Unsupervised Disentanglement of Pitch and Timbre for Isolated Musical Instrument Sounds

Yin-Jyun Luo, Kin Wai Cheuk, Tomoyasu Nakano, Masataka Goto, Dorien Herremans

Summary

- Tackle unsupervised disentanglement of pitch and timbre
- Leverage pitch-shifting to further improve disentanglement
- Design a quantitative metric that accounts for disentanglement

Model

- Idea: Introduce inductive biases through architectural constraints
 - **Generation**
 - Model a note of musical instruments \(x \) as being generated by:
 - a pitch (discrete \(c \)) and
 - a timbre (continuous \(z \))
 - \(p_h(x, z, c) = p_h(x | z, c)p(z|c)p(c) \)
 - \(p(z) = N(0, 1) \)
 - \(p_h(x | z, c) = N(p_h(z, c), 1) \), decoder \((D)\)
 - **Inference**
 - Follow the framework of variational inference, introducing a factorized approximated posterior to approximate the true posterior
 - Approximated posterior \(q_l(z, c | x) = q_l(z | x)q_l(c | x) \)
 - \(q_l(z | x) = \mathcal{N}(\mu_l(z, x), \sigma_l(z, x)^2) \), timbre encoder
 - \(q_l(c | x) = \text{Cat}(c | \phi_l(x)) \), pitch encoder
 - **Learning**
 - Reparameterization tricks allow for stochastic gradient descent
 - Gaussian for \(z \) [Kingma et al., ICLR 2014]
 - Hard Gumbel-softmax for \(c \) (one-hot vectors) [Jang et al., ICLR 2017]
 - Evaluate Maximum Evidence Lower Bound (ELBO)
 - \(\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q_l} [\log p_h(z, c | x)] - D_{KL}(q_l(z, c | x) || p_h(z, c)) \)
 - **Parameters**
 - Number of Mel-frequency bins \(F = 256 \)
 - Dimension of timbre latent variable \(L = 8 \)
 - Number of categories for pitch latent variable \(K = 82 \)

Auxiliary Losses

- Assume: Moderate pitch-shiftings \(p_h(\cdot) \) do not change timbre
 - \(p_h(x, z, c) \rightarrow x' \) where \(x' \) denotes \(x \) pitch-shifted by \(\delta \)
 - \(\mathcal{L}_{\text{regression}} = \|x - x'|^2 \)
 - \(\mathcal{L}_{\text{contrast}} = -\log \frac{\sum \exp(\text{sim}(x, z))}{\exp(\text{sim}(x, z'))} \) [Chen et al., ICLR 2020]
 - \(\mathcal{L}_{\text{cycle}} = \|z \|_2^2 + \|z' \|_2^2 + CE(z, k') + CE(z', k) \)
 - where \(k = \text{arg max}_c (\text{Zhu et al., ICCV 2017}) \)
 - \(\mathcal{L}_{\text{surrogate}} = CE(c', y') \)
 - \(y' = \text{arg max}_c (\delta) \)
 - \(\mathcal{L} = \mathcal{L}_{\text{ELBO}} - (\lambda_1 \mathcal{L}_{\text{regression}} + \lambda_2 \mathcal{L}_{\text{contrast}} + \lambda_3 \mathcal{L}_{\text{cycle}} + \lambda_4 \mathcal{L}_{\text{surrogate}}) \)

Evaluation

- Pitch Variable
 - Pitch classification accuracy (ACC and pitch mapping, need labels)
 - Consistency-Diversity Score (CDS) \((\text{CDS}) = \frac{1}{|D|} \sum_{D \in \text{data}} |p_h(y | x, \hat{c})| \)
- Timbre Variable
 - Pitch and Instrument classification accuracy (need labels)
 - Fréchet Inception Distance (FID) [Heusel et al., NeurIPS 2017]
 - \(\text{FID}_\text{true} \): FID between true and reconstructed data (upper-bound)
 - \(\text{FID}_\text{true} \): FID between true and randomly sampled data

Qualitative Results

- Perform pitch-conditioning spectrum generation
 - Last row: seeds (three seeds per model)
 - First to third rows: three different \(k's \)
 - Spectral distribution stays consistent per column
 - Spectrums generated given a \(k \) are expected to have a consistent pitch (consistency)
 - Different \(k's \) render different pitches (diversity)

Future Works

- Perform pitch-conditioning without referring to pitch labels
 - Trade off between capacity and constraint for pitch representation \(c \)
 - Model larger time scale (temporal variable)