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1: ooo I wanna kiss you
2: loving you is my dream tonight
3: ooo hold me tenderly
4: loving me with all your heart
5: boy you never tell me that you love me
6: I'm going crazy wondering about you baby
7: do you really know boy how much I care
8: could you really show me how deep is your love?
9: just close you eyes and hear my heart
10: the sweet sweet beat of my love
11: can't you tell I'm hungry baby
12: for only you can make me smile
13: ooo I wanna kiss you
14: loving you is my dream tonight
15: ooo hold me tenderly
16: loving me with all your heart

1: ooo I wanna kiss you
2: loving you is my dream tonight
3: ooo hold me tenderly
4: loving me with all your heart
5: boy you never tell me that you love me
6: I'm going crazy wondering about you baby
7: do you really know boy how much I care
8: could you really show me how deep is your love?
9: just close you eyes and hear my heart
10: the sweet sweet beat of my love
11: can't you tell I'm hungry baby
12: for only you can make me smile
13: ooo I wanna kiss you
14: loving you is my dream tonight
15: ooo hold me tenderly
16: loving me with all your heart
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• Chorus-section detection using audio signals.

• Whether chorus sections can be detected from text-only lyrics is an open issue.
• We propose a supervised model that can detect chorus sections in English and Japanese lyrics. 

2

Background
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Potential Application

It is necessary for a lyrics search system to automatically 
detect which lines of the lyrics are included in chorus sections. 

Lyrics A

ch
or

us

… I love you … …

Lyrics Database

I want to find 
lyrics with a chorus 
section having a 
phrase “I love you”.

Listener

Lyrics B

… I miss you …

ch
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us

Lyrics C

ch
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… I love you …

■ A lyrics search system

Lyrics 
search
system

Lyrics A

Lyrics C
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Key Idea
• We compute the Self-similarity matrix (SSM) from lyrics text.
• SSM representations are widely used in computational music structure analysis.

Repeated sections lead to 
high values in diagonals 
of the matrix, and those 
patterns are used to 
identify the structure.
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Nine SSMs

❶ ❷ ❸

❹ ❺ ❻

❼ ❽ ❾

• The design of the similarity measure to compute each cell of the SSM is important.
• We propose to use the following nine variations of similarity measures.

① String similarity
② Head similarity
③ Tail similarity
④ Part-of-speech similarity
⑤ Phonetic similarity

Edit distance

Cosine similarity
⑥ Word vector similarity
⑦ Context vector similarity

Dynamic time warping
⑧ Word syllable count similarity
⑨ Lyric line syllable count similarity
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Structural Feature
To calculate feature vectors     from the above nine SSMs, we use a CNN architecture* to 
detect textual macro structures from various patterns in SSMs regardless of their locations 
and relative sizes in SSMs.

Sub-matrices {"#$%$ , … , "#()$ } ∈ ℝ-.×0×1

…

…

2D-convolution
+ ReLU

max pooling 1D-convolution
+ ReLU

max pooling

for identifying the type of similarity measure.
String similarity (simstr): a normalized Levenshtein edit
distance between the characters of two lines.
Prefix similarity (simpre): a normalized Levenshtein edit
distance between the characters of the first two words of
two lines.
Suffix similarity (simsuf ): a normalized Levenshtein edit
distance between the characters of the last two words of
two lines.
Phonetic similarity (simphone): To capture rhymes in the
lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcription of two lines. In this
study, we used the CMU pronunciation dictionary to extract
the phonetic transcription of lines. For example the phonetic
transcription of the line “I love you” is [AY1, L, AH1, V, Y,
UW1].
Part-of-speech similarity (simpos): To capture similari-
ties in grammatical structure, we calculate a normalized
Levenshtein edit distance between the sequence of part-of-
speech of two lines.
Word vector similarity (simw2v): To capture the semantic
similarity between two lines, we simply average words’
vectors of each line using pre-trained word2vec embeddings
and compute its cosine similarity.
Context vector similarity (simc2v): The average of word
vector by word2vec assumes a “bag of words” (i.e., the
difference between “dog bites person” and “person bites
dog” cannot be captured in this assumption). To consider
word order, we vectorize the lines using pre-trained con-
text2vec, an extension of word2vec, which encodes lines
using LSTM. We compute similarity simc2v using cosine
similarity.
Word syllable count similarity (simsyW ): As a clue for
detecting chorus sections, we use the sequence of word
syllable counts on each line. For example, word syllable
counts of two lines “Sometimes you lost yourself away”
and “Everytime you just close your eyes” are {2, 1, 1, 2, 1}
and {2, 1, 1, 1, 1, 1} respectively 1 ; lines that have a similar
syllable count sequence are likely to be the same section
in the song. In this study, we use Dynamic Time Warping
(DTW) to calculate the similarity between sequences of
different lengths, such as syllable count sequences.
Line syllable count similarity (simsyL): We can also use
the sum of the syllable counts of all words in each line.
For example, in the lyrics of Figure 1, the total syllable
count of the first line in the chorus section is all six, but
the total syllable count in the second line is eight. For-
mally, we calculated the similarity of the total syllable
count of each line in the following procedure. (1) We shift
a window of four lines over lyrics and extract four lines
Lt = {xt, xt+1, xt+2, xt+3}. (2) The similarity between
the line xt and xt0 is calculated by the DTW of Lt and Lt0 .

We calculated nine self-similarity matrices SSMm 2
RT⇥T , where each cell is a similarity measure as described
above. Then, to calculate feature vectors from the above
nine SSMs, we exploit the Convolutional Neural Network

1 The song is from the RWC Music Database (RWC-MDB-P-2001
No.92) [3].

Figure 3. Convolutional Neural Network to vectorize
SMMs.

(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:

St
m = SSMm[t�w+1, ..., t+w] 2 R2w⇥T , where w

is a fixed window size. The input of the CNN is nine sub-
matrices {St

str, ..., S
t
syL} 2 R2w⇥T ⇥9, where the number

of SSMs indicate the number of channels. The kernel size
of the first convolutional layer is (w+ 1)⇥ (w+ 1) so that
each feature can capture a prospective chorus section. In
this network, all convolutional layers employ batch normal-
ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some linguistic expressions tend to appear in chorus rela-
tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word
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lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcription of two lines. In this
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the phonetic transcription of lines. For example the phonetic
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(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:

St
m = SSMm[t�w+1, ..., t+w] 2 R2w⇥T , where w

is a fixed window size. The input of the CNN is nine sub-
matrices {St
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of SSMs indicate the number of channels. The kernel size
of the first convolutional layer is (w+ 1)⇥ (w+ 1) so that
each feature can capture a prospective chorus section. In
this network, all convolutional layers employ batch normal-
ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some linguistic expressions tend to appear in chorus rela-
tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word

* [Fell et al. 2018]
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Some expressions of lyrics tend to 
appear in chorus sections?

Pc and Pn denote word tri-gram probabilities in the chorus 
and non-chorus sections, respectively. 

Chorus-section Non-chorus-section

Phrases about the future (e.g., I’ll and 
Let's) tend to appear in chorus sections 
more often than do phrases about the 
past (e.g., have been and didn't).

■ Findings
Tri-gram Pc � Pn Tri-gram Pn � Pc

I’m 0.12% there’s 0.04%
don’t 0.11% I’ve 0.03%

oh oh oh 0.05% ’s a 0.03%
I’ll 0.05% I’d 0.02%

we’re 0.04% but I’ 0.02%
you’re 0.04% ’s not 0.01%
’ll be 0.04% what’s 0.01%
I don’ 0.04% na na na 0.01%
Let’s 0.03% yeah yeah yeah 0.01%

you got ta 0.03% ’ve been 0.01%
I can’ 0.03% ’t take 0.01%
can’t 0.03% didn’t 0.01%

Table 1. Frequent word tri-grams in chorus and non-chorus
sections. An apostrophe is regarded as a word.

word tri-gram probabilities in the chorus and non-chorus
sections. Table 1 shows the word tri-grams that frequently
appear in both of the sections. Here, Pc and Pn denote
word tri-gram probabilities in the chorus and non-chorus
sections, respectively. As shown in this table, we found that
phrases about the future (e.g., “I’ll” and “Let’s”) tend to
appear in chorus sections more often than do phrases about
the past (e.g., “have been” and “didn’t”). To exploit such
tendencies, we propose two linguistic features.
Average of word vectors (lingave): We use the average of
word vectors of a given lyric line as a feature. The word
vectors are obtained using pre-trained word2vec [42], skip-
ping out-of-vocabulary words.
Vector representations for word sequences (lingseq): To
consider the word order that cannot be modeled by lingave,
we use pre-trained context2vec [43] that enables vectoriza-
tion of a lyric line by putting a sequence of word vectors
into the LSTM.

We calculate the above linguistic feature vectors for each
lyric line xt and obtain their concatenated vector ut.

3.3 Neural Network-based Sequence Labeling Model

To solve the sequence labeling problem, we use the stan-
dard Bidirectional Long Short-Term Memory (Bi-LSTM)
networks [49] to compute the conditional probability
P (Ys|Xs). The neural network structure is illustrated in
Figure 3.

The input to the Bi-LSTM layer at each time step t (lyric
line) is a concatenation of two different types of feature
vectors: (1) structural feature vectors vt encoded from
nine variations of SSMs in Section 3.1 and (2) linguistic
feature vectors vt encoded in Section 3.2. Formally, the
conditional probability P (Ys|Xs) is calculated by using a
softmax function:

P (Ys|Xs) = exp(Score(Xs,Ys))P
Y 0
s

exp(Score(Xs,Y 0
s )) . (1)

The Score() is defined as

Score(Xs, Ys) =
X

t

BN(ht[yt]), (2)

where ht[yt] is the output of the Bi-LSTM for each time
step t and BN() denotes batch normalization [50]. In the
model training step, we use a binary cross-entropy loss.
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Figure 3. Neural-network-based sequence labeling model
for chorus-section detection.

4. EXPERIMENT

Inspired by audio-based chorus-section detection [39], we
evaluated the proposed method by using the F-measure (F )
that is a harmonic mean of precision (P ) and recall (R),
F = (2 · R · P )/(R + P ), where

P = # of lyric lines in correctly detected chorus sections
# of lyric lines in detected chorus sections .

R = # of lyric lines in correctly detected chorus sections
# of lyric lines in correct (annotated) chorus sections .

We also used the pair-wise F-measure (p-F ), normalized
conditional entropy F-measure (n-F ) and V-measure (V )
that are provided by the Python module mir_eval and
commonly used to evaluate computational music structure
analysis [51].

4.1 Methods Compared

To confirm the effectiveness of our Bi-LSTM method based
on the Bi-LSTM model that can learn dependencies be-
tween adjacent lyric lines, we compared its performance
with that of with two baseline methods:
(1) Heuristic: We implemented the heuristic that “if lines
at the end of the lyrics are repeated with small modifica-
tions, all those repeated lines are chorus sections” by the
following procedure: (i) From the SSM that is the average
of the nine SSMs, we extracted diagonals whose cells had
values higher than a threshold �, which was tuned on a
development set to be � = 0.62. (ii) From the extracted di-
agonals, we selected the shortest diagonal among diagonals
placed at the bottom of the SSM (e.g., the diagonal starting
at the cell SSM[29; 1] in Figure 1). (iii) Successive lines
corresponding to the rows where the selected diagonal was
located (e.g., lyric lines 29–32 in Figure 1) were assigned
the label chorus. (iv) Other successive lines that were
similar to the chorus lines (e.g., lyric lines 1–4 and 13–16
in Figure 1) were also assigned chorus labels.
(2) Multi-Layer Perceptron (MLP): Like the Bi-LSTM

method, but with the Bi-LSTM model replaced by a stan-
dard MLP model. This method ignores transitions between
adjacent lyric lines and predicts yt from xt only.

It can be expected that some expressions will 
contribute to the chorus-section detection.

We exploit a CNN architecture to detect 
textual macro structures from nine SSMs.

Our model utilizes linguistic features such as 
word vectors and sentence vectors.

• We propose a Bidirectional LSTM-based model using two types of feature representations. 

Chorus-section Detection Model

Structural Feature Linguistic Features
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Training Data
■ Technical Problem for training our model

No lyrics data with line-level chorus-section annotations are available. 

■ Key Idea： We generate training data with chorus-section annotation

1. We prepared 100,772 pairs of musical audio signals and their corresponding manually 
time-aligned (temporally synchronized) lyrics.

2. We detected chorus sections of every song automatically by using its audio signals.

3. If the start time of a lyric line was within any chorus section detected in audio signals, 
that line was labeled chorus; otherwise, it was labeled not-chorus.

13: ooo
I …

14: loving …

15: ooo
hold …

16: loving …

12: for only …

⑫⑪
11: can't you …

17: can't you …

18: do you …

⑬ ⑭ ⑮ ⑯ ⑰ ⑱

1. Synchronized audio and lyrics

13: ooo
I …

14: loving …

15: ooo
hold …

16: loving …

12: for only …

⑫⑪
11: can't you …

17: can't you …

18: do you …

⑬ ⑭ ⑮ ⑯ ⑰ ⑱

2. Chorus-section detection from audio

chorus

3. Each line is labeled chorus/not-chorus

chorus
13: ooo

…

chorus
14: loving …

chorus
15: ooo

…

chorus
16: loving …

not-chorus 12: for …

⑫⑪
not-chorus 11: can't …

not-chorus 17: can't 

… not-chorus 18: do …

⑬ ⑭ ⑮ ⑯ ⑰ ⑱

chorus
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Dataset
■ Dataset for training comparison

■ Dataset for tuning model parameters

■ Dataset for testing

• EN_auto: English lyrics data with the generated chorus-section annotations.   (9,313 songs)
• JA_auto: Japanese lyrics data with the generated chorus-section annotations. (91,459 songs)
• JA_man: Japanese lyrics data with the gold chorus-section annotations.          (1,103 songs)

• EN_RWC: English lyrics data in RWC Music Database.   (21 songs)
• JA_RWC: Japanese lyrics data in RWC Music Database. (79 songs)

• EN_test: English lyrics data.      (118 songs)
• JA_test: Japanese lyrics data.    (128 songs)

We annotated chorus-section label manually.

We annotated chorus-section label manually.

Experimental Results (1)

Method
Training and test data (# of training songs)

English (9,313 songs)
F-measure

Japanese (91,459 songs)
F-measure

Heuristic
(extract repeated lines as chorus sections) 57.8 % 57.1 %

Multi-Layer Perceptron 74.2 % 80.6 %

Bi-LSTM (Proposed) 78.1 % 83.4 %

• Methods based on supervised learning are better than a rule-based method. 
• The proposed method is the best for the chorus-section detection task.

■ Findings
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■ Result

■ Question

To confirm the effectiveness of our Bi-LSTM model that can learn dependencies between 
adjacent lyric lines, we compared its performance with that of two baseline methods.

Experimental Results (2)

Feature
Training and test data (# of training songs)

English (9,313 songs)
F-measure

Japanese (91,459 songs)
F-measure

Structural feature 77.9 % 81.2 %
Linguistic feature 57.4 % 55.2 %

Both 78.1 % 83.4 %

• The model with only the structural features greatly outperformed.
• The additional use of linguistic features is helpful for detecting chorus sections.

■ Findings
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■ Result

■ Question

To investigate the effectiveness of structural and linguistic features, we compared their 
use individually and in combination. 

Experimental Results (3)

• The model trained using generated data (91,459 songs) outperformed the 
model trained using human-annotated data (1,103 songs).

• Even if generated annotations are not perfect, they are reliable enough for 
training.

■ Findings
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■ Result

■ Question
We confirm that our generated data is reliable enough for training purposes by comparing 
the performance of the model trained on JA_auto with that of the model trained on JA_man. 

Training Data F-measure (Japanese test data)
JA_auto: generated training data (91,459 songs) 83.4 %

JA_man: human-annotated training data (1,103 songs) 80.3 %

Experimental Results (4)

• The SSM-based model can detect chorus sections regardless of the language.

• English and Japanese SSMs (i.e., patterns of repeating lyric lines) have similar structures.

• Mixing different language data allows the model to learn the general structure of chorus 
sections and thereby perform better.

■ Findings
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■ Result

■ Question
• Can a model trained on a large amount of Japanese data detect English chorus sections?

• Can a model trained on both EN_auto and JA_auto perform better than one trained on only 
EN_auto or JA_auto?

Training Data F-measure (English test data)
EN_auto: generated training  English data (9,313 songs) 77.9 %

JA_auto: generated training Japanese data (91,459 songs) 80.3 %
EJ_auto: EN_auto + JA_auto (100,772 songs) 81.0 %

★ Structural features based on the SSMs can be language independent because our SSMs simply 
represent patterns of repeating lyric lines, which could be universal in music. So we use 
the model without linguistic features in this experiment.

Conclusion
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■ Contributions

1. We designed a variety of features to capture structural and linguistic 
properties of chorus sections.

2. We proposed a sequence labeling model that can detect chorus sections in lyrics.

3. We showed how to generate a large training dataset of lyrics with chorus-
section annotations.

4. We demonstrated that our Bi-LSTM-based method outperforms alternative 
baseline methods.

5. We thoroughly investigated this detection task and the nature of chorus sections 
of lyrics from different perspectives such as the importance of features, the 
amount of training data, and language dependency.


