
CHORD JAZZIFICATION:
LEARNING JAZZ INTERPRETATIONS OF CHORD SYMBOLS

Tsung-Ping Chen1 Satoru Fukayama2 Masataka Goto2 Li Su1

1 Institute of Information Science, Academia Sinica, Taiwan
2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

{tearfulcanon, lisu}@iis.sinica.edu.tw

{s.fukayama, m.goto}@aist.go.jp

ABSTRACT

Chord symbols, typically notating the root note and the
chord quality, are extensively used yet oversimplified rep-
resentation of tonal harmony and chord progressions in
popular music. In spite of its convenience, the chord sym-
bol notation only provides basic information about the
chordal configuration, and leaves much room for inter-
pretation. With such limitations, an algorithm generating
merely chord symbols is usually insufficient for a wide
range of music genres such as jazz. To solve this problem,
we propose chord jazzification, a process to generate real-
istic chord configurations in jazz style. With deep learning
approaches, we decompose chord jazzification into color-
ing and voicing. Coloring concerns the choice of color
tones, while voicing concerns the configurations of chords.
We also create a new dataset featuring interpretations of
chord symbols in pop-jazz compositions. By conducting
experiments on the new dataset, we show that 1) the two-
stage process outperforms an end-to-end generation ap-
proach in modeling chord configurations, and 2) attention-
based models are better at capturing the structure of chord
sequences in comparison with recurrent neural networks.

1. INTRODUCTION

Harmony and chords are the central topic in the study of
tonal music. To facilitate the study, researchers in the fields
of music information retrieval (MIR) and computational
musicology have developed various techniques, such as au-
tomatic chord recognition [1–5], chord similarity and tonal
distance [6–9], harmonic analysis [10–13], and chord gen-
eration [14–16].

Most of these aforementioned techniques process the
chord data using chord symbol representation, i.e., a sym-
bolic notation system indicating the root note, quality, and
other additional information of the chord. For example,
the chord symbol C:7 stands for the C dominant seventh
chord in root position, whose theoretical configuration is
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Figure 1: Three configurations of the C dominant seventh
chord. In music theory, the C dominant seventh chord in
root position is configured as (a). (b) and (c) are two alter-
ations of the chord.

depicted in Figure 1a. This symbol, however, does not ex-
plicitly point out the actual configuration, e.g., every spe-
cific note performed by a musician. Hence, the notation
system is limited in describing the nuances in real-world
performance. Learning to interpret the chord symbols is
challenging in two aspects. First, expert musicians often
color a chord by adding notes to, or omitting notes from
the chord according to the musical context, although the
chord symbol itself does not specify such alterations. Sec-
ond, chords composed of the same set of pitch classes can
be voiced differently by spacing and doubling the chord
tones. Take the comping technique in jazz music as an
instance. 1 Instead of sticking to the typical configura-
tion of a chord, a jazz pianist may play the C dominant
seventh chord with the configuration shown in Figure 1b,
in which the 5th of the root, G4, is omitted, and the 9th
of the root, D5, is added; while another jazz pianist may
arrange these notes in a totally different way as demon-
strated in Figure 1c, where Bb is doubled and D is spaced
a register lower. In fact, the way how musicians interpret
chord symbols in a given context involves not only their
thorough understanding of various musical styles, but also
their personal tastes. Therefore, to generate the realization
of chord symbols through MIR approaches is a challeng-
ing yet valuable task, despite this topic is rarely discussed
possibly because of the lack of data.

In this paper, we propose chord jazzification, a process
to realize chord symbols with jazz harmony through deep
learning approaches. Based on the two aforementioned as-
pects of interpreting the chord symbols, the chord jazz-

1 Comping means accompanying or complementing a soloist by play-
ing the chords to fill the harmonic and rhythmical vacancies in the music.
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Figure 2: Annotations of the proposed dataset. Chord Symbol specifies the root and the quality of each chord (a bass note
is explicitly notated with a slash when it is not the root note), e.g., Db:M/F stands for a Db major triad with the bass note
F. Time indicates the onset and the duration (measured in beats) of each chord. Voicing represents the configuration of each
chord with a set of scientific pitch notations. Coloring indicates the chord degrees which appear in the voicing but are not
specified by the chord symbol, and vice versa, e.g., (o1,9) indicates that the root is omitted and the 9th is added. Note
that 7 is explicitly qualified by {M, m, d} (major, minor, diminished) to disambiguate its interval. Roman Numeral Analysis
denotes the scale degree on which a chord is built, as well as the quality and the inversion information, e.g., V7 stands for
a dominant seventh chord in root position. Structure includes the annotations of phrase, measure and metrical position. To
specify the phrase a chord belongs to, each chord is labeled with a letter plus a number in a way similar to musical form
analysis. Metrical position shows the position of a chord with respect to the metric grid (starting with 0).

ification task is formulated as two subtasks, namely the
chord coloring and the chord voicing. The chord coloring
task decides which pitch classes are to be played for elab-
orating a chord symbol, while the chord voicing task deals
with the spacing and the doubling of the pitch classes to be
played. Although the jazzification of chord progressions is
not limited to coloring and voicing, we focus on the two
aspects for the primary study. To facilitate the research on
chord jazzification, we also compile a new dataset consist-
ing of chord symbols and corresponding chord configura-
tions in pop-jazz compositions. In comparison with other
jazz-related datasets, such as the Charlie Parker’s Omni-
book data [17], the Jazz Audio-Aligned Harmony (JAAH)
dataset [18], the JazzCorpus [19], and the Weimar Jazz
Database [20], our dataset includes more detailed informa-
tion of chords, especially the chordal configuration. With
the newly compiled dataset, we conduct several experi-
ments to verify the two-stage framework for chord jazzi-
fication. Experiment results indicate that it is effective to
decompose chord jazzification into coloring and voicing,
rather than to adopt an end-to-end approach.

The current work is different from the accompaniment
or harmonization tasks [21,22], in terms of that such works
require melodies as prior knowledge and regard chords as
appendages to melodies. Besides, our work concerns both
the voicings of a chord sequence and the interpretation of
each single chord, thus is distinct from the voice leading
generation task [23, 24]. The jazzification of a chord pro-
gression is part of the music composition process to expand

a tonal structure, i.e., the prolongation described in Hein-
rich Schenker’s music theory [25]. Chord jazzification can
advance other MIR-related tasks such as style analysis and
chord generation [26–29]. We hope that our work can draw
more attention to the musical knowledge regarding the im-
plicit relations between the notated chord symbols and the
actual harmony being performed.

In summary, our contribution is threefold. First, we
address the issue of interpreting chord symbols by chord
jazzification. Second, we compile a new dataset for the
generation of jazzy harmony and for the study of chord
embellishments. Finally, a deep learning framework is pro-
posed to generate jazz-style chord progressions. In the fol-
lowing, we will first present the new dataset (Section 2),
and then formulate the framework of chord jazzification
(Section 3); based on the framework, several experiments
are introduced thereon (Section 4).

2. THE CHORD JAZZIFICATION DATASET

The corpus is composed of 50 musical pieces selected from
published Japanese pop-jazz piano solos, in which chord
symbols are explicitly specified. 2 To obtain the corre-
sponding voicing of each chord symbol, we manually per-
form harmonic reduction for each piece. Concretely, notes
within the region of a chord symbol are selected to build
the configuration of the chord symbol. With the chord

2 The dataset is available at https://github.com/
Tsung-Ping/Chord-Jazzification.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Figure 3: Chord qualities and chord colorings in the pro-
posed dataset (the long tail of the coloring distribution is
left out). Chord degrees of compound intervals are merged
with simple ones in the coloring figure for simplicity.

symbols and the transcribed voicings, coloring and har-
monic information are annotated. Specifically, there are six
types of annotations in the dataset: Chord Symbol, Time,
Voicing, Coloring, Roman Numeral Analysis [10, 30], and
Structure. Figure 2 gives an example.

A brief introduction of the chord qualities and colorings
used in the corpus is illustrated in Figure 3. Not surpris-
ingly, the three seventh chords, major seventh (M7), minor
seventh (m7), and dominant seventh (7), account for more
than half of the chords, as jazz harmony is notable for the
use of seventh chords. On the other hand, characteristic
colorings of pop-jazz music can also be found in many
chords, such as adding a major second or a compound ma-
jor second (2) and omitting the perfect fifth (o5).

In summary, 796 musical phrases amounting to 6700
chord labels are included in the dataset. These annota-
tions provide information concerning the relationship be-
tween the symbolic notation and the actual configuration
of chords in human compositions. It therefore has the po-
tential to be applied to many MIR-related research top-
ics, such as corpus-based study of tonal harmony in mu-
sic practice, generation of colorful chord progressions, and
computer-aided composition, to name but a few. It has to
be acknowledged that the dataset has some limitations in
describing an actual interpretation of chord symbols, in the
sense that the transcription of chords eliminates the har-
monic and rhythmical variances within the region of each
chord symbol. Nevertheless, the dataset can be a starting
point for performers and composers to learn to elaborate
and develop a tonal structure through the chord jazzifica-
tion process, which is relatively easier compared to learn-
ing the elaboration directly from a complete musical piece.

3. CHORD JAZZIFICATION

The goal of chord jazzification is to endow plain chords
(e.g., a sequence of triads) with jazz harmony. We tackle
the chord jazzification task through two successive steps,
that is, coloring and voicing. The coloring part functions
as an intermediate state which specifies chords in terms of
pitch classes, and the voicing part assigns pitch heights to
the specified pitch classes.

3.1 Coloring

In this paper, 48 triads in root position ({major, minor, aug-
mented, diminished} by 12 semitones) are considered for
coloring. We define the chord coloring task as predicting
the bass note and the pitch classes to render each triad in a
given sequence.

Formally, the input of the coloring task is a triad se-
quence {xi}Ti=1 and a duration sequence {di}Ti=1, where
i denotes time steps, T is the length of the sequence,
xi ∈ R12 is a chroma representation of the ith triad,
and di is the duration of xi. The coloring task pre-
dicts the bass sequence {bc

i}Ti=1 and the pitch class se-
quence {pc

i}Ti=1 for the input sequence, where c stands for
coloring, bc

i ∈ R12 is a softmax-activated chroma vec-
tor indicating the 12 pitch classes’ probabilities to be the
bass of colored xi, and pc

i ∈ R12 is a sigmoid-activated
chroma vector indicating the 12 pitch classes’ probabilities
to be the constituent notes (except the bass) of colored xi.
For example, bc

i = [0.8, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0] indi-
cates the pitch classes C and E respectively have a prob-
ability of 80% and 20% to be the bass note, and pc

i =
[0, 0.9, 0, 0, 0.9, 0, 0, 0, 0, 0, 0.9, 0] suggests that there is a
90% chance that Db , E, and Bb are activated to render xi.

We employ a basic sequential learning architecture for
the coloring task. As shown in Figure 4a, the architecture
is composed of three layers: 1) an input embedding layer,
2) a sequential modeling layer, and 3) an output layer.
Specifically, the three layers are formulated as follows:

eci = Wec(dixi), (Input Embedding)

hc
i = f c(eci | ec1:T ), (Sequential Modeling)

pc
i = sigmoid(Wpc

hc
i ), (Output)

bc
i = softmax(Wbchc

i ),

(1)

where Wec ∈ Rd×12, Wpc ∈ R12×d, and Wbc ∈ R12×d

are learnable parameters, f c : Rd → Rd denotes a train-
able neural network, and d is a hyperparameter indicating
the dimensions of the embedding space. Two candidate
networks are employed for the sequential modeling layer:

• Bi-directional Recurrent Neural Network with Long
Short-Term Memory (BLSTM):

hc
i =
−→
h c

i ⊕
←−
h c

i ,
−→
h c

i = LSTM(eci | ec1:i−1),
←−
h c

i = LSTM(eci | eci+1:T ),

(2)

where ⊕ denotes vector concatenation.
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(a) (b) (c)

Figure 4: (a) The coloring model. (b) The voicing model. (c) The two-stage chord jazzification model.

• Multihead Self-attention Network (MHSA):

h
c(l)
i = Wouterσ(Winnerui + b1) + b2,

ui = Wu(u′i1 ⊕ · · · ⊕ u′iJ) + h
c(l−1)
i ,

u′ij = Vj softmax

(
K>j qij√

d

)
,

qij = WQ
j h

c(l−1)
i ,

Kj = WK
j [h

c(l−1)
1 , · · · ,hc(l−1)

T ],

Vj = WV
j [h

c(l−1)
1 , · · · ,hc(l−1)

T ],

(3)

where l denotes the iteration step, and the initial
value h

c(0)
i = eci ; σ represents the ReLU activa-

tion function; J is the number of heads; Wouter
j ∈

Rd×4d,Winner
j ∈ R4d×d,Wu ∈ Rd×d, and

WQ
j ,W

K
j ,W

V
j ∈ R d

J×d are learnable parameters.
This network is equivalent to the encoder of the
Transformer [31], while we leave out layer normal-
ization and position encoding terms for simplicity.
In this paper, we set d = 512, l = 2, and J = 8.

The binary cross entropy (BCE) and the categorical
cross entropy (CCE) are used to calculate the losses. Let
pc∗
i and bc∗

i denote the ground truths of pc
i and bc

i ; the
total loss of the coloring model Lc is defined as:

Lc =
T∑

i=1

[BCE(pc∗
i ,p

c
i ) + CCE(bc∗

i ,b
c
i )] . (4)

3.2 Voicing

We define chord voicing as a task which predicts the voic-
ings of a chord sequence. Formally, given a chord se-
quence of T time steps in terms of their basses {bv

i }Ti=1,
constituent pitch classes {pv

i }Ti=1, and durations {di}Ti=1,
the task predicts the voicings {vi}Ti=1 for the chord se-
quence, where v stands for voicing, bv

i ∈ R12 is a one-
hot chroma vector indicating the bass of the ith chord,

pv
i ∈ R12 is a multi-hot chroma vector representing the

pitch classes of the ith chord except the bass note, and
vi ∈ R88 is a voicing vector indicating the 88 tones’ prob-
abilities to be played on the piano.

Similar to the coloring task, we employ a 3-layer archi-
tecture for the voicing task, as shown in Figure 4b. The
three layers are formulated as follows:

evi = Wev (di(p
v
i ⊕ bv

i )), (Input Embedding)

hv
i = fv(evi | ev1:T ), (Sequential Modeling)

vi = sigmoid(Wvhv
i ), (Output)

(5)

where Wev ∈ Rd×24 and Wv ∈ R88×d are learnable pa-
rameters, and fv : Rd → Rd is a neural network. Like-
wise, the BLSTM and the MHSA networks are two options
for the sequential modeling layer.

Let v∗i ∈ R88 denote the target voicing of the ith chord;
we define the loss as:

Lv =
T∑

i=1

BCE(v∗i ,vi). (6)

As the voicing task is to arrange the constituent notes of
chords on an 88-key piano based on the given basses and
the sets of pitch classes, the outcome of v∗i can be known
to a certain degree. More precisely, a note in v∗i can be
activated only if its pitch class is activated in bv

i or pv
i .

With this consideration, we design corresponding masks
to modify the loss computation. Let bv′

i ∈ R88 and pv′
i ∈

R88 be the extensions of bv
i and pv

i to all octaves of the
piano. Then, the loss constrained by the masks becomes:

Lv′ =
T∑

i=1

BCE(v∗i ,mi � vi),

mi = bv′
i ∨ pv′

i , (Mask)

(7)

where � stands for the Hadamard product, and ∨ denotes
the logical OR operator.
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3.3 Two-stage Chord Jazzification

We stack the chord voicing model on the top of the chord
coloring model by setting bi = bv

i = onehot(arg maxbc
i )

and pi = pv
i = round(pc

i ), as illustrated in Figure 4c. In
other words, the outputs of the coloring model are first con-
verted into binary vectors, and then taken as inputs by the
voicing model. Such an integrated model jazzifies chord
progressions in two stages: first, for a given sequence of
triads {xi}Ti=1 and the corresponding durations {di}Ti=1,
the coloring model generates a colored sequence repre-
sented by {bi}Ti=1 and {pi}Ti=1; based on the colored se-
quence, the voicing model subsequently generates a voiced
chord progression {v}Ti=1 .

4. EXPERIMENTS

4.1 Chord Jazzification with Supervised Learning

With the formulations of chord jazzification as multi-class
classification (for bc

i ) and multi-label classification (for pc
i

and vi) problems, we train the coloring and voicing mod-
els using the new dataset, and perform 4-fold cross valida-
tion. For the coloring task, the input triad sequences and
the input duration sequences are respectively derived from
the Chord Symbol and the Time annotations of the dataset,
while the ground truths of the bass sequences and the pitch
class sequences are obtained from the Voicing labels. As
for the voicing task, the duration sequences and the ground
truth labels of the coloring task are taken as the inputs,
while the Voicing labels are used as the ground truths of
the output sequences. We augment the training set through
transposing the data from 4 semitones down to 5 semitones
up (within the valid range of the piano), leading to 10 times
the training data. As a result, there are 5970 and 199 se-
quences for training and testing respectively.

Evaluation results are shown in Table 1. For both the
coloring and voicing tasks, the employment of either the
BLSTM or the MHSA as the sequential modeling lay-
ers yields comparable performance to the other, while the
MHSA appears to surpass the BLSTM in cases of multi-
label classification, i.e., the predictions of pitch classes and
voicing. When the input embedding layers in the two sub-
tasks are removed, all the performances decrease by from
3.19% to 4.69%. This indicates that the transformation to
dense vectors benefits the learning process when the input
data is sparsely represented. Moreover, the introduction of
the input-related masks to the loss calculation in Eqn (7)
also improves the modeling of voicing; precisely, the F1
score increases 2.66% if the masks are utilized. It is worth
noting that the amount of training data is quite limited, and
therefore the performance seems to be satisfactory in the
current experimental setting.

4.2 End-to-end Chord Jazzification

To motivate the decomposition of chord jazzification into
2 stages, we train a chord jazzification model in an end-to-
end manner for comparison. Technically, we replace the
output module of the coloring model with that of the voic-
ing model; and we employ a 2-layer BLSTM, rather than

Model
Coloring

Voicing
Bass Pitch Classes

BLSTM 81.87 76.52 63.64
MHSA 80.78 77.02 64.86
BLSTM w/o E 77.18 73.33 60.12
BLSTM w/o M - - 60.98
End-to-End - - 37.87

Table 1: Results of the coloring and the voicing tasks. The
lower part shows the ablation tests without the embedding
layer (w/o E) and without masks (w/o M), as well as the
result using end-to-end training. All the values indicate
the average F1 scores (%) over 4 validations.

a 1-layer BLSTM as defined in Eqn (2), for the sequential
modeling layer in order to make the number of parame-
ters comparable to the two-stage chord jazzification model.
The evaluation result is shown in Table 1.

In this end-to-end architecture, the performance drops
substantially to nearly half of the value. This result con-
versely validates the two-stage approach. Given the fact
that the prediction of polyphony is often challenging, it
turns out to be beneficial to generate an intermediate stage,
that is, the chroma representations with respect to coloring,
before the overall jazzification of chords.

4.3 Consistency of Chord Jazzification
Chord progressions often have a repetitive structure, there-
fore it is important for a model to preserve this property
and generate chord sequences of self-consistency. To mea-
sure the consistency of a model’s generations, we com-
pute the self-similarity matrices (SSMs) of each generated
voicing sequence and corresponding label sequence, and
then calculate the difference between each generation-label
SSM pair. Let V = [v1, · · · ,vT ] denote the normal-
ized voicing sequence generated by a model, and V

∗
=

[v∗1, · · · ,v∗T ] denote the normalized label sequence, where
vi = round(vi)

‖round(vi)‖ is a binarized and normalized voicing, and

v∗i = v∗
i

‖v∗
i ‖

is a normalized target voicing; we define the
consistency score (CS) of a generated sequence as follows:

CS = 1− reduce_mean(∆SSM),

∆SSM = |SSMpred − SSMlabel|,

SSMpred = V
>
V,

SSMlabel = V
∗>

V
∗
.

(8)

The more similar the structures of the two sequences are,
the higher the CS score is.

Table 2 shows the average consistency score over 4
cross-validation folds. To provide a benchmark for the
consistency measure, we also show the CS score computed
from label sequences and randomly-generated sequences
(denoted as RANDOM). Both the two models get higher
scores than the random condition, indicating that they learn
some structural information. Besides, the MHSA out-
performs the BLSTM due to an essential difference be-
tween them: the BLSTM processes each time step of a
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Model BLSTM MHSA RANDOM

CS Score (%) 86.91 87.68 72.80

Table 2: Consistency measure of chord jazzification.

Figure 5: The difference of self-similarity matrices. Left:
∆SSM of the BLSTM. Right: ∆SSM of the MHSA. The
origin of the matrices is at the lower left corner.

sequence recurrently, while the MHSA accesses the entire
sequence simultaneously. As a result, the MHSA can cap-
ture more structural features than the BLSTM does, lead-
ing to more consistent generations. Two examples of the
∆SSM are demonstrated in Figure 5. Evidently, there are
fewer bright regions in the ∆SSM of the MHSA, indicat-
ing that the generation by the MHSA is structurally closer
to the ground truth than that by the BLSTM.

4.4 Generating Jazz Harmony

We train the two-stage chord jazzification model using the
proposed dataset, and generate jazzified chord progres-
sions with input triad sequences derived from the JAAH
dataset. 3 In total, 2210 sequences with 23199 chords were
generated. To examine the effect of jazzification, we quan-
titatively analyze the difference between each input triad
and its jazzified counterpart. Particularly, we are interested
in changes with respect to chord coloring: 1) what notes
are added to or omitted from a triad? 2) Is a note other
than the root being chosen as the bass note?

The result is represented in Figure 6. Around 40% of
the input triads are embellished with a minor seventh (m7).
And the addition of a major seventh (M7) also accounts
for around 3.6%, ranked in the top fourth. These frequent
colorings with a major or minor seventh reflect the charac-
teristics of jazz music in which most triads that appear in
lead sheets or fake books can have sevenths added to them.
Moreover, extended chords and inverted chords can also
be found. For instance, the coloring (b2,m7) for a major
triad will lead to a dominant seventh flat ninth chord; and
the coloring None/3 indicates the first inversion of triads.
It is worth mentioning that some generated slash chords are
not inverted chords. An example is shown in the bottom
of Figure 6. With the coloring (2,M7)/2, the last triad
Db:M becomes Db:M7/Eb, which can be interpreted as
an Eb dominant thirteenth chord—the dominant chord of
the relative major mode (assuming F is the tonic). In other
words, this coloring not only breaks the repetitive structure

3 https://github.com/MTG/JAAH

Figure 6: Top: the coloring distribution of the generated
chords (part of the distribution is omitted). Bottom: a gen-
erated example. A number after the slash symbol indicates
the degree of the bass note relative to the root note.

of the input triad sequence, but also implies a new tonality.
In addition to coloring, it can be observed that the linear
progressions of voices are quite smooth, showing that the
model also learns the knowledge of voice leading.

5. CONCLUSION

To learn the interpretation of chord symbols from musical
data, we proposed chord jazzification, a process of generat-
ing realistic jazz-style chord progressions through two mu-
sical techniques: chord coloring and chord voicing. Chord
coloring decides a bass and a set of pitch classes for elab-
orating a triad, while chord voicing arranges the bass and
the set of pitch classes on the piano. We correspondingly
built a dataset which includes coloring and voicing anno-
tations, and hence can be used as the training data of the
chord jazzification task. By formulating the chord color-
ing and chord voicing tasks as classification problems, we
experimentally showed that the two-stage framework is ca-
pable of generating plausible chord configurations from a
sequence of chord symbols.

Chord jazzification has the potential to be applied to
two different yet related practices in music: performing
and composing. For music performing, it is practical and
desirable to interpret the chord symbols on lead sheets
through jazzification. For music composing, the generated
sequence by the chord jazzification model can be regarded
as an intermediate product with which a musician can fur-
ther create a human-machine collaborative musical work.
In future research, we are planning to include more rhyth-
mical and structural information, such as metrical position,
to better represent the harmonic features, and apply more
advanced deep learning techniques to improve the chord
jazzification task.
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