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ABSTRACT

We present Song2Quartet, a system for generating string
quartet versions of popular songs by combining probabilis-
tic models estimated from a corpus of symbolic classical
music with the target audio file of any song. Song2Quartet
allows users to add novelty to listening experience of their
favorite songs and gain familiarity with string quartets. Pre-
vious work in automatic arrangement of music only used
symbolic scores to achieve a particular musical style; our
challenge is to also consider audio features of the target
popular song. In addition to typical audio music content
analysis such as beat and chord estimation, we also use time-
frequency spectral analysis in order to better reflect partial
phrases of the song in its cover version. Song2Quartet pro-
duces a probabilistic network of possible musical notes at
every sixteenth note for each accompanying instrument of
the quartet by combining beats, chords, and spectrogram
from the target song with Markov chains estimated from
our corpora of quartet music. As a result, the musical score
of the cover version can be generated by finding the optimal
paths through these networks. We show that the generated
results follow the conventions of classical string quartet mu-
sic while retaining some partial phrases and chord voicings
from the target audio.

1. INTRODUCTION

Cover songs are arrangements of an original song with cer-
tain variations which add novelty. Changing the instruments
used is one such variation, but a complete switch of instru-
mentation may result in very unusual parts. For example,
completely replacing a chord-heavy guitar part with a violin
may result in unplayable (or very difficult) chords. Arrang-
ing music for different instruments requires consideration
about the music those instruments normally perform.
Previous approaches in automated arrangement are mostly
performed in the symbolic domain of music. Melody har-
monization and re-harmonization of chord sequences take
symbols of chords or pitches as inputs [1,7, 10, 16]. Gui-
tar arrangements of piano music can be generated from a
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Figure 1: Generating a cover song with a specific style.
Sample results are available at:
https://staff.aist.go.jp/m.goto/Song2Quartet/

MusicXML score [14]. Statistical modelling of a corpus
has also been used to generate electronic dance music [6].
Furthermore, automatically generating music in a specific
instrumental style is not well explored. In a great deal
of work on computer-assisted composition [8], some auto-
matic composition systems attempted to generate results
with a particular composer’s musical style [4] or the user’s
musical style [15]. However, those systems cannot be used
to generate cover songs in a particular instrument style by
preserving the recognizable parts of the original songs.

We present Song2Quartet to address this issue. An
overview of our system is shown in Figure 1. Two novel
aspects of this work, the audio analysis for generating cover
songs and generating music in a specific instrumental style,
are addressed in the audio analysis and score analysis mod-
ules, respectively.

To ensure that the generated cover songs include features
that are also recognizable in the original audio, the audio
analysis module estimates notable rhythms, chord voicings,
and contrary motions between melody and bass by extract-
ing the audio spectrum. In parallel, to generate music to
be playable and recognizably following the classical string
quartet style, the score analysis module captures charac-
teristics of the string quartet from the corpus of symbolic
music such as the typical note onsets in a measure and the
pitch transitions of each instrument in the quartet.

These two aspects are balanced by means of a probabilis-
tic formulation, where the corpus style and audio analysis
are combined by weighted multiplication. The audio analy-
sis provides probabilities for observing note events at every
16™ note, and the score analysis mainly provides the tran-
sition probabilities of notes. We formalize our generation
of cover songs as finding the sequence of notes which max-
imizes the probabilities obtained from the modules using
dynamic programming, with techniques to compress the
search space to make our problem tractable.
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Figure 2: Audio analysis (4 measures shown in examples).

2. ANALYSIS
2.1 Features needed from audio

Knowing which pitches are in the polyphonic music is
useful in creating cover songs. Since multi-pitch analysis
methods often suffer from pitch and onset detection errors
when handling polyphonic music with a drum track, we
cannot simply apply the analysis beforehand and use the
analysis results as constraints. However, we can use the
audio feature extraction portions of multi-pitch analysis to
aid in generating cover songs. Concretely, after performing
Harmonic/Percussive source separation, the magnitudes and
onsets of each note are obtained by applying a variable-Q
spectral transform and calculating the salience function of
the onset events.

The melody, chords, bass, and beats of a song provide
musical facets which should be observed in the cover ver-
sion of a song. These facets are extracted from the audio us-
ing Songle, a music understanding engine [13]. The melody
and bass pitches, as well as the chord labels, are segmented
according to the time grid provided by the analyzed beats.
Later, these will be combined with the beat-aligned audio
spectral analysis to form probabilistic constraints.

2.2 Audio analysis

Figure 2 shows an overview of the audio analysis. We per-
form Harmonic/Percussive source separation with median
filtering [9], then use a variable-Q transform (VQT) [18]
with a Blackman-Harris window and the variable-Q pa-
rameter 7y set to use a constant fraction of the equivalent
rectangular bandwidths [11], giving us spectral analysis
S. The frequency range was set to 65 Hz—2500 Hz (MIDI
pitches 36-99).

We then perform beat estimation on the original audio
with Songle and divide each beat into 4, giving 16" notes.
The means (over time) of VQT bins that fall within the
range of each 16" note are calculated, producing the sliced
spectrogram Aps. Ajy is normalized to the range [0, 1].

To estimate onset probabilities in the target song, we
use two methods: flux of A, and first-derivative Savitzky-
Golay filtering [17] on S. The flux of A,/ is simply the
half-wave rectified difference between successive 16" notes
of Ajy. For the latter method, we calculate the smoothed
first derivative of S along the time axis using Savitzky-
Golay filtering with a window size of 21 samples to find
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Figure 3: Score analysis (Mozart cello in examples).
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the peaks of S. To quantize the onset estimation to the
16M-note level, we find the maximum peak within a time
window equal to a 16™ note duration, but shifted backwards
in time by 25% to accommodate slight inaccuracies in the
beat detection. Both methods operate on each MIDI pitch
independently. We set Ao to be the sum of the two methods,
and normalize it to the range [0, 1].

Finally, we extract two more pieces of information using
[13]: the melody M, and the chords in each song, including
both the overall chord name C' and the bass pitch Cp.

2.3 Features needed from the score

Features obtained from the score analysis contribute to
maintaining the musical style. Classical string quartet mu-
sic rarely includes complex rhythms and very large pitch
intervals, so we obtain these tendencies as probabilities of
rhythm and pitch intervals from the corpus of scores.

2.4 Score analysis

Figure 3 shows an overview of the score analysis. We
used the Music21 [5] toolkit and corpus to analyze string
quartets by Haydn, Mozart, and Beethoven. Our analysis
comprised of pitches and rhythms, and only used music in
4/4 time which fit into a 16™-note grid. If the time signature
changed in the middle of a movement, we only considered
the portion(s) in 4/4.

We calculated the probabilities of rhythmic events in
a 16" note grid. Rhythmic events were defined as one of
four possible values: 0 indicated a new note, 1 indicated
a new rest, 2 indicated a continued note, and 3 indicated
a continued rest; an example is shown in Figure 4. This
resulted in a 4x16 matrix of probabilities G r, with each
probability being the number of occurrences divided by the
number of measures.

We extracted 1%'-order Markovian [2] rhythm transitions.
This is simply the probability of each [previous event, next
event] pair occurring, and produced a 4x4 matrix T’s.

We calculated 1%'-order Markovian pitch transitions for
both absolute pitches and relative pitches. We considered a
chord-note or pair of chords to include every pitch transi-
tion between the notes in successive chords. For simplicity,
we recorded these transitions in two 100x100 matrices 74
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and T'g, even though a classical string quartet will not have
any notes below MIDI pitch 36. For the absolute pitches,
we added a 103 chance of any transition between valid
pitches; this is necessary to allow some modern pop songs
with non-classical chord progressions to be generated, par-
ticularly in the cello which is limited to the bass notes C's.

3. PROBABILISTIC GENERATION

Figure 5 gives an overview of generating the quartet parts.
First, the violin 1 part is set to the melody. Second, the
cello part is generated with a probabilistic method and dy-
namic programming. Third, the violin 2 and viola parts are
generated together via the same probabilistic method and
dynamic programming.

To prepare for the dynamic programming, we need to
define the emission and transition matrices, denoted by £
and 7', respectively. Our time unit is 16™ notes, and we
consider 200 possible events for each time-slice: 0 is a rest,
1-99 are note onsets of the same MIDI pitches, 100 is a
held rest, and 101-199 are held notes (of MIDI pitch +100).
We define N as the number of 16" notes in the target song.
An overview of calculating £/ and T is shown in Figure 6.

3.1 Constructing probability matrices

3.1.1 Construction emission probabilities F/

The emission probabilities E is a matrix of size N x 200,
representing every possible event at every 16" note. They
are generated by calculating Fo (onsets) and Ey (held
notes), each of size N x 100,

Eo =
Ey =

0 RCGRRIRRV (1)
MO @GR IRV )

where ® is the element-wise product. The intuition behind
this multiplication is that we consider each variable to be
an independent probability distribution, so we are calcu-
lating the joint distribution. Ep and Ey are then stacked
vertically to form E. The variables are:

o Ay, A}, — Audio onsets and magnitudes: Audio onsets
Ao and magnitudes Aj; for MIDI pitches 1-99 are
taken directly from the audio analysis. The “silence’
event (0) is set to a constant value of 107°.

e C' — Chord tones: We construct a matrix of all MIDI
pitches for every 16" note in the song; each cell is 1 if
that pitch is in the given chord, 10~2 otherwise. For the
cello, we use the bass note of each chord C'g; for other
instruments, we use any chord tone included in C.
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Figure 6: Calculating emission and transition probabilities
F and T'. ® indicates element-wise multiplication.

o G’y — Rhythm grids: We take the overall probability
of a rhythmic event in the corpus at each 16™ note Gz,
and repeat it for every 16 time-slices in V.

Ir — Extreme instrument ranges: We specify maxi-
mum bounds for instrument ranges: MIDI pitches 36—69
for cello, 48—81 for viola, and 55-99 for violin. When
a corpus of symbolic music is used, the pitch transition
probabilities narrow these ranges; I is only relevant if
the user chooses not to use any corpus.

o V' — Avoid previously-used notes: We reduce the prob-
ability of using the same notes as other instruments by
setting them to 10~2 in V; other events are set to 1. We
also reduce the probability of playing a note one octave
higher than an existing note (as those are likely octave
errors in the audio analysis) by likewise setting those
values to 1072,

We eliminate any non-rest values less than 1073 to re-
duce the computational load for music generation.

3.1.2 Construction transition probabilities T

The transition probabilities 7" are a matrix of size 200 x 200,
representing every possible event-to-event pair.

T=TroT\@Ty®H 3)

The variables are:

o T — Rhythm transitions: We use Tr, the probability
of each rhythm event following a previous rhythm event.
The note onset and held note probabilities are copied to
vectors 1-99 and 101-199 respectively, while the rest
onset and held rest probabilities are copied into vectors
0 and 100.

o T, T}, — Pitch transitions: We use the probabilities
of each pitch following a previous pitch considering
absolute or relative pitches, T4 and Tr respectively.
These matrices are originally 100 x 100; we simply copy
the matrices four times to create 200 x 200 matrices (that
is to say, allowing these relative transitions to apply to
onset-onset, onset-held, held-onset, held-held pairs).

o H — Hold-events only after onset-events: Each “hold”
event (events 100 and up) can only occur after its re-
spective “onset” event. We formalize this constraint
as a matrix H where rows 0-99 are all 1, while rows
100-199 contain two identity matrices (in columns 0-99
and 100-199).
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Figure 7: Combining emission and transition probabilities
E and T into overall log-probabilities L.

3.2 Generation of a cover song under constraints

We combine E and 7" to form the log-probability L of the
arranged score given the observed audio and corpus data,
which has dimensions N x 200 x 200. For eacht € N,

Lit,-, ] = —In(E[t,—,:]) — In(T) 4)

where E[t, —, :] indicates that the 1x200 column vector E|t]
is extended to form a 200x200 matrix. This is illustrated in
Figure 7. Since E and T contain very small numbers, we
add their negative log-values instead of multiplying them.

L can be visualized by considering it to be a network
of time-events (Figure 8). The maximum probability of
a given score occurs when the negative log-probability is
minimized; i.e. by finding the shortest path through L with
a standard dynamic programming algorithm [3].

3.2.1 Local and Global Shortest Paths

As shown in Figure 5, we calculate the cello accompaniment
part first. After that, we could solve the viola and then
violin 2 parts separately, but we found that this occasionally
produced very high violin 2 music. Instead we solve the
violin 2 and viola parts together, with the constraint that
they cannot play the same pitch at the same time.

In order to find two shortest paths simultaneously, we
construct a large network with every possible combination
of nodes from each time-slice of the individual violin 2 and
viola networks. For example, if at time ¢ the violin 2 could
have 4 possible events and the viola could have 5 possible
events, then the combined network will have 20 possible
events for time ¢. The edge weights are simply the sum of
the existing edges from the individual networks.

3.2.2 Compacting Matrices

To lower memory usage and improve processing time, we
reduce the size of the matrices. We construct a mapping
for each time-slice ¢ between the non-infinite weights in L
and a smaller matrix. This takes approximately 1 second,
and results in a matrix which is roughly 1% of the original
size (e.g., 96 million entries reduced to 1.2 million entries).
Note that this compression is lossless and does not affect
the shortest-path calculation, as an edge with weight co will
not appear in the shortest path.

Figure 8: Network of possible pitches L; shortest path
colored red. Node labels are in the form “time-event”,
with event x being a MIDI pitch onset (x < 100) or hold
(z > 100). For legibility, edges with a weight of infinity and
nodes with no non-infinite-weight edges are not displayed.

“Compacting” L in this way speeds up the computation
of the single cello part, but its true value is found when com-
bining the violin 2 and viola parts. Without any compacting,
a normal pop song (150 measures) produces a network for
a single part with 2400 x 200 x 200 = 9.6 - 107 entries.
However, naively combining the violin 2 and viola parts
produces a network with 2400 x 2002 x 2002 = 3.8 - 1012
entries (15 TB of memory). We therefore perform two
rounds of compacting; before and after combining the parts.
After compacting the individual violin 2 and viola parts,
we are left with networks of size approximately 1.6 million
and 2.3 million. After performing the second round of com-
pacting (this time on the combined matrix), the memory
requirement is reduced from 5.8 GB to 0.25 GB.

3.2.3 Weighted probabilities

We found that the initial system produced music which was
too heavily biased towards one “prototypical” measure of
rhythms for each composer. We therefore multiplied each
matrix by its own weighting factor, and allowed the user to
specify and experiment with their own desired weights.

4. EXAMPLES AND DISCUSSION

To illustrate aspects of the generated music, we created a
few cover versions of “PROLOGUE” (RWC-MDB-P-2001
No.7) from the RWC Music Database [12], with a variety
of weights to the probability distributions. Short excerpts
of the beginning of “PROLOGUE” are shown in Figure 10
with four variations: no corpus analysis, no audio spectral
analysis, equal weights, and a set of custom weights.
Figures 10a and 10b clearly demonstrate the usefulness
of combining audio with score analysis. Figure 10a does
not use any corpus information (the weights of Gg, Tk,
T4, and Tg are set to 0), and produces music which is
not idiomatic and is extremely difficult to perform. In the
other extreme, Figure 10b uses the full Haydn string quartet
corpus analysis, but does not use any spectral information
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(the weights of Ap and Aj, are set to 0), and produces
music which is playable but very repetitive and “boring”:
Other than measure 10 (the transition from the introduction
to the melody), each instrument in the accompaniment plays
the same rhythm in every measure (with the exception of
the cello in measure 5), and 76% of measures contain a
single pitch while 24% of measures contains two pitches.

Figure 10c uses all available data with weights of 1,
and the music is both quite playable and more interesting
than Figure 10b. There is more variation in the rhythms,
and most notes are typical classical-style durations such
as whole notes, half notes, or quarter notes. There are
a few non-chord pitch changes (e.g., violin 2 measure 3,
viola measure 13), but not many. This version contains one
mistake: the viola in measure 13 begins with a Cj 16™ note
which quickly changes to a Cff chord-tone. This could be
avoided by decreasing the probability of non-chord tones,
but doing so would also decrease the chance of a non-chord
tone in the original song from being reproduced. This is an
illustration of the choices available to the user.

Figures 10d (Haydn), 10e (Mozart), and 10f (Beethoven)
demonstrate a custom set of weights. After some exper-
imentation, we (subjectively) chose to set the onset Ap
weight to 0.9, the corpus rhythms G i and Tz weights to
0.5, and the corpus pitch transition 7’4 and T weights to
0.25. These three cover versions produce noticeably distinct
music, arising solely due to the corpus used. The overall
distribution of rhythmic durations seems natural: the cello
has longer notes than the inner two voices. The distribution
of pitches is reasonable, with all instruments playing in a
comfortable range; the corpus clearly helps in avoiding the
extreme pitches that were present in Figure 10a.

A few parts of the cover versions are the same in all
compositions. Measure 10 always ends with a Gf-Cfj (alter-
natively “spelled” as Bf) in the cello and violin 2, with the
viola filling in a transition from Df to Cf (or Bf); this makes
a nice V-I chord sequence (Gf major to Cf major) leading
into measure 11. In addition, the V-I resolution in mea-
sures 10—11 always includes contrary motion in the cello
and violin 2. Our probabilistic generation does not take
relative motion of multiple voices into account, so this nice
voice leading must arise from the strength of its presence in
the audio spectral analysis.

A few problems exist in the voice leading. For example,
Figure 10d shows a number of parallel fifths (e.g., viola
and cello, measures 4—5—6, 8 —~9). These likely arise
due to the 2" and 3™ harmonics of bass guitar notes in the
original recording. A similar problem occurs with sudden
jumps of an octave after one 16" or 8™ note appears in a few
places (e.g., viola measure 4 and cello measure 12). These
also likely arise due to inaccuracies in the spectral analysis:
the energy in upper partials of a single note can vary, so
multiple onsets are detected in close succession. More
advanced signal processing in terms of onset estimation or
pitch salience calculation could mitigate this issue. Another
fix for the parallel fifths would be to use a more advanced
mathematical model; a first-order Markov model does not
track the inter-dependence between quartet parts.
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Figure 9: Objective analysis of weights; unless otherwise
specified, our custom weights are used.

4.1 Objective analysis

Figure 9 shows the effect of changing the rhythmic or
pitch corpus weights. The “pitch” plots show the cross-
correlation between the corpus relative pitch distribution
T and the relative pitches calculated from the generated
scores. The “rhythm” plots show the cross-correlation be-
tween corpus and generated scores, based on the types of
measures appearing in the output. Concretely, we con-
struct a dictionary of full-measure rhythmic events (such
as 0222133002130011 from Figure 4) along with their fre-
quency of appearance, for both the corpus and the gener-
ated music. We then calculate the cross-correlation between
those dictionaries for the corpus and each cover version.
Increasing the weight generally increases the correla-
tion between corpus and generated music for both pitches
and rhythms. One counter-example is violin 2 and viola
in Mozart quartets. We theorize that this arises because in-
creasing the rhythmic weight reduces the number of “com-
pletely eighth note” measures in the generated music, how-
ever such measures are very common in the original corpus.

5. CONCLUSION AND FUTURE WORK

We presented Song2Quartet, a system for generating string
quartet cover versions of popular music using audio and
symbolic corpus analysis. Both the target pop song audio
file and the corpus of classical music contribute to the out-
put; using only one or the other produces clearly inferior
results. In order to avoid awkward second violin parts, we
performed a semi-global optimization whereby we created
the second violin and viola parts at the same time.

The current system makes a number of ad hoc assump-
tions, such as the melody always being played by the first
violin and all rhythms fitting into 16"-note rhythms. Our
evaluation was primarily based on informal listening, which
showed promise despite some voice leading errors.

We plan to extend the data-driven corpus analysis so that
users may generate cover versions for other groups of clas-
sical instruments. We also plan to add a GUI so that users
can place the melody in different instruments at any point
in the song. Finally, we would like to include evaluations
of the generated scores’ “playability” by musicians.

Acknowledgments: This work was supported in part by
CREST, JST.
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Figure 10: Sample output; full versions and synthesized audio available at:

https://staff.aist.go.jp/m.goto/Song2Quartet/
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