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ABSTRACT

Melodic similarity is an important task in the Music In-
formation Retrieval (MIR) domain, with promising appli-
cations including query by example, music recommenda-
tion and visualisation. Most current approaches compute
the similarity between two melodic sequences by compar-
ing their local features (distance between pitches, intervals,
etc.) or by comparing the sequences after aligning them.
In order to find a better feature representing global charac-
teristics of a melody, we propose to represent the melodic
sequence of each musical piece by the parameters of a gen-
erative Recurrent Neural Network (RNN) trained on its se-
quence. Because the trained RNN can generate the identi-
cal melodic sequence of each piece, we can expect that the
RNN parameters contain the temporal information within
the melody. In our experiment, we first train an RNN on
all melodic sequences, and then use it as an initialisation
to train an individual RNN on each melodic sequence. The
similarity between two melodies is computed by using the
distance between their individual RNN parameters. Ex-
perimental results showed that the proposed RNN-based
similarity outperformed the baseline similarity obtained by
directly comparing melodic sequences.

1. INTRODUCTION

Melodic similarity is a task to analyse the similarity be-
tween melodies, which has been used for music retrieval,
recommendation, visualisation and so on. To compute the
similarity, a melody is always represented by a sequence
of monophonic, musical fragments/events (MIDI event,
pitch, etc.). Current approaches usually compare two
melodic sequences using the string edit distance [8,9, 17],
geometric measures [19] and N-Gram based measures
[5,27]. Alignment-based methods are applied when two
melodic sequences are of different lengths [15, 23], or
when events of two sequences are not corresponding to
each other one by one [2]. Not only melodic sequence
but also melody slopes on continuous melody contours
are aligned for comparing melodic similarity [28]. Read-
ers can refer to [25] for state-of-the-art melodic similar-
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ity methods. The existing methods focus on local features
extracted from melodic sequences, such as distances be-
tween pitches or between subsets of melodic sequence (N-
Gram). In addition alignment is needed when two melodic
sequences are not comparable directly.

In order to deal with these drawbacks, we propose to
train a generative Recurrent Neural Network (RNN) on a
melodic sequence, and use the RNN parameters to repre-
sent the melodic sequence. The proposed feature (RNN
parameters) projects a melodic sequence to a point in the
parameter space, having two characteristics described as
follows. Firstly, the feature is independent to the length of
the input melodic sequence because every sequence is rep-
resented by its RNN parameters of the same dimension.
Secondly, because the RNN can generate an identical se-
quence, we can expect that the RNN parameters contain
the global, temporal information of the melody.

In our experiment, we first train an RNN on all melodic
sequences from 80 popular songs as an initialisation. With
the initialisation, RNNs are trained on individual melodic
sequences. All the networks are trained in tensorflow. We
compute the similarity between two melodic sequences by
the Cosine similarity of their RNN parameters. The results
show that the similarity based on RNN parameters outper-
forms the baseline similarity obtained by comparing the
melodic sequences directly. To the best of our knowledge,
this is the first study that uses parameters of generative
RNNSs for the purpose of computing melodic similarity.

2. RELATED WORK

In this section, we introduce related work on RNN-
based melody generation models, and briefly introduce re-
searches on word and sentence embedding for understand-
ing semantic meanings in natural language processing.

2.1 RNN-based melody generation models

We discuss several state-of-the-art RNN-based melody
generation models. The RNN-based generative models are
usually applied with Long Short Term Memory (LSTM)
units in order to model a long time dependence, such as
Melody RNN in Magenta [1] and folk-rnn [22]. Ma-
genta [1] uses 2-layer RNNs with 64 or 128 LSTM units
per layer, while folk-rnn [22] uses a deeper network (RNN
with 3 hidden layers of 512 LSTM units for each layer).

The RNNs generate melody by predicting the next
melodic event based on its previous IV events:
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Models
Magenta [1]
Folk-rnn [22]

Hierarchical
RNN [26]

Architecture
2-layer RNN (LSTM)
3-layer RNN (LSTM)

3 RNNs (2-layer LSTM)
for bar, beat and note

Representation
MIDI event

abc notation

bar profile, beat
profile and note

Table 1: Brief summary of RNN-based melody generation
models.

where z; denotes the melodic event in time ¢. The melodic
event can be represented in many forms, for example MIDI
events [1], abc notation [22] and so on, as shown in Table 1.
With quantised time steps (in sixteenth notes, for example),
a melody can be represented as a sequence of pitches ! or
MIDI events (pitch onset, offset, and no event) [1].

Rhythm information can also be modelled for melody
generation. One simple way is to concatenate beat infor-
mation with the melodic event for each frame to feed into
the network [1]. There are also several hierarchical RNNs
proposed with rhythm information. In [4], each note is
represented by its pitch and duration, and 2 RNNs (rhythm
and melody RNNs) are trained for duration and pitch, re-
spectively. The rhythm network receives the current pitch
and duration as inputs, and outputs the duration of the
next note. The melody network receives the current pitch
and generated upcoming duration as inputs to generate the
pitch of the next note. [26] trains 3 RNNs for bar, beat, and
note, respectively. The first RNN generated bar profiles.
Generated bar profiles are fed into the second network to
generate beats, and then bar and beat profiles are fed into
the third network to generate notes.

Studies of generative RNN models always list gener-
ated examples [1,22] as results, or conduct a listening test
for evaluation [26]. We believe that the generative RNN
actually learns something ‘musical’ and can be used for
music analysis. In this paper we extend the utility of the
generative RNN to represent a melody and evaluate it in a
melodic similarity task.

2.2 Word embedding and sentence embedding

In natural language processing, word embedding and sen-
tence embedding work on representing semantic meanings
of words and sentences. There are two successful word
embedding models introduced in [13, 14]: word represen-
tations are learnt in order to predict surrounding words or
to predict the current word by its content. In these ways,
the meaning of a word is related to its context. With the
embedded words, a representative vector for a sentence (a
sequence of words) can be learned at the same time of pars-
ing the sentence [21] or can be trained in a weakly super-
vised way on the click-through data by making sentence
vectors with similar meanings close to each other [18]. In-
spired by word embeding, [11] learns to represent a para-
graph by predicting words in the paragraph using previous
words and a paragraph vector. The same paragraph vector

I'https://brangerbriz.com/blog/
using-machine-learning-to-create-new-melodies/

is shared when predicting words in the paragraph and then
is used to represent the paragraph.

We believe that word embedding may correspond to
chord embedding [3, 12] in understanding music; and sen-
tence embedding may correspond to representing a se-
quence of chords (also an interesting topic to investigate).
In general, the musical meaning (of a sequence of pitches
or chords) is less intuitive than the textual meaning (of a
word or a sentence). Thus, it is more difficult to learn a
good representation for a musical sequence. In this paper
we work on representing a melody (a sequence of pitches).
We train an RNN model to predict the current pitch by its
previous pitches in a melody and represent the melody by
the RNN parameters. To the best of our knowledge, this
is the first work to use network parameters directly as a
representation.

3. TRAINING RNNS

For each melodic sequence, we train a generative RNN on
it. The parameters of the trained RNN will be used as a fea-
ture to represent the melody. We first train an initialisation
on all melodic sequences, and then train on individually
melodic sequences with the initialisation.

3.1 Data

We conduct the experiment on the RWC Music Database
(Popular Music) [7]. There is a subjective similarity study
[10] undertaken on 80 songs (RWC-MDB-P-2001 No.1-
80) of the RWC Music Database. In this study 27 partici-
pants are asked to vote the similarity (on melody, rhythm,
vocals and instruments, respectively) for 200 pairs of clips
after listening to them. Each clip lasts for 30 seconds (start-
ing from the first chorus starting time). For these pairs of
clips, the similarity votes range from 0 to 27.2 The larger
the vote is, the more similar the clips are. The melodic
similarity matrix is shown in Figure 1, indicating the simi-
larity scores of 200 pairs of clips. The matrix is symmetric
because if a is similar to b, it means that b is similar to a as
well. There are 400 non-zero values in the matrix (twice
of 200 because of the symmetry).

We use the same 30-second clip as in the subjective
study [10] from each song for training RNNs. We de-
note the clip from piece ‘RWC-MDB-P-2001 No.X’ as
clip X, Xe [1,80]. The melodic similarity results of this
study [10] are used as the ground truth for evaluation.

3.2 Arranging the training data

We train RNNs using the melody annotation of the RWC
Music Database (Popular Music) from the publicly avail-
able AIST Annotation [6]. A melody in the annotation is
represented as a fundamental frequency sequence in 10 ms
frames as shown in Figure 2(a). We call the frames with
frequencies ‘melody frames’, and the frames without fre-
quencies ‘silent frames’. We convert the frequencies (f)

2 The dataset [10] has been publicly available on the web page of the
RWC Music Database at http://staff.aist.go.jp/m.goto/
RWC-MDB/AIST-Annotation/SSimRWC/.
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Figure 1: The melodic similarity of 200 pairs of clips.

into pitches (p — indicated by MIDI indices) for melody
frames:

p:69+1210g2£. )

The histogram of the pitches in the training set is shown
in Figure 3. We focus on pitches in 3 octaves ranging from
43 to 78. Frames with pitches beyond this range are con-
sidered as silent frames.

3.2.1 Frame hop size

The original frames are arranged in a hop size of 10 ms.
We use a hop size of 50 ms (shown in Figure 2(b)) be-
cause RNNs tend to repeat the previous frames with a small
frame hop size.

3.2.2 Skip silent frames

Because of the high ratio of the silent frames (shown in
Figure 2(b)), there will be many invalid training samples
with a sequence of silent frames to predict a silent frame
if we use all frames in the training data. Therefore, we
simply skip all the silent frames to discard those invalid
training samples, resulting in a pitch sequence with only
melody frames (shown in Figure 5(b)).

We aim to look back for 2 seconds to predict the next
frame. With a frame hop size of 50 ms, there are 40 frames
in the input sequence: [T+— N, ..., Zt—1] — @, N = 40.

3.2.3 Zero-padding at the beginning

We find if the first training sample is [z, ..., 39] — Za0,
then the generation of the first 40 frames are not modelled
in the RNN. In order to generate the whole sequence, we
concatenate a sequence of 40 silent frames in the front of
each clip, with the first training sample of [zg, ..., zs] —
x¢ (xg is the silent frame padding in the front of the clip).

3.3 Network architecture

We apply a network architecture similar to Megenta [1],
but with GRU cells instead of LSTM cells to reduce the
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Figure 2: Melodic sequences with different frame hop
sizes. Frames with values of O are silent frames.
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Figure 3: The histogram of the pitches in the dataset.
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parameter dimensions. The RNN contains 2 hidden layers
with 64 GRU cells per layer. The output layer is a fully-
connected layer with a softmax activation function. The
inputs are one-hot encoded vectors with a dimension of 37
(36 pitches and a silent state). We hope the RNN can fit
the individual pitch sequences as much as possible. In this
case, overfitting is intended and not a problem any longer;
hence no drop out is applied.

The network is trained by minimising the cross entropy
loss using Adam optimisation with learning rate of 0.001
(other parameters of Adam are with default values in ten-
sorflow).

3.4 Initialisation and training on individual clips

In order to gain a consistent training, we use a fixed ini-
tialisation. The initialisation is trained on the training sam-
ples from all 80 clips for 100 epochs. Then with this ini-
tialisation, we train an individual RNN on each melodic
sequence for 500 iterations.® After data arrangement of
Section 3.2, there are around 200-600 training samples for

3 An iteration means RNN parameters are updated once on a batch of
training samples. In contrast, an epoch means a full training on all train-
ing samples. We use the iteration number to stop training because in this
way RNN parameters are updated for the same times, hence more com-
parable. However, when to stop training still needs further investigation.
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Initialisation  Individual RNNs
No. of RNNs 1 RNN 80 RNNs
Training data 80 clips each clip
Batch size 512 64
Early stop 100 epochs 500 iterations

Table 2: RNN training settings.

0.760 1.60

0.700 1.30

0.640 1.10
0.680 0.900
0.620 0.700
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(a) Batch acc. for initialisation. (b) Batch loss for initialisation.
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(c) Batch acc. for training on clip 1. (d) Batch loss for training on clip 1.

Figure 4: Batch accuracies and losses of training for ini-
tialisation and training on clip 1 with the initialisation.

every clip. We use a large batch size of 512 for initialisa-
tion training because of a big number of training samples,
and a smaller batch size of 64 for training for each individ-
ual sequence. Training settings are shown in Table 2.

Training for initialisation and training on clip 1 are
shown in Figure 4. After training for initialisation, the
batch accuracy reaches 0.7 (Figure 4(a)) and the batch loss
decreases to around 0.8 (Figure 4(b)). After training on
clip 1 with the initialisation, the batch accuracy further in-
creases from 0.7 to 1 (Figure 4(c)); and the batch loss re-
duces from 0.8 to around 0.1 (Figure 4(d)). With the RNN
trained on clip 1, we can generate an identical melodic se-
quence, as shown in Figure 5.

3.5 Cosine similarity between RNN parameters

The parameter dimensions of an RNN are shown in Ta-
ble 3. The total number of parameters is 46, 757.

We reshape matrices to vectors, and concatenate the
vectors. The concatenated parameters of the initialisation
RNN and RNN:ss trained on clip 3 and clip 80 are shown in
Figure 6. The differences in parameters of different RNNs
are subtle. The similarity between two clips is indicated
by the Cosine similarity between their concatenated RNN
parameters. The larger the Cosine similarity is, the more
similar the clips are.

In the data arrangement stage (see Section 3.2), the
melody of a clip (30 seconds) is represented as a se-
quence of pitches of 600 frames (including silent frames),
as shown in Figure 2(b). We use the Cosine similarity be-
tween two pitch sequences as the baseline similarity.
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(a) Generated pitch sequence.
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(b) Original pitch sequence of clip 1.

Figure 5: An identical pitch sequence generated by the
trained RNN.

Matrix Dimension
cell_0/gru_cell/gates/kernel (101, 128)
cell_0/gru_cell/gates/bias (128)
cell_O/gru_cell/candidate/kernel (101, 64)
cell_O/gru_cell/candidate/bias (64)
cell_1/gru_cell/gates/kernel (128, 128)
cell_1/gru_cell/gates/bias (128)
cell_1/gru_cell/candidate/kernel (128, 64)
cell_1/gru_cell/candidate/bias (64)
fully_connected/weights (64, 37)
fully_connected/biases 37

all parameters 46,757

Table 3: Parameter dimensions.

4. RESULTS ANALYSIS
4.1 Evaluation metric and results

In the subjective similarity study, each clip is compared to
4-6 other clips, usually 5 clips [10]. For example, clip 3 is
compared to clips as shown in Table 4(a). We measure the
similarity of two clips by computing the Cosine similar-
ity between their RNN parameters. We compare the rank
of votes to the rank of similarities for evaluation. For ex-
ample, as shown in Table 4(a), 8 people vote the melody
of clip 80 is similar to that of clip 3, and 7 people vote
the similarity between clip 29 and clip 3. Based on these
votes we assume clip 80 is more similar to clip 3 than clip
29. Thus, the Cosine similarity between clip 80 and clip
3 should be larger than that between clip 29 and clip 3
C(80,3) > C(29,3). We first convert the similarity and
votes into ranks (as shown in Table 4(b)), and then use the
pair-wise evaluation metric—Kendall’s tau (7)— to compare
the ranks. For clip 3, the 7 is 0.2 based on similarities be-
tween RNN parameters, better than 7 = —0.2 based on
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0 10000 20000 30000 40000

(a) Parameters of the initialisation RNN

[ 10000 20000 30000 40000

(b) Parameters of the RNN trained on clip 3

[ 10000 20000 30000 40000

(c) Parameters of the RNN trained on clip 80

Figure 6: Parameters of different RNNs with subtle differ-
ences.

similarities between pitch sequences.

The results for 200 pairs of clips are shown in Table 5.
The average 7s are 0.125 and 0.073 based on Cosine sim-
ilarities between RNN parameters and between pitch se-
quences, respectively. * In the preliminary test, we found
that there is no improvement in performance by using a
dimension-reducing technique, such as Principle Compo-
nent Analysis (PCA), before computing Cosine similarity,
or by using distances between eigenvectors (weighted by
eigenvalues) of parameter matrices.

4.2 Visualisation
4.2.1 Similarity v.s. vote

We assume if there are more votes on X than on Y when
comparing to A, then the X should be more similar to A
than Y. However, this may be too strict when votes are
close (8 on X and 7 on Y, for example). In order to show
whether there is a trend that the similarity value is larger
for pairs of clips with a higher vote in general, we show
Cosine similarity v.s. vote plots for RNN parameters and
baseline pitch sequences in Figure 7.

‘We know the RNN parameters of different clips are very
similar to each other, as shown in Figure 6. Therefore, the

4 Using the Euclidean distance provides similar results as using the Co-
sine similarity: 0.120 and 0.074 for RNN parameters and pitch sequences,
respectively.

No. 80 29 59 62 5

Votes 8 7 6 4 3

Crwv - 09975 09973 099717 0.9976  0.99725
Chpienn 06175 0.7146  0.6256  0.7097  0.6584

(a) Cosine similarities between parameters of clips compared to clip 3.

No. 80 29 59 62 5
Rvores 1 2 3 4 5
Rrvy 2 3 5 1 4 02
Rpienn 5 1 4 2 3 -02

(b) Ranks of Cosine similarities.

Table 4: Evaluation for clip 3. Cryy and Cpyy are the
Cosine similarities between parameters and between pitch
sequences, respectively.

Similarity 7
Cran 0.125
Chirch 0.073

Table 5: Results.

Cosine similarities between RNN parameters are in a small
range from 0.995 to 0.999 (Figure 7(a)). The Cosine sim-
ilarities between melodic sequences are in a larger range
from 0.4 to 0.9 (Figure 7(b)). However, neither RNN pa-
rameters nor melodic sequences provide a clear trend of
the similarity increasing with number of votes.

4.2.2 t+-SNE

To visualise the 80 songs in a low-dimensional space, we
first reduce the dimension of the features to 5 by PCA, then
further reduce it to 2 by t-SNE, with the implementation
of [20]. The visualisation based on RNN parameters and
pitch sequences is shown in Figure 8. For a clearer visu-
alisation, we only indicate pairs of clips with higher votes
(above 9 votes out of 27, as listed in Table 6) by connecting
those pairs with lines.

Because the t-SNE visualisation is not a linear pro-
jection from the similarity to the distance on the 2-
dimensional space, we do not compare the vote against the
distance between two clips in t-SNE visualisation, but fo-
cus on the grouping of clips. We observe some interesting
grouping of clips in Figure 8(a): the triangle at the top left
for (75, 79, 80), and two lines at bottom right connecting
(15, 16) and (6,16). In Figure 8(b), no such grouping of
clips can be obviously observed.

5. DISCUSSIONS AND CONCLUSIONS

From the t-SNE visualisation, we observe some interesting
grouping of clips based on RNN parameters (Figure 8(a)).
However, visualisation based on the Cosine similarity be-
tween RNN parameters does not show a clear relation be-
tween the similarity and the vote (Figure 7(a)). It may
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Figure 7: Similarity v.s. vote plot based on different fea-
tures.

indicate that a direct comparison between RNN parame-
ters is too simple to infer the information in such a large
dimension. Figure 6 also illustrates the difficulties with
the proposed approach, too many parameters with sub-
tle differences. We would like to dig deeper to under-
stand which parameters are most significant for computing
melodic similarity.

Perception studies show that changes in relative scale
or relative duration do not have a major impact on melodic
similarity [24]. The similarity measure should be invariant
to music transformations, such as transposition in pitch and
tempo changes [16,23]. The proposed generative RNN can
model the input pitch sequence, but cannot deal with the

Pair Vote |No. Pair Vote|No. Pair Vote
(79,80) 23 | 11 (10,63) 13 |21 (10,52) 11
(47,68) 19 | 12 (47,76) 13 |22 (7,20) 10
(65,78) 18 | 13 (51,63) 13 |23 (7,45) 10
6,16) 17 | 14 (51,77) 13 | 24 (29,60) 10
(12,47) 16 | 15 (64,66) 13 | 25 (47,67) 10
(12,63) 16 | 16 (7,49) 12 | 26 (70,71) 10
(15,16) 16 | 17 (19,20) 12 | 27 (75,79) 10
(67,75) 16 | 18 (41,43) 12 | 28 (75,80) 10
(54,63) 15 | 19 (42,44) 12
(72,75) 15 | 20 (68,72) 12

= Z
SN Uubswn g

Table 6: A list of pairs of songs with similarity votes above
9 votes out of 27.

-800 -600 -400 -200 0 200 400 600

(b) Visualisation based on pitch sequences

Figure 8: t-SNE visualisation based on different features.

similarity under music transformations. In the future, we
would like to tackle this problem by training RNNs with
coordinate differences instead of absolute coordinates as
inputs, such as intervals and durations instead of pitches
and onsets [16].

We work on the melodic similarity based on the
performance-based representation of melodies, which
seems to complicate the task. We hope we can achieve
more success on symbolic melody representation by using
score-based representation on a simpler dataset.

In this paper, we propose to represent a melodic se-
quence by the parameters of its corresponding generative
RNN, and test the utility of the melodic feature (RNN pa-
rameters) in the melodic similarity task. The proposed fea-
ture contains temporal information within the melodic se-
quence, and independent of the length of the sequence. We
extend the utility of generative RNNs to use the network
for music similarity analysis rather than music generation.
We expect that the proposed feature (generative RNN pa-
rameters) can be used in other tasks, such as musicological
analysis and music cognition.
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