].

The majority voting method requires an odd number
of annotators, which is not possible in all situations. For
example, if equal numbers of male and female annotators
are required, the total number of annotators will be even.
The binarization caused by majority voting lose informa-
tion, and the averaging method cannot be used for ordinal
scale values. Moreover, the two aggregation methods can-
not take into account the differences in annotators’ charac-
teristics. One example of differences in annotators’ char-
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Figure 2. Examples of aggregation with two different IRT-
based models, the 2PLM and the GRM. Latent scores θ can
be used as aggregated results.

acteristics is that there are differences in the threshold for
determining whether to tag a song in music tagging, and
another is that the level of proficiency considered deserv-
ing of a perfect score in singing skill evaluation can vary
depending on the annotator.

We therefore propose an aggregation method based on
the item response theory (IRT) [12, 13] for music annota-
tions. The IRT can take into account the differences in
annotators’ characteristics and aggregate annotations into
latent continuous values. The first advantage of IRT is that
it can be used with any number of annotators. There is
no need for the number of annotators to be odd, as in ma-
jority voting, since it can estimate latent annotation scores
(i.e., aggregated results) for each piece of music as contin-
uous values. The second advantage is that, when used for
ordinal-scale ratings like Likert scales, it can estimate, for
each annotator, different actual intervals between integer
values of the rating scale.

Figure 2 shows examples of annotation aggregation by
using IRT-based models. Although detailed definitions of
the variables are given later in Section 3, θi is the latent
score of a song si for that tag. bj represents the annotator
qj’s characteristic, meaning the rating threshold. In the bi-
nary rating example on the left side of Figure 2, three item
response functions of music tagging based on the param-
eters of annotators q1, q2, and q3 are shown at the bottom
of the figure. Since the song s3 was tagged by the annota-
tor q2 but not by the annotator q3, the latent score θ3 was
higher than b2 and lower than b3. On the other hand, in the
singing skill evaluation example (i.e., graded/polytomous
rating) on the right side of Figure 2, seven functions for
two annotators q1 and q2 are shown at the bottom of the
figure as the probability that the annotators assigned each
rating point based on a 7-point Likert-based rating. In this

example, a song s2 with the latent score of θ2 has a proba-
bility of being given scores of 3 and 2 by the annotator q1
and q2, respectively. Seven such functions for each anno-
tator represent each of these characteristics.

To show the usefulness of these IRT-based aggregation
methods, we focus on two annotation tasks: music tagging
as an example of binary rating and singing skill evalua-
tion as an example of Likert scale rating. To aggregate the
multiple annotation results, we use the two-parameter lo-
gistic model (2PLM) [13] and the graded response model
(GRM) [14] as well-known IRT-based models. These are
simple and basic models that assume unidimensionality of
latent scores. These models, however, have more parame-
ters (e.g., rating thresholds and intervals) than majority vot-
ing and averaging, and cannot be properly estimated when
the number of data is small [15]. This paper therefore pro-
poses simplified versions of these models, which do not
take into account the differences in annotators’ character-
istics, and then compares them and evaluates which model
is more appropriate according to the information criterion.

2. RELATED WORK

This section describes previous research on music anno-
tation by multiple annotators and the aggregation of their
results. In addition, this section also describes applications
of IRT to annotation cases.

2.1 Music Annotation Results Aggregation

There have been many cases of multiple annotators an-
notating the same songs in music annotation. Studies
on annotators’ agreement have been conducted for mu-
sic genre classification [16, 17], music emotion recogni-
tion [5, 18, 19], music similarity [20], chord [21], and se-
mantic tagging [1,10]. The degree of inter-annotator agree-
ment can be measured by Krippendorff’s α, which is usu-
ally much smaller than 1.0 (perfect agreement) in music
annotation [1,5,18,19,21], meaning that there are disagree-
ments. Since it is only useful for evaluating agreement, not
for aggregating multiple annotations, other methods such
as majority voting are needed [1, 5, 10]. Even though the
numbers of annotators (i.e., frequencies) before majority
voting were used to show the appropriateness of annota-
tions [1,22], they were not utilized as training data for ma-
chine learning despite their potential utility.

Music tagging or labeling is the task of binary anno-
tation, whether tags and labels are assigned or not. Kim
et al. [1] assigned three annotators for semantic tagging of
singing voices and aggregated the results by majority vot-
ing. On the other hand, non-binary values have also been
tagged. Turnbull et al. [10] asked annotators to vote on a
3-point scale of −1 (negative), 0 (unsure), and 1 (positive)
whether the tag indicated the song. To aggregate the votes,
the negative votes were subtracted from the positive votes,
and the result was divided by the number of annotators.

As a polytomous annotation of ordinal scales by multi-
ple annotators, Bogdanov et al. [5] performed relative an-
notation by three annotators and aggregated the results by



majority voting. Gupta et al. [2] and Sun et al. [3] ag-
gregated singing quality scores on a 5-point Likert scale
by averaging them. Yang et al. [4] assigned more than 10
annotators per song to label valence-arousal values on an
11-point scale and aggregated the results by averaging.

To overcome the limitations discussed in Section 1, we
propose to use IRT for music annotation, which to the best
of our knowledge has not been reported.

2.2 IRT Applications to Annotation

Although IRT has not been used in the MIR field, it has
been used in the research field of natural language pro-
cessing (NLP) [23]. Lalor et al. [24] proposed a method to
generate a gold standard using IRT’s 3PLM to account for
differences in item difficulty in the NLP test set. Martínez-
Plumed et al. [25] also proposed a method to evaluate
the estimation results of multiple machine learning mod-
els using 3PLM, taking into account the item difficulty
of the test set. Otani et al. [26] proposed a framework
for comparative evaluation of translation systems, utiliz-
ing an extension of the GRM. Amidei et al. [27] applied
the IRT-based model to annotator responses and proposed
a method to detect biased annotators through visualization.
As a python package that can handle IRT models, py-irt by
Lalor et al. [28] has been used in NLP research [29, 30].

In crowd sourcing-based annotation not limited to mu-
sic, a strategy of aggregation while estimating the reliabil-
ity of crowd workers has been adopted [31] and referred
to as “learning from crowds” [32]. Khattak et al. [33]
proposed and used an IRT-based model for label estima-
tion in crowd labeling. They showed that the binarized
labels based on the estimated latent scores yield better per-
formance than conventional methods such as majority vot-
ing. Paun et al. [34] evaluated six Bayesian item-response
models that can estimate the “true” response by aggregat-
ing multiple annotations. Several of them can estimate an-
notator characteristics and item difficulty. Irene Martín-
Morató et al. [35] extended the multiple annotator com-
petence estimation (MACE) model [36] and applied it to
the sound event detection task, estimating annotator com-
petence and excluding results from less competent annota-
tors. Cartwright proposed a model using annotator features
for crowdsourced audio quality evaluation [37].

Most closely related to this paper, Uto et al. [38] uti-
lized an IRT-based model to generate training data for a
deep learning model for automatic essay evaluation and to
remove rater bias. This paper contributes differently from
Uto et al. [38] not only by targeting music annotation but
also by using an information criterion to compare two ag-
gregation models and their nine simplified models.

3. IRT-BASED MUSIC ANNOTATION
AGGREGATION

Item response theory (IRT) [12] is a mathematical model-
ing technique for testing and evaluation that was originally
developed in the field of psychometrics. It models mul-
tiple responses (e.g., responses by multiple examinees) to

multiple items (e.g., questions in an exam). In our case, it
models responses to multiple songs by multiple annotators.
In the example in Figure 2, a probability model defines the
relationship between the latent variable θ representing the
latent song score and the parameters a, b representing the
characteristics of the annotators. This allows, for example,
music annotated with the same scores to have different la-
tent scores θ depending on the annotators’ characteristics.

3.1 Model for binary response data

An item response model for binary response data intro-
duces a latent score θi for a song i and represents the prob-
ability that the song is tagged by annotator j as follows:

p
(2PLM)
i,j = [1 + exp(−aj(θi − bj))]

−1, (1)

where we used the 2PLM [13] in which the item response
function is represented by a logistic function. In this equa-
tion, bj is called difficulty because the tag is assigned when
the score θi is higher than its value as shown in Figure 2.
aj is the slope of the logistic function and is called dis-
crimination because it is easier to distinguish whether θi is
higher than bj (whether a tag is assigned) if aj is higher.

3.2 Model for graded response (polytomous) data

The GRM [14] is a model that extends the 2PLM to re-
sponse data with ordinal relationships such as those indi-
cated by different values on a K-point Likert scale. Let
pi,j,k be the probability that an annotator j responds to
song i as category k ∈ 1, ....,K as follows:

pi,j,k = p
∗(GRM)
i,j,k−1 − p

∗(GRM)
i,j,k , (2)

p
∗(GRM)
i,j,k = [1 + exp(−aj(θi − bj,k))]

−1, (3)

where k means the order of the categories. p∗i,j,0 = 1, and
p∗i,j,K = 0. The bj,k represents the difficulty in responding
to categories greater than k in annotator j.

3.3 Nine originally simplified models

To evaluate usefulness of the above 2PLM and GRM in
music annotation, we compare the simpler 1PLM [13]
in which the parameter aj is removed from the 2PLM
(i.e., the slope is not considered) as follows:

p
(1PLM)
i,j = [1 + exp(−(θi − bj))]

−1. (4)

Moreover, we here propose two further simpler models
with reduced parameters, in which the parameters aj and
bj are replaced by a and b (i.e., the characteristics of the
annotator are not considered), as follows:

p
(2PLM′)
i,j = [1 + exp(−a(θi − b))]−1, (5)

p
(1PLM′)
i,j = [1 + exp(−(θi − b))]−1. (6)

Regarding the GRM, we also propose the following
three simplified models based on the same idea:

p
∗(GRM-a)
i,j,k = [1 + exp(−(θi − bj,k))]

−1, (7)

p
∗(GRM′)
i,j,k = [1 + exp(−a(θi − bk))]

−1, (8)

p
∗(GRM-a′)
i,j,k = [1 + exp(−(θi − bk))]

−1. (9)



Although the GRM is designed for ordinal scales, we fur-
ther propose four simplified models that assume that anno-
tators’ responses are on interval scales (i.e., the intervals
between the (cut) points are equally spaced) as follows.

p
∗(GRMi)
i,j,k = [1 + exp(−aj(θi − (oj + k′bj)))]

−1, (10)

p
∗(GRMi-a)
i,j,k = [1 + exp(−(θi − (oj + k′bj)))]

−1, (11)

p
∗(GRMi′)
i,j,k = [1 + exp(−a(θi − (o+ k′b)))]−1, (12)

p
∗(GRMi-a′)
i,j,k = [1 + exp(−(θi − (o+ k′b)))]−1, (13)

where oj and bj denote the annotator-dependent origins
and intervals, respectively, and o and b are annotator-
independent origin and interval, respectively. We set k′ =
k − 1 in our current implementation.

4. EXPERIMENT

Using the IRT-based models described in the previous sec-
tions, we report the results of aggregating annotation re-
sults from multiple annotators in two real cases (Figure 1):
music tagging (binary response) and singing skill evalua-
tion based on 7-point Likert rating (polytomous response).

4.1 Aggregation of music tagging results

As an actual example of the aggregation of music annota-
tion using the 2PLM, we targeted Japanese lyrics songs in
our in-house database and music tags assigned to them.

4.1.1 Data (songs and annotations)

We prepared 120 songs with Japanese lyrics. However, as
we only aim to demonstrate the effectiveness of the pro-
posed models, any dataset of annotated songs will suffice.
Annotators were six music experts whose native language
was Japanese (three males, referred to as M1-M3, and three
females, referred to as F1-F3). Each annotator tagged 60
songs, half of the 120 songs. To avoid gender distribution
bias, the annotators were divided into two groups of three:
“M1, F1, F3” (Group 1) and “M2, M3, F2” (Group 2), and
the annotators in the same group tagged the same songs.

The annotators were instructed to annotate one or more
of each of 15 genres, 38 subgenres, and 28 semantics.
They tagged genres first, then subgenres and semantics.
The 15 music genres are based on Discogs 1 , which is a
large open database of music genres and has been the tar-
get of research on metadata analysis [39] and music genre
embedding [40, 41]. The 38 subgenres and 28 semantics
(emotions, moods, and themes) were based on previous
works [10, 42–46] using well-known datasets: MagnaTa-
gATune (MTAT) [47], Million Song Dataset (MSD) [48],
MTG-Jamendo [45], and CAL500exp [46]. In total, 81
tags were thus annotated.

4.1.2 Model

As described in Section 3.1, the 2PLM shown in Equation
(hereafter Eqn) (1) and its simplified models (Eqns (4, 5,
6)) are used to model music tagging. For each tag t, we

1 https://www.discogs.com/ja/

Table 1. Pairwise comparison of the four models. The
columns represent the reference models, and the rows rep-
resent the models being compared. Bolded numbers indi-
cate the number of tags with higher ELPD than those of
the model being compared.

Annotator independent Annotator dependent
b a, b bj aj , bj

Model Eqn (6) Eqn (5) Eqn (4) Eqn (1)
b – 15 + 17 54+ 55 21 + 32

a, b 66+ 64 – 61+ 59 46+ 46
bj 27 + 26 20 + 22 – 4 + 4

aj , bj 60+ 49 35 + 35 77+ 77 –

jointly estimate parameters, θti , a
t
j , and btj using binary re-

sponse data U t = {ut
i,j}(i = 1 · · ·N t

s , j = 1 · · ·N t
a).

Here θti represents the latent score of t for song i. atj and
btj represent a characteristic of annotator j. N t

s is the num-
ber of songs and N t

a is the number of annotators.
In this paper we assume the following prior distribu-

tions for the parameters of the 2PLM.

θti ∼ Normal(0.0, 1.0), i = 1 · · ·N t
s , (14)

atj ∼ HalfNormal(1.0), j = 1 · · ·N t
a, (15)

btj ∼ Normal(0.0, 1.0), j = 1 · · ·N t
a. (16)

Here atj is not used when using the 1PLM, and at and bt

are used for the simplified models.
In this paper, since there is no overlap between the

songs annotated by the two groups, we estimate θi by treat-
ing the results for “M1, F1, F3” and “M2, M3, F2” sep-
arately. Thus, the number of songs N t

s = 60 and the
number of annotators N t

a = 3. The model parameters
θ, a, b were estimated directly using the No-U-Turn Sam-
pler (NUTS) [49], a type of Markov chain Monte Carlo
(MCMC) method. We used a python package PyMC5 [50]
to implement it. The number of burn-in samples was set
to 5000, the number of draws to 10000, and the number
of chains to 4. In other words, 40000 posterior samples
were used and their posterior mean was used as the esti-
mation result. Convergence was confirmed using the con-
vergence diagnostic R̂ < 1.01 and effective sample size
(ESS) > 400 as proposed by Vehtari et al. [51].

4.1.3 Results

To evaluate the proposed models, we used expected log
pointwise predictive density (ELPD) values [52] as an in-
formation criterion. To estimate ELPD, we employed the
leave-one-out (LOO) cross-validation estimate with Pareto
smoothed importance sampling (PSIS) [52]. The higher
the ELPD, the better the model. We conducted a pairwise
comparison of the four models to evaluate the 81 tags an-
notated by the two groups. Table 1 shows, for each model
in a column, the number of tagging evaluations that had
a higher ELPD than the model in the corresponding row.
For example, b denotes the model in Eqn (6). Here, the
number of tags with higher ELPD is 66 + 64 = 130 when
compared to the a, b model in Eqn (5). The left side of the
“+” sign indicates the number in Group 1, and the right
side indicates the number in Group 2.

The results in Table 1 show that 1PLM (Eqn (4)) was
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Figure 3. Examples of annotator characteristic curves for
groups of three annotators each, annotating different 60
songs, for the music tag “Pop”. Parameter estimation re-
sults obtained by using annotator-dependent (Eqn (1)) and
annotator-independent (Eqn (5)) models are shown.

most often the best IRT-based model for aggregating music
tagging results. Table 1 also shows that in many cases the
model that does not take into account the characteristics of
annotators (Eqn (6)), was also better. Estimation results for
the annotator-dependent and annotator-independent mod-
els are shown in Figure 3. When the annotators have dif-
ferent characteristics in annotating the tag “Pop” as shown
in Group 2, the annotator-dependent 2PLM model has
higher ELPD value to the simplified annotator-independent
model as expected. Conversely, since the characteristics of
Group 1 annotators are similar, the simplified annotator-
independent model is superior in this case.

4.2 Aggregation of Likert scale evaluation results

As an actual example of the aggregation of music annota-
tion using the GRM and its simplified models, we targeted
the singing of Japanese lyrics in our in-house database and
the results of singing skill evaluation annotated to them.

4.2.1 Data (songs and annotations)

We prepared another database comprising a total of 140
solo singing renditions with Japanese lyrics. This contains
20 songs of RWC-MDB [53], as well as 120 cover ver-
sions in which each of the 20 songs was sung by six addi-
tional singers. Ten songs were sung by male singers, while
the remaining ten songs were sung by female singers. For
120 cover versions, there are a total of 40 singers, 20 male
and 20 female, with a wide variety of singing experience
(i.e., each additional singer sung 3 songs).

These songs were annotated with detailed singing eval-
uations by 10 annotators who are experts for music and
singing: 5 males (M4 to M8) and 5 females (F4 to F8).
Singing evaluations were conducted on the singing voices
mixed with the accompaniments (karaoke). Annotators
conducted a 7-point evaluation from six evaluation per-
spectives: pitch, rhythm, pronunciation, expression, vocal
projection, and overall performance. In order to control

Table 2. 7-point criteria for singing skill evaluation
Score Criteria

7 Professional singer
6 Semi-professional (can receive a reward)
5 Amateur taking lessons to become a pro
4 Good at karaoke
3 Not so good at karaoke, but not so bad
2 Goes to karaoke, but is not very good at it
1 Poor singer and does not go to karaoke

Table 3. Results of the singing evaluation for a female
singer song (evaluation perspective: overall performance).
The singer ID “−” means the original singer.

ID M4 M5 M6 M7 M8 F4 F5 F6 F7 F8
− 6 4 7 5 6 5 6 5 5 6
23 6 5 6 6 7 6 6 6 6 7
26 4 4 5 4 5 3 4 4 5 3
31 3 3 4 4 4 3 4 4 3 3
34 4 3 3 3 3 3 3 3 3 3
37 2 2 2 2 2 2 2 2 2 2
40 1 1 1 1 1 1 1 1 1 1

the evaluation criteria for each annotator, we specified the
criteria shown in Table 2 and presented actual singing ex-
amples for each of the seven scores in advance.

4.2.2 Example of data

Table 3 shows the results of the 7-point evaluation of the
singing skill for an example (RWC-MDB-P No.7) out of
the 20 songs for “overall performance”. Although only
the results of one evaluation perspective for one song are
shown here, these evaluation results were actually obtained
for each of the 140 songs, with the 6 different perspectives.

From Table 3 it can be seen that the evaluation scores
differed among the annotators, and that there were cases
where the evaluation values differed as much as 3 out of 7
points among the annotators (ID “−”). On the other hand,
there were cases where all annotators had the same evalu-
ation value of 1, as in the case of ID 40 for this song.

4.2.3 Model

As described in Section 3.2, the GRM is used to model
the Likert scale in the singing skill evaluation. For each
perspective p, we jointly estimate parameters, θpi , apj , and
bpj,k using polytomous response data Xp = {xp

i,j}(i =
1 · · ·Np

s , j = 1 · · ·Np
a ), where Np

s = 140 is the number of
songs, Np

a = 10 is the number of annotators, and K = 7.
In this paper we assume the following prior distribu-

tions for the parameters of the GRM.

θpi ∼ Normal(0.0, 1.0), i = 1 · · ·Np
s , (17)

apj ∼ HalfNormal(1.0), j = 1 · · ·Np
a , (18)

bpj,k ∼ Normal(µk, 1.0), k = 1 · · ·K − 1, (19)

where µk is equally spaced from µ1 = −0.1 to µK−1 =
0.1. The models in Eqns (7, 9, 11, 13) do not use apj , and
the models without j use ap and bpk.

The prior distributions in the simplified GRM-based
models that assume an interval scale are as follows:

opj ∼ Normal(−4.0, 3.0), j = 1 · · ·Np
a , (20)

bpj ∼ HalfNormal(3.0), j = 1 · · ·Np
a . (21)

The MCMC setting was same as in Section 4.1.2.



Table 4. PSIS-LOO estimates (values of the expected log pointwise predictive density (ELPD)). The higher, the better. The
highest value in each perspective is bolded and underlined, and the second highest value is underlined.

Annotator independent Annotator dependent
o+ k′b bk oj + k′bj bj,k

– a – a – aj – aj
Perspective Eqn (13) Eqn (12) Eqn (9) Eqn (8) Eqn (11) Eqn (10) Eqn (7) Eqn (3)
Expression −1864.0 −1720.8 −1857.3 −1699.8 −1864.1 −1685.3 −1871.9 −1706.7

Overall performance −1729.6 −1496.4 −1726.9 −1456.4 −1729.5 −1414.6 −1759.1 −1528.5
Pitch −1871.2 −1712.3 −1853.8 −1658.8 −1870.9 −1569.6 −1796.9 −1600.8

Pronunciation −1887.3 −1773.9 −1870.8 −1747.5 −1887.2 −1741.3 −1885.6 −1763.9
Rhythm −1903.3 −1794.1 −1868.1 −1746.4 −1903.5 −1698.0 −1825.0 −1702.2

Vocal projection −1828.1 −1671.3 −1807.4 −1630.1 −1828.1 −1608.6 −1832.3 −1667.7
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Figure 4. Item response category characteristic curves based on estimates of the parameters of annotators M5 and F4 for
“overall performance”. The leftmost curves are for a simplified model (Eqn (10)) with interval scales. The center curves
are for a simplified annotator-independent GRM-based model (Eqn (8)). The rightmost are for the GRM model (Eqn (3)).

4.2.4 Results

Table 4 shows the results of the model comparison. The
model assuming annotator-dependent and interval mea-
sures (Eqn (10)) always performed the best. The second-
best performing model was the annotator-independent one
with variable intervals between cut points (Eqn (8)), or one
that is the GRM (Eqn (3)).

Figure 4 visualizes the characteristics of two annotators,
M5 and F4, by the three models that obtained the best eval-
uation results in Table 4. It can be seen that, given the same
annotation data, the best simplified model in Eqn (10) esti-
mates an equal interval scale for each annotator. While the
GRM model in Eqn (3) can estimate the intervals that vary
depending on both the seven categories and the two annota-
tors, the simplified GRM-based model of Eqn (8) estimates
the intervals that are shared by the ten annotators. These
results suggest that evaluation scores tend to vary in in-
tervals between annotators and/or within annotators. This
means that these models potentially outperform conven-
tional averaging-based methods, which assume annotator-
independence and interval scales.

5. DISCUSSION

In the task of estimating music tags by using deep learn-
ing, binary labels are used to indicate whether the tag is as-
signed (1) or not (0), and are learned using the binary cross
entropy loss [54]. Thus a continuous value of 0 to 1 is ob-
tained during prediction, but the training data did not have
such a continuum. In actual music tagging, however, the
lack of perfect agreement among annotators means that it
would be useful to represent each tag as a continuous value
θ obtained by IRT when preparing the ground-truth train-
ing data for each tag. In fact, there are studies that have an-

alyzed the degree of such agreement based on the annota-
tion results of multiple annotators in the annotation of seg-
ment boundaries of music structure in a musical piece [22].

In addition, if Likert scale-based ratings are used as
machine learning data, they are typically averaged to ob-
tain aggregated values. However, our experimental results
show that these intervals can indeed differ among anno-
tators. Thus, the proposed IRT-based aggregation has the
advantage of dealing with ordinal scales.

In deep learning, there are methods to output discrete
categories with ordinal relations by replacing the ordinal
regression problem with binary classification subproblems
and aggregating them [55, 56]. The IRT-based aggregation
can replace ordinal regression as a regression problem and
treat it with continuous values, which has the potential to
improve machine learning performance even more.

6. CONCLUSION

This paper proposes the use of IRT for aggregating mu-
sic annotation results from multiple annotators. Among
the diverse types of music annotation, we targeted tagging
and Likert scale-based evaluation, both of which have high
practical potential. Specifically, we focused on aggregating
results of music semantic tagging and singing skill evalu-
ation using IRT’s 2PLM and GRM, respectively. We also
proposed nine simplified models and verified the effective-
ness of the proposed IRT-based models.

In the future, we plan to evaluate the effectiveness of
IRT-based models on various datasets and annotations. De-
pending on the dataset, there may be new challenges to
consider, such as introducing models to estimate the reli-
ability and competence of the annotators [34–36]. More-
over, we will verify the effectiveness of using θ as training
data in machine learning.
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