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ABSTRACT

A music visualization system called Instrudive is presented
that enables users to interactively browse and listen to mu-
sical pieces by focusing on instrumentation. Instrumenta-
tion is a key factor in determining musical sound charac-
teristics. For example, a musical piece performed with vo-
cals, electric guitar, electric bass, and drums can generally
be associated with pop/rock music but not with classical or
electronic. Therefore, visualizing instrumentation can help
listeners browse music more efficiently. Instrudive visu-
alizes musical pieces by illustrating instrumentation with
multi-colored pie charts and displays them on a map in
accordance with the similarity in instrumentation. Users
can utilize three functions. First, they can browse musical
pieces on a map by referring to the visualized instrumen-
tation. Second, they can interactively edit a playlist that
showing the items to be played later. Finally, they can dis-
cern the temporal changes in instrumentation and skip to a
preferable part of a piece with a multi-colored graph. The
instruments are identified using a deep convolutional neu-
ral network that has four convolutional layers with differ-
ent filter shapes. Evaluation of the proposed model against
conventional and state-of-the-art methods showed that it
has the best performance.

1 INTRODUCTION

Since multiple musical instruments having different tim-
bres are generally used in musical pieces, instrumentation
(combination or selection of musical instruments) is a key
factor in determining musical sound characteristics. For
example, a song consisting of vocals, electric guitar, elec-
tric bass, and drums may sound like pop/rock or metal but
not classical or electronic. Consider, for example, a lis-
tener who appreciates gypsy jazz (featuring violin, acoustic
guitar, clarinet, and double bass). How can he/she discover
similar-sounding music? Searching by instrumentation can
reveal musical pieces played with the same, slightly differ-
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Figure 1: Overview of Instrudive music visualization system.

ent, or completely different instrumentation, correspond-
ing to his/her preferences.

Instrumentation is strongly connected with musical
sound and genres but is not restricted to a specific genre.
For example, pop/rock, funk, and fusion are sometimes
played with similar instrumentation. Therefore, it can be
helpful for listeners to overcome the confinements of a
genre by focusing on sound characteristics when search-
ing for similar-sounding music.

To let users find musical pieces that they prefer, various
methods and interfaces for retrieving and recommending
music have been proposed. They are generally categorized
into three approaches: bibliographic retrieval based on the
metadata of musical pieces, such as artist, album, year of
release, genres, and tags [2], music recommendation based
on collaborative filtering using playlogs [5, 38], and music
recommendation/retrieval based on content-based filtering
using music analysis, such as genre classification [14, 30]
and auto-tagging [4, 14, 20]. Music interfaces leveraging
automatic instrument recognition [22] have received less
attention from researchers.

We have developed a music visualization system called
Instrudive that automatically recognizes the instruments
used in each musical piece of a music collection, visualizes
the instrumentations of the collection, and enables users to
browse for music that they prefer by using the visualized
instrumentation as a guide (Figure 1). Instrudive visual-
izes each musical piece as a pie-chart icon representing the
duration ratio of each instrument that appears. This en-
ables a user to see which instruments are used and their
relative amount of usage before listening. The icons of

561



Figure 2: Instrudive interface consists of four parts.

all musical pieces in a collection are arranged in a two-
dimensional space with similar-instrumentation pieces po-
sitioned in close proximity. This helps the user listen to
pieces having similar instrumentation. Furthermore, the
user can create a playlist by entering a pie-chart query to
retrieve pieces having instrumentation similar to the query
and listen to a musical piece while looking at a timeline
interface representing when each instrument appears in the
piece.

In the following section, we describe previous studies
on music visualization and instrument recognition. We
then introduce the usage and functions of Instrudive in Sec-
tion 3 and explain its implementation in Section 4. Since
the main contributions of this work are not only the In-
strudive interface but also a method for automatically rec-
ognizing instruments on the basis of a deep convolutional
neural network (CNN), we explain the recognition method
and experimental results in Section 5. After discussing the
usefulness of the system in Section 6, we summerize the
key points and describe future work in Section 7.

2 RELATED WORK

2.1 Music Visualization

Visualization of music by using audio signal processing
has been studied by many researchers.

Given a large collection of musical pieces, a commonly
used approach is to visualize those pieces to make it easy
to gain an overview of the collection [11, 13, 23, 24, 31, 32,
37, 40]. The collection is usually visualized so that simi-
lar pieces are closely arranged [13, 23, 24, 31, 32, 37]. The
visualization helps listeners to find and listen to musical
pieces they may prefer by browsing the collection. Instru-
mentation is not focused on in this approach, whereas In-
strudive visualizes the instrumentations of the pieces in the
collection by displaying pie-chart icons for the pieces in a
two-dimensional space as shown in Figure 2.

Given a musical piece, a commonly used approach is to
visualize the content of the piece by analyzing the musi-
cal elements [3, 9, 10, 12, 18, 29]. For example, a repetitive
music structure is often visualized [3,9,10,12,29]. This en-
hances the listening experience by making listeners aware
of the visualized musical elements. Our Instrudive inter-
face also takes this approach. After a user selects a musical

Figure 3: Multi-colored pie charts depict instrumentation.

piece, Instrudive displays a timeline interface representing
when each musical instrument appears in the piece. This
helps the listener focus on the instrumentation while listen-
ing to music.

2.2 Instrument Recognition

The difficulty in recognizing instruments depends on the
number of instruments used in the piece. The greater the
number of instruments, the greater the difficulty. When a
single instrument is used in a monophonic recording, many
methods achieve good performance [6, 8, 19, 41, 42].

On the other hand, when many instruments are used in
a polyphonic recording, which is typical in popular music
produced using multitrack recording, it is more difficult to
recognize the instruments. Most previous studies [7, 15,
22,26] used machine learning techniques to overcome this
difficulty. In Section 5, we compare our proposed model of
instrument recognition with one that uses a support vector
machine (SVM).

A more recent approach to recognizing instruments is
to use a deep learning method, especially a CNN [16, 27,
28, 34]. Methods using this approach have outperformed
conventional and other state-of-the-art methods, but their
performances cannot be easily compared due to the use
of different databases and instrument labels. Despite their
high performance, there is room for improvement in their
accuracy. We aim to improve accuracy by proposing and
implementing an improved CNN-based method.

3 INSTRUDIVE

Instrudive enables users to browse musical pieces by fo-
cusing on instrumentation. The key idea of visualizing the
instrumentation is to use a multi-colored pie chart in which
different colors denote the different instruments used in a
musical piece. The ratios of the colors indicate relative
durations in which the corresponding instruments appear.
Figure 3 shows example charts created using ground truth
annotations from the multitrack MedleyDB dataset [1].
The charts representing different genres have different ap-
pearances due to the differences in instrumentation among
genres.

These multi-colored pie charts help a user browsing a
collection of musical pieces to understand the instrumen-
tations before listening to the pieces. Moreover, during
the playing of a musical piece, Instrudive displays a multi-
colored graph that indicates the temporal changes in instru-
mentation.

Instrudive can recognize 11 categories of instruments:
acoustic guitar, clean electric guitar, distorted electric gui-
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Figure 4: Menu appears
after right-clicking chart.

Figure 5: Scattering mode en-
ables playlist to be created by
drawing curve.

Figure 6: Visual player helps listener understanding instrumen-
tation and its temporal changes.

tar, drums, electric bass, fx/processed sound (sound with
effects), piano, synthesizer, violin, voice, and other (instru-
ments not included in the 10 categories). The categories
depend on this dataset and are defined on the basis of [27].

As shown in Figure 2, the interface of Instrudive con-
sists of four parts: an instrumentation map for browsing
musical pieces, a visual player for enhancing the listening
experience, a search function for finding musical pieces
by using the pie-chart icons as queries, and an interactive
playlist for controlling the order of play.

3.1 Instrumentation Map

The instrumentation map visualizes the musical pieces in
a collection. Each piece is represented by a multi-colored
pie chart. Similar pie charts are closely located in a two-
dimensional space. As shown in Figure 9, this map sup-
ports visualization modes, circular and scattering.

When a user right-clicks on a pie chart, a menu appears
as shown in Figure 4. The user can play the piece or use
the piece as a query for the search function. By using the
circular mode, which arranges the pie charts in a circu-
lar path, the user can automatically play the pieces with
similar instrumentation one after another along the path.
By switching to the scattering mode, the user can draw a
curve to create a playlist consisting of pieces on the curve
as shown in Figure 5.

3.2 Visual Player

The visual player (Figure 6) visualizes the temporal
changes in instrumentation in the selected musical piece
as it is played. It shows a graph along the timeline inter-
face consisting of a number of colored rectangular tiles,
each of which denotes activity (i.e., presence) of the corre-
sponding instrument. As the musical piece is played, this
activity graph (covering a 60-s window) is automatically
scrolled to continue showing the current play position.

Figure 7: Interfaces for search
menu and playlist.

Figure 8: Simplified in-
terface for novice users.

The user can interactively change the play position by
left-clicking on another position on the graph. The graph
enables the user to anticipate how the instrumentation will
change. For example, a significant change in instrumenta-
tion can be anticipated, as shown in Figure 6

The pie chart on the right side of Figure 6 represents
the instruments currently being played and changes in syn-
chronization with the playing of the piece. The instrument
icons shown below the chart are consistently shown in the
same color, enabling the user to easily distinguish them.
By hovering the mouse over an icon, the user can see the
name of the instrument.

3.3 Search Function

The search function (left side of Figure 7) enables the
user to retrieve pieces by entering a query. Pressing an
instrument-icon button intensifies its color, so the selected
button is clearly evident. The ratio of instruments in the
query can be adjusted by moving the sliders.

When the search button is pressed, the system retrieves
musical pieces with instrumentation similar to that of the
query by using the search algorithm described in Section
4.3. The retrieved pieces are not only highlighted on the
map as shown in Figure 10 but also instantly added to the
playlist.

3.4 Interactive Playlist

The interactive playlist (right side of Figure 7) shows a list
of the retrieved or selected musical pieces along with their
pie charts, titles, and artist names. The user can change
their order, add or delete a piece, and play a piece.

A musical piece disappears from the playlist after it has
been played. If no piece is in the list, the next piece is se-
lected automatically. In circular mode, the available play
strategies are clockwise (pieces are played in clockwise or-
der), and shuffle (pieces are played randomly). In scat-
tering mode, the available play strategies are shuffle and
nearest (pieces nearby are played). The user can thus play
pieces having similar or different instrumentation.

3.5 Simplified Interface

We also prepared a simplified interface for novice users
who are not familiar with music instrumentation. As
shown in Figure 8, the visual player, the search function,
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Figure 9: Two algorithms are used to create maps. Map on left is
used in circular mode; map on right is used in scattering mode.

and the interactive playlist can be folded to the side to let
the user concentrate on simple interaction using the instru-
mentation map.

4 IMPLEMENTATION OF INSTRUDIVE

The Instrudive interfaces were mainly programmed using
a Python library Tkinter and executed on Mac OS X. After
the instruments were recognized, as described in Section
5, the results were stored and used for the interfaces.

4.1 Iconic Representation

A multi-colored pie chart of a musical piece with length T
s is displayed by computing the absolute appearance ratio
(AAR) and the relative appearance ratio (RAR) for each
instrument i (∈ I: recognized instrument categories).

The result of recognizing an instrument i is converted
into AARi:

AARi =
ti
T
, (1)

where ti (≤ T ) s is the total of all durations in which in-
strument i is played. AAR represents the ratio of this total
time against the length of the musical piece.

RARi =
AARi∑
i AARi

(2)

represents the ratio of this total time against the total time
of the appearances of all instruments. After RARi is com-
puted for all instruments, an |I|-dimensional vector (11-
dimensional vector in the current implementation) summa-
rizing the instrumentation of the piece is obtained. The pie
chart is a visual representation of this vector: RARi is used
as an area ratio in the circle for the corresponding instru-
ment.

4.2 Mapping Algorithms

To visualize musical pieces in circular mode (Figure 9), we
use an |I|-dimensional vector (11-dimensional vector in
the current implementation) of AAR. The AAR vectors for
all the pieces are arranged on a circular path obtained by
solving the traveling salesman problem (TSP) [25] to find
the shortest route for visiting all pieces. After assigning all
the pieces on the path, we scatter them randomly towards
and away from the center of the circle so that the pie charts
are not located too close together.

Figure 10: Top ten search results are highlighted and added to
playlist. Users can check contents of results before listening.

Layer Output size
Magnitude spectrogram 1024× 87× 1

Conv (4× 1) 1024× 87× 32
Pool (5× 3) 204× 29× 32

Conv (16× 1) 204× 29× 64
Pool (4× 3) 51× 9× 64
Conv (1× 4) 51× 9× 64
Pool (3× 3) 17× 3× 64

Conv (1× 16) 17× 3× 128
Pool (2× 2) 8× 1× 128
Dropout (0.5) 1024

Dense 1024
Dense 121
Dense 11

Table 1: Proposed CNN architecture.

To visualize musical pieces in scattering mode, the
11-dimensional AAR vectors are projected onto a two-
dimensional space by using t-distributed stochastic neigh-
bor embedding (t-SNE) [39], which is an algorithm for di-
mensionality reduction frequently used to visualize high-
dimensional data. Since similar pie charts are often located
too close together, we slightly adjust their positions one by
one by randomly moving them until all the charts have a
certain distance from each other.

4.3 Search Algorithms

Since both a query and a musical piece can be represented
as 11-dimensional AAR vectors, we can simply compute
the cosine similarity between the query and each musical
piece in the collection. In Figure 10, for example, given a
query containing acoustic guitar, violin, and others, the re-
trieved pieces ranked higher have similar pie charts. As the
rank gets lower, the charts gradually becomes less similar.

5 INSTRUMENT RECOGNITION

5.1 Pre-processing

Each musical piece was converted into a monaural audio
signal with a sampling rate of 44100 Hz and then divided
into one-second fragments. To obtain a one-second magni-
tude spectrogram, we applied short-time Fourier transform
(STFT) with a window length of 2048 and a hop size of
512. We then standardized each spectrogram to have zero
mean and unit variance. As a result, each one-second spec-
trogram had 1024 frequency bins and 87 time frames.
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5.2 CNN Architecture

We compared several CNN models; the one that showed
the best performance is summerized in Table 1. The model
mainly consists of four convolutional layers with max-
pooling and ReLU activation. A spectrogram represents
the structure of frequencies with one axis and its tempo-
ral changes against the other axis, which is unlike an im-
age that represents spatial information with both axes. We
set the shape of each layer to have length along only one
axis (frequency or time). For convolutions, feature maps
were padded with zeros so that dimensionality reduction
was done only by using max-pooling layers. By doing this,
we could use various shapes of layers and their combina-
tions without modifying the shapes of other layers. After a
50% dropout was applied to prevent overfitting, two dense
layers with ReLU and an output dense layer with a sig-
moid function were used to output an 11-dimensional vec-
tor. Batch normalization [17] was applied to each of the
convolutional and dense layers. In training, we used the
Adam algorithm [21] as the optimizer and binary cross-
entropy as the loss function. The mini-batch size was 128,
and the number of epochs was 1000.

This proposed CNN model outputs 1-s instrument la-
bels as a vector. By gathering the vectors corresponding to
each musical piece, we can represent each musical piece
as a sequence of 11-dimensional vectors (instrument la-
bels/activations), which are used to calculate the instru-
mentation described in Section 4.

5.3 Dataset

To evaluate the proposed CNN model and apply it to In-
strudive, we used the MedleyDB dataset [1]. This dataset
has 122 multitrack recordings of various genres and instru-
ment activations representing the sound energy for each
stem (a group of audio sources mixed together), individu-
ally calculated along with time frames with a hop size of
46.4 ms.

We generated instrument labels and split the data on
the basis of the source code published online [27]. We
used the 11 categories listed in Section 3 based on the
ground truth annotations from the multitrack MedleyDB
dataset [1]. Since our system does not depend on these
categories, it can be generalized to any set of categories
given any dataset.

The 122 musical pieces were divided into five groups
by using the algorithm in [35] so that the instrument labels
were evenly distributed among the five groups. Four of the
groups were used for training, and the fifth was used for
evaluation. All the musical pieces that appear in Instrudive
were included in the data used for evaluation, and their
instrumentations were predicted using cross validation.

5.4 Baseline

For comparison with our model, we used a conventional
bag-of-features method, a state-of-the-art deep learning
method with mel-spectrogram input, and a state-of-the-art
deep learning method with raw wave input.

Layer Output size
Mel-spectrogram 128× 43× 1

Conv (3× 3) 130× 45× 32
Conv (3× 3) 132× 47× 32
Pool (2× 2) 44× 15× 32

Dropout (0.25) 44× 15× 32
Conv (3× 3) 46× 17× 64
Conv (3× 3) 48× 19× 64
Pool (2× 2) 16× 6× 64

Dropout (0.25) 16× 6× 64
Conv (3× 3) 18× 8× 128
Conv (3× 3) 20× 10× 128
Pool (2× 2) 6× 3× 128

Dropout (0.25) 6× 3× 128
Conv (3× 3) 8× 5× 256
Conv (3× 3) 10× 7× 256
Global pool 1× 1× 256

Dense 1024
Dropout (0.5) 1024

Dense 11

Table 2: Han’s architecture.

Layer Output size
Raw wave 44100× 1

Conv (3101) 41000× 256
Pool (40) 2049× 256

Conv (300) 1750× 384
Pool (30) 87× 384
Conv (20) 68× 384
Pool (8) 16× 384

Dropout (0.5) 16× 384
Dense 400
Dense 11

Table 3: Li’s architecture.

5.4.1 Bag-of-features

For the bag-of-features method, we used the features de-
scribed by [15], consisting of 120 features obtained by
computing the mel-frequency cepstral coefficients and 16
spectral features [33]. We trained an SVM with a radial ba-
sis function (RBF) kernel by feeding it these 136 features.

5.4.2 Mel-spectrogram (Han’s CNN model)

For the deep learning method with mel-spectrogram input,
we used Han’s CNN architecture [16] (Table 2). This ar-
chitecture is based on VGGNet [36], a commonly used
model in the image processing field. Each one-second
fragment of the audio signal was resampled into 22050 Hz,
converted into a mel-spectrogram, and standardized. Every
activation function was LReLU (α = 0.33) except the out-
put sigmoid.

In preliminary experiments, training this model failed
in almost 700 epochs due to a gradient loss. Therefore,
we applied batch normalization to each of the convolu-
tional and dense layers, enabling us to successfully com-
plete 1000 epochs of training. We also used 500 epochs,
but the performance was worse than for 1000.

5.4.3 Raw Waveform (Li’s CNN model)

For the deep learning method with raw wave input, we used
Li’s CNN model in [27] (Table 3). This model performs
end-to-end learning using a raw waveform. We standard-
ized each one-second fragment of the monaural audio sig-
nal obtained in pre-processing. Every activation function
was ReLU except the output sigmoid. Batch normalization
was again applied to each layer. We trained the model with
1000 epochs.

5.5 Metrics

We evaluated each model using four metrics: accuracy, F-
micro, F-macro, and AUC.

Accuracy was defined as the ratio of predicted labels
that exactly matched the ground truth. Each label predicted
by the CNN at every one-second fragment in all pieces was
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Figure 11: Proposed model showed best performance for F-
micro, F-macro, and AUC but took five times longer to com-
plete training than Han’s model, which showed second-best per-
formance.

an 11-dimensional vector of likelihoods. Since each likeli-
hood ranged between 0 and 1, we rounded it to an integer
(0 or 1) before matching.

The F-micro was defined as the micro average of the F1
measure for all predicted labels over the 11 categories. The
F1 measure is defined as the harmonic mean of recall and
precision and is widely used in multi-label classification
tasks. Since it is calculated immediately without consider-
ing the categories, if some instruments frequently appear,
their predicted labels considerably affect the F-micro.

The F-macro was defined as the macro average with
each instrument equally considered. For each of the 11
categories, the F1 measure of the predicted labels was first
calculated. Then, the average of the resulting 11 values
was calculated as the F-macro.

The area under the curve (AUC) of the receiver oper-
ating characteristic was first calculated for each category.
Then, the macro average of the resulting 11 values was
used as the AUC in our multi-label task.

5.6 Results

As shown in Figure 11, the proposed model outperformed
the other models in terms of AUC, F-micro, and especially
F-macro, which was about 8% better than the next-best
model (Han’s model). This indicates that our model has
higher generic performance and is more powerful in deal-
ing with various kinds of instruments.

Interestingly, all of the deep learning methods showed
significantly higher accuracy than the bag-of-features
method. Since the accuracy cannot be increased with
predictions made through guesswork, such as predicting
classes that frequently appear, the deep learning methods
are more capable of capturing the sound characteristics of
instruments in sound mixtures.

The proposed model took five times longer to complete
training than Han’s model. This is because Han’s model
took advantage of using a more compact mel-spectrogram
(128 × 87) than the raw spectrogram (1024 × 87) used
for the proposed model.　 Since using a mel-spectrogram
results in losing more information, the performance was
worse.

Figure 12: Maps created using ground truth data.

6 DISCUSSION

6.1 Smoothing Transitions Between Listening States

Our observations during testing showed that the use of
Instrudive helped smooth the transition between listening
states. Although the music was often passively listened to,
the listeners sometimes suddenly became active when the
time came to choose the next piece. In the circular mode
of Instrudive, for example, the clockwise player played a
piece that had instrumentation similar to the previous one.
Since the sound characteristics were changing gradually, a
user was able to listen to various genres in a passive state.
If non-preferred music started playing, the user skipped to
a different type of music by using the shuffle player. In ad-
dition, the user actively used the search function to access
pieces with similar instrumentation and enjoyed looking at
the temporal changes in the activity graph.

6.2 Studies from Ground Truth Data

We compared maps created using the automatically recog-
nized (predicted) data (Figure 9) with maps created using
the ground truth data (Figure 12). Although they are sim-
ilar to some extent, the contrast of the color distributions
is much more vivid for the ground truth data, suggesting
that the performance of our CNN model still has room for
improvement. Since the proposed Instrudive interface is
independent of the method used for instrument recogni-
tion, we can simply incorporate an improved model in the
future.

7 CONCLUSION

Our Instrudive system visualizes the instrumentations of
the musical pieces in a collection for music discovery and
active music listening. The first main contribution of this
work is showing how instrumentation can be effectively
used in browsing musical pieces and in enhancing the lis-
tening experience during playing of a musical piece. The
second main contribution is proposing a CNN model for
recognizing instruments appearing in polyphonic sound
mixtures that achieves better performance than other state-
of-the-art models.

We plan to conduct user studies of Instrudive to analyze
its nature in more detail and to test different shapes of fil-
ters to analyze the reasons for the superior performance of
our CNN model. We are also interested in investigating
the scalability of our approach by increasing the number
of musical pieces and allowing a greater variety of instru-
ments.
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