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ABSTRACT

Existing collections of annotations of musical structure
possess many strong regularities: for example, the lengths
of segments are approximately log-normally distributed, as
is the number of segments per annotation; and the lengths
of two adjacent segments are highly likely to have an inte-
ger ratio. Since many aspects of structural annotations are
highly regular, but few of these regularities are taken into
account by current algorithms, we propose several meth-
ods of improving predictions of musical structure by using
their likelihood according to prior distributions. We test the
use of priors to improve a committee of basic segmentation
algorithms, and to improve a committee of cutting-edge
approaches submitted to MIREX. In both cases, we are
unable to improve on the best committee member, mean-
ing that our proposed approach is outperformed by sim-
ple parameter tuning. The same negative result was found
despite incorporating the priors in multiple ways. To ex-
plain the result, we show that although there is a correla-
tion overall between output accuracy and prior likelihood,
the weakness of the correlation in the high-likelihood re-
gion makes the proposed method infeasible. We suggest
that to improve on the state of the art using prior likeli-
hoods, these ought to be incorporated at a deeper level of
the algorithm.

1. INTRODUCTION

One reason that the perception of structure in music is such
a complex and compelling phenomenon is that it is a com-
bination of ‘bottom-up’ and ‘top-down’ processes. It is
bottom-up in the sense that a listener first performs group-
ing on short timescales before understanding the grouping
at large timescales, but it is top-down in the sense that one
has global expectations that can affect the way one per-
ceives the music. For example, when hearing a new pop
song for the first time, we expect there to be a chorus; even
on our first hearing, we may identify the chorus partway
through a song and already expect it to repeat later. After
hearing a verse and a chorus, each 32 beats long, we may
expect the bridge to be the same length when it starts.
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Figure 1. Proposed system overview.

This is important to recognize, since structure is am-
biguous: for any piece, there are often multiple ways of
interpreting it. As a result, we might never expect a purely
bottom-up approach to be 100% correct; we need to also
model the top-down influence, or what the listener ‘brings’
to the analysis.

For instance, consider the following analysis of a piece
of music, with the A sections each 10 seconds long, and B
200 seconds long:

[~A~|~A~ | ~A~|-===—=——m—— B ]

Even without knowing the piece of music, we can tell this
is an unlikely analysis; it seems wrong to have the seg-
ments of the piece sized so asymmetrically. This example
hints that the space of plausible analyses is limited (even
if it is huge), and that listeners’ intuitions about these lim-
its inform the annotation process. Is there a way to embed
such intuitions into music structure analysis algorithms?
Can we employ a kind of ‘top-down’ critic to assess the
likelihood of a given analysis?

We propose a system to accomplish this, illustrated in
Figure 1. The inputs to the system are: (a) a song to ana-
lyze, and (b) a set of probability density functions (PDFs)
estimated from a corpus of annotations. The input song
is analyzed by a set of algorithms (step 1); the prior likeli-
hood of each output is computed (step 2); and the estimated
description with the highest prior likelihood is chosen (step
3). In contrast to the usual parameter tuning approach, in
which a single parameter setting is fixed after evaluating
performance over a corpus of songs, in our approach pa-
rameters can be tuned for each song, on the basis of prior
likelihood.
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1.1 Related work

Most algorithms do at least some domain knowledge-based
tuning, by putting a lower and/or upper bound on the length
of segments, or by filtering features to reduce variations at
certain timescales. These are important steps because, al-
though musical structure is hierarchical, algorithms rarely
attempt to predict this hierarchy and are evaluated only at a
single level. (This status quo has been challenged by [5].)

However, a few algorithms have made greater use of
domain knowledge, and their success has been notewor-
thy. Among the first optimization-based approaches to
structure analyis was [7], who explicitly sought to define
(in a top-down way) what constitutes a “good” analysis
(i.e., one more likely to be in the space of plausible so-
lutions). Later, [10] estimated the median segment length
of a piece and used this as the preferred segment length in
its search for an optimal segmentation; at the time, their
algorithm outperformed the leader at MIREX. The Auto-
MashUpper system also uses a cost-based approach, re-
warding solutions with “good” segment durations of 2, 4,
or 8 downbeats, and penalizing ones deemed less likely,
like 7 or 9 [2]. In the symbolic domain, [9] also used a
cost-minimization approach, with costs increased for seg-
ments of unlikely duration or unlikely melodic contour; on
one dataset, the approach outperformed a pack of leading
melodic-segmentation algorithms.

The most direct way to use domain knowledge is to
use supervised learning. Two examples include [14, 15],
who each used machine learning to classify short excerpts
as boundaries or not based on their resemblance to other
short excerpts known to be boundaries. The performance
of [15] exceeded the best MIREX result by nearly 10%
f-measure for both 0.5- and 3-second thresholds, an enor-
mous achievement.

Our intuition about what constrains the space of plausi-
ble analyses, as well as the success of previous algorithms
in using domain knowledge and priors learned from cor-
pora, suggest that taking full advantage of this prior knowl-
edge is essential to designing effective algorithms.

In the next section, we survey some of these regularities,
and explore the extent to which prior algorithms adhere to
them. We detail our proposed algorithms and report our
experimental results in Section 3. Alas, despite the solid
foundations, no approach will be found to work. The sig-
nificance of this negative result, and possible explanations
for it, are discussed in Section 4.

2. REGULARITIES

In this section we briefly survey some regularities found in
the SALAMI corpus of annotations [12], and describe the
relationship between these regularities and algorithms that
have participated in MIREX campaigns from 2012—-14.
Although the time scale of the SALAMI annotations
was not explicitly constrained in the Annotator’s Guide !,
the length of annotated segments in the SALAMI corpus

! Available at http: //ddmal .music.mcgill.ca/
research/salami/annotations.
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Figure 2. Estimated PDFs of three properties for anno-
tations in SALAMI corpus; z-axis gives the value of the
property, y-axis gives its relative probability. PDFs from
large-scale segments shown in black, from small-scale seg-
ments in gray. In (c), the vertical axis is clipped to show
detail; the gray line extends upwards to just over 0.1.

is roughly log-normally distributed, for both hierarchical
levels. Figure 2a shows the PDF of the log segment length
(P(log L;)) for the large and small hierarchical levels in
SALAMI, this and all other PDFs in this paper were found
using kernel density estimation (KDE). The number of seg-
ments within a piece (V) is also log-normally distributed
(Figure 2b). If we take the log ratio of each segment’s
length to the median length of segments within that piece
(log(L;/Lmeq)), we obtain a PDF strongly concentrated at
log (1) = 0 (see Figure 2c), with additional spikes near
+0.693, or log (2) and log (1/2), for segments of twice
or half the median length. There is even more detail if
we look at the log length ratio between adjacent segments
(log(L;/Li+1)), a histogram of which is shown in Fig-
ure 3. Note that all the prominent peaks occur at ratios
of small numbers. This makes sense if we consider that
segments are usually a whole number of measures long.
These properties are not specific to SALAMI annotations;
similar distributions were reported by [1] for a completely
different corpus of annotations.

How closely do algorithms model these properties of
the annotations? We looked at three years of participants
in the MIREX Structural Segmentation task, 2012—-14, and
estimated PDFs for the same properties. Some examples
are shown in Figure 4. Figure 4a shows PDFs for segment
length estimated from each algorithm individually: some
hew closely to the ground truth, but the majority underes-
timate the mean segment length. (Since precision is harder
to achieve than recall, oversegmentation usually leads to
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Figure 3. Histogram of log(L;/L;+1) estimated from
SALAMI annotations (y-axis truncated at 1/3 maximum).
As shown, nearly every spike represents an integer ratio of
segment lengths.

better evaluation scores. [13])

If segment length seems like a weak prior, consider
instead Figure 4b, which compares PDFs for the log ra-
tio of adjacent segment length. The characteristic side-
lobes representing the high frequency of half- and double-
length segments are prominent in only two of the algo-
rithms, RBH1 and RBH3 (2013). This is likely because
the algorithm [8] expects boundaries to occur on an 8-
measure metrical grid, and snaps estimated boundaries to
this grid. Performance (evaluated with f-measure and
3-second threshold) was mixed: RBHI1 was close to the
state of the art in 2013, while RBH3 was below-average. 2
On the other hand, the next-strongest side-lobes belong to
SUGI, the second-best algorithm overall. SUGI uses a
convolutional neural network to classify short excerpts as
containing boundaries or not; the method ends by pick-
ing peaks from a boundary-likelihood curve, without post-
processing [15]. Although SUGI obviously learns from
annotated data, it learns from low-level features (a mel
spectrogram) rather than high-level attributes like segment
length ratios.

Does the fitness of the algorithms to the SALAMI-
derived priors actually have an impact on their perfor-
mance? We found this to be true by looking at the correla-
tion between algorithm performance and prior likelihood.
We took the output of the 18 unique segmentation algo-
rithms that participated in MIREX from 2012-143, and
for each algorithm, computed the average log-likelihood
of its estimated segments based on the KDE-derived PDFs
from SALAMI. We also took the average performance of
the algorithms on the three boundary retrieval metrics (f-
measure, precision, and recall) with a threshold of 3 sec-
onds. Figure 5 shows the correlation between the mean
log-likelihoods (of various segment properties) and the
evaluation metrics. There is a weak to moderate correla-

2 Evaluation results in this paper differ from those reported at MIREX,
since we re-evaluated the algorithm output with a 5-second ‘warm-up’
applied: boundaries within the first and final 5 seconds of pieces were
ignored. This leads to lower results overall but better differentiation be-
tween algorithms.

3 Of the 24 participants in these years, 5 used the same segmentation
algorithm as another, and the data for one (FK2) were posted later than
the others, and were excluded.
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Figure 4. PDFs of properties estimated from SALAMI
annotations (black dotted line) and from the output of
MIREX algorithms (each algorithm in a different colour).

tion between likelihood and f-measure for each of these
properties, usually attributable to a strong correlation be-
tween likelihood and either precision or recall.

We have seen that most algorithms deviate substantially
from the corpus; the algorithms’ descriptions simply don’t
‘look’ like the ground truth. Also, there is some evidence
that an algorithm’s accuracy is related to the prior likeli-
hood of its output. Hence, it seems reasonable to ask: can
we improve on these algorithms, or any set of algorithms,
by maximizing their fitness to the priors?

3. USING PRIORS TO IMPROVE A COMMITTEE

Our proposed system is simple: for a single audio file,
(1) run several existing structural analysis algorithms, (2)
compute the log-likelihood of each prediction with respect
to a corpus, and (3) choose the output that maximizes this.
(See Figure 1.) For each of these steps, there are many
ways to proceed.

3.1 Assembling a committee

We assembled two committees of algorithms: a commit-
tee of multiple parameterizations of two basic approaches
(Foote [3] and Serra et al. [11]), and a committee of ap-
proaches drawn from MIREX. In the first case, we test
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Figure 5. Scatter plots of mean log likelihood of algo-
rithm output (x-axis) and f-measure, precision and recall
(y-axis), for 18 MIREX segmentation algorithms, 2012—
14. Correlations (Pearson’s ) and lines of best fit are

shown.

whether a set of more strictly bottom-up segmentation ap-
proaches can be improved with the top-down likelihood-
maximizing process; in the second case, we test whether a
set of already-optimized algorithms can also be improved.

Foote uses a checkerboard kernel to identify discontinu-
ities between homogeneous regions in a self-similarity ma-
trix (SSM), and his remains a classic approach to segmen-
tation. Although surpassed in evaluations such as MIREX,
the simplicity and effectiveness of the algorithm means it
is still commonly used as a model to improve upon (e.g.,
see [4]). In contrast to Foote, Serra et al. [11] aim to use
both repetition and novelty to locate boundaries. In prac-
tice, both algorithms require several design choices: which
audio features to use, what amount of smoothing to apply,
etc. We ran each algorithm with a small factorial range
of settings, including three features (HPCP, MFCCs, and
tempograms), for a total of 40 unique settings—hence, 40
committee members. We ran the algorithms on 773 songs
within the public SALAMI corpus (version 1.9). Fea-
ture extraction and algorithm computation were both easily
handled using MSAF [6].

The output of the algorithms that participated in
MIREX is publically available, so we simply assembled

it, along with the reported algorithm performance, for a
MIREX committee of 23 members. We restricted our-
selves to the SALAMI portion of the MIREX evalua-
tion, which overlaps significantly with the public half of
SALAMI but is not identical.

3.2 Computing likelihoods

We looked at the distribution of several attributes of the
SALAMI corpus, listed below. Of these, A;_,4 are es-
timated on a per-segment basis and As_g are global at-
tributes of a description.

A, Segment length (L;)

A Fractional segment length (L; / song length)
As Ratio of L; to median segment length

A4 Ratio of adjacent segment lengths (L;/L;11)
As Median segment length (median of L;)

Ag Number of segments

A7 Minimum segment length

Ag Maximum segment length

Ay Standard deviation of segment length

For attributes A;_4, we took the average across seg-
ments.  Although log likelihoods are designed to be
summed, taking the sum of log P(L;) would punish de-
scriptions with more boundaries, regardless of how proba-
ble the segments are. (In fact, we did test taking the sum
instead of the mean across segments, and the results were
generally much poorer.)

3.3 Electing a winner

Once we have computed all of the log likelihoods, how
should they be combined, and how should we use these
values to elect an answer? Without any a priori reason to
prefer one over another, we tested multiple approaches:

e choose the description that maximizes the likelihood
of attribute A;;

e choose the description that maximizes a summary
statistic over all attributes;

e use a linear model to predict f-measure based on the
likelihoods;

e use a linear model with interactions;

e use a quadratic model.

As two summary statistics, we used the sum and the
minimum of the log likelihoods of A;. Using the sum op-
timizes the general fitness; using the minimum penalizes
descriptions with any unlikely attributes.

3.4 Experiment and results

With 5-fold cross-validation, we tested all versions of the
algorithm, using both the Foote/Serra and MIREX com-
mittees. For each fold, the prior PDFs were estimated only
using annotations from the training set.

As a baseline, we used simple parameter tuning: i.e.,
simply pick the committee member with the greatest aver-
age success on the training set. For reference, we also com-
puted the mean f-measure of all committee members, and
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Attribute f (Bsec) | f(0.5sec)
A1 (mean) 0.4230 0.1051
Ay (mean) 0.4156 0.0958
Ajz (mean) 0.4176 0.1140
Ay (mean) 0.4194 0.1072
As 0.3597 0.0863
Ag 0.3781 0.0991
Ay 0.0603 0.0124
Ag 0.3907 0.0961
Ag 0.3956 0.0950
A 0.4260 0.1093
Min A; 0.4206 0.1046
Linear model 0.4399 0.0845
Interactions model 0.4451 0.0688
Quadratic model 0.4494 0.0739

\ Baseline [ 04439 [ 01151 |

Committee mean 0.2826 0.0691
Theoretical max 0.6015 0.2572

Table 1. Average f-measure (at two thresholds) achieved
by different decision criteria for Foote-and-Serra commit-
tee.

the theoretical maximum—i.e., the average of the highest-
scoring estimates for each song.

The results are shown in Tables 1 and 2. Among all
the variations of the proposed method, there were only two
instances that surpassed the baseline: the quadratic and in-
teractions models for the Foote-Serra committee, with a
3-second tolerance level. They surpassed the baseline f-
measure by 0.0055 and 0.0012, respectively. Given the
number of trials conducted, this small amount of success
could easily have come by chance.

4. DISCUSSION

Negative results are not normally conclusive: in this case,
the reader may suspect that with a small twist, our pro-
posed method may yet succeed. For example, what if
we examined subsets by genre, or considered conditional
probabilities? In fact, this process of tweaking is how our
experiments came about. Our first effort to solve the prob-
lem used a small committee of solely Foote-based algo-
rithms, and a set of four log likelihoods. When tests with
this initial system gave us a negative result, we tried vary-
ing each of the parts of the system—adding more mem-
bers to the committee, including more PDFs, using in-
creasingly sophisticated regression approaches—until we
had assembled the large-scale experiment reported here.
And we conducted several more informal tests—looking
at subsets of the data, varying the method of characterizing
the PDFs (instead of with KDE, they can be modelled with
plain histograms, or normal curves can be fitted to some
distributions), looking at subcommittees (e.g., removing
top-performing and low-performing outlier members) and
computing two-dimensional priors (to model, for example,
the fact that segment length is not independent of when a
segment begins)—all to no avail.

Attribute f (Bsec) | f(0.5sec)
A1 (mean) 0.6273 0.2733
Ay (mean) 0.3487 0.0996
As (mean) 0.3487 0.0996
Ay (mean) 0.3487 0.0996
As 0.3916 0.1385
Ag 0.3768 0.1594
Ay 0.3487 0.0996
Ag 0.4662 0.1356
Ag 0.4233 0.1514
A 0.6273 0.2733
Min A; 0.6273 0.2733
Linear model 0.5591 0.4005
Interactions model | 0.6273 0.4005
Quadratic model 0.6273 0.4005

\ Baseline | 0.6273 | 0.4005 |

Committee mean 0.2826 0.0691
Theoretical max 0.7345 0.5157

Table 2. Average f-measure (at two thresholds) achieved
by different decision criteria for MIREX committee.

The consistency of the negative result—only two trials
out of 56 exceeded the baseline, and only by the slimmest
of margins—suggests a dead end. But in order to draw
conclusions from this negative result, we must try to un-
derstand why the approach failed.

Earlier, in Figure 5, we saw that algorithm performance
could, over many trials, correlate with the prior likelihood
of their output. But what happens when we dig deeper
and look at the relationship between each individual out-
put’s correctness and its likelihood, as in Figure 6? On the
one hand, there is a clear positive trend overall, since there
are no examples in the upper-left corner—that is, there are
no predictions that have low likelihood but that are close
to correct. And the examples with the highest f-measure
are also among those with the highest likelihoods. Thanks
to this relationship, the committees can, despite the noise,
generally choose an output that is at least, or slightly bet-
ter than, the committee’s average; that’s why, in Tables 1
and 2, nearly all of the algorithms exceeded the average
result of the committee.

On the other hand, trying to find the high- f-measure
predictions based on their prior likelihood is clearly futile
when we consider only the rightmost region of the plot, a
zoomed-in portion of which is shown in the lower part of
Figure 6. Even these predictions, with the greatest fit to the
priors, range widely in accuracy: there are plenty above the
baseline (0.44), but also plenty below it, including a large
number of predictions that contain zero correct boundaries.
Figure 6 shows that having a high log-likelihood is a nec-
essary but not sufficient condition to be correct, and it is a
condition that most algorithms already achieve.

The uppermost points in Figure 6 represent a few lucky,
perfect estimates of the true structure. Their distribution
reveals another important point: that although the prior
PDFs derive from the ground truth, the prior likelihood of
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Figure 6. Above: scatter plot of Y log P(4;) (z-axis)
vs. f-measure (y-axis, 3-second threshold) of algorithm
outputs for Foote/Serra committee on all data. (The heavy
horizontal lines are caused by the fact that f-measure is
often the product of common fractions.) Below: inset of
plot indicated by rectangle.

many annotations is moderate. The fat tails of the PDFs in
Figure 2 represent a large set of descriptions that are un-
likely to ever be predicted by a prior likelihood-based ap-
proach. For example, consider the analyses shown in Fig-
ure 7.* One algorithm achieved a perfect f-measure (with
3-second threshold), and the likelihood of the description
(measured with respect to attribute A4) was close to that
of the annotated description. But a second estimate had a
slightly higher prior likelihood thanks to its more consis-
tent segment lengths, and a very poor f-measure.

To sum up the factors that appear to limit the effective-
ness of our approach:

1. Although a high f-measure tends to come with
a higher prior likelihood, the reverse is not true:
plenty of highly probable descriptions are very poor.

2. The moderate correlation between algorithm suc-
cess and prior likelihood is irrelevant, since we
are interested only in the high-likelihood region of
estimated descriptions.

4 Although the MIREX data are anonymized, many songs can be iden-
tified by comparing the ground truth to known datasets. [13]

f-measure = 1.00 r
log(P(A4)) =-5.94

Algorithm output #1
Annotation [

Algorithm output #2
f-measure =0.09 -
log(P(A4)) =-5.13

T

OOO 030 1: 1:30 2:00 2:30 3:00

Figure 7. Two algorithmic estimates, compared to the
ground truth (middle). The estimates differ somewhat in
the likelihood of A, (adjacent segment length), but dras-
tically in f-measure. The song is “Rock With You” by
Michael Jackson, SALAMI ID 1616.

3. Among high-likelihood descriptions, the correlation
between success and likelihood is much weaker:
many likely descriptions are poor, and many anno-
tations have low likelihood.

5. CONCLUSION AND FUTURE WORK

We proposed and tested a novel committee-based approach
to structural analysis. We motivated the approach by dis-
cussing the strong regularities displayed by annotations of
music structure. But after a long stretch of negative results,
we have concluded that the approach seems unviable: the
relationship between a description’s prior likelihood and
its evaluated score seems to be too weak, especially in the
high-likelihood region we are interested in.

We began the article by pointing out some mismatches
between the properties of algorithmic estimates of struc-
ture and the ground truth, and we suggested that this
may be because algorithms do not model top-down fac-
tors in perception. For a listener, top-down factors interact
with bottom-up factors; in contrast, our algorithm applies
bottom-up considerations first (by collecting the commit-
tee of estimates), and then applies the top-down considera-
tions post hoc. This may be the central weakness of our al-
gorithm. Perhaps, if the top-down influence were modelled
earlier on, an estimate like the top one in Figure 7 could be
fine-tuned, the boundaries shifted slightly to give a more
probable output, rather than rejected early on because of
its low likelihood. One algorithm that is ready to test this
as future work is the optimization approach of [10]. Al-
though the authors model only a few basic priors, it could
be improved by including more.
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