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ABSTRACT

This paper proposes a query-by-audio system that aims to
detect temporal locations where a musical phrase given as
a query is played in musical pieces. The “phrase” in this
paper means a short audio excerpt that is not limited to
a main melody (singing part) and is usually played by a
single musical instrument. A main problem of this task
is that the query is often buried in mixture signals con-
sisting of various instruments. To solve this problem, we
propose a method that can appropriately calculate the dis-
tance between a query and partial components of a musi-
cal piece. More specifically, gamma process nonnegative
matrix factorization (GaP-NMF) is used for decomposing
the spectrogram of the query into an appropriate number of
basis spectra and their activation patterns. Semi-supervised
GaP-NMF is then used for estimating activation patterns of
the learned basis spectra in the musical piece by presuming
the piece to partially consist of those spectra. This enables
distance calculation based on activation patterns. The ex-
perimental results showed that our method outperformed
conventional matching methods.

1. INTRODUCTION

Over a decade, a lot of effort has been devoted to devel-
oping music information retrieval (MIR) systems that aim
to find musical pieces of interest by using audio signals as
the query. For example, there are many similarity-based re-
trieval systems that can find musical pieces having similar
acoustic features to those of the query [5,13,21,22]. Audio
fingerprinting systems, on the other hand, try to find a mu-
sical piece that exactly matches the query by using acoustic
features robust to audio-format conversion and noise con-
tamination [6,12,27]. Query-by-humming (QBH) systems
try to find a musical piece that includes the melody speci-
fied by users’ singing or humming [19]. Note that in gen-
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Figure 1. An overview of the proposed method.

eral information of musical scores [9, 16, 23, 31, 39] (such
as MIDI files) or some speech corpus [36] should be pre-
pared for a music database in advance of QBH. To over-
come this limitation, some studies tried to automatically
extract main melodies from music audio signals included
in a database [25, 34, 35]. Other studies employ chroma
vectors to characterize a query and targeted pieces without
the need of symbolic representation or transcription [2].

We propose a task that aims to detect temporal loca-
tions at which phrases similar to the query phrase appear
in different polyphonic musical pieces. The term “phrase”
means a several-second musical performance (audio clip)
usually played by a single musical instrument. Unlike
QBH, our method needs no musical scores beforehand.
A key feature of our method is that we aim to find short
segments within musical pieces, not musical pieces them-
selves. There are several possible application scenarios in
which both non-experts and music professionals enjoy the
benefits of our system. For example, ordinary users could
intuitively find a musical piece by playing just a character-
istic phrase used in the piece even if the title of the piece is
unknown or forgotten. In addition, composers could learn
what kinds of arrangements are used in existing musical
pieces that include a phrase specified as a query.

The major problem of our task lies in distance calcu-
lation between a query and short segments of a musical
piece. One approach would be to calculate the symbolic
distance between musical scores. However, this approach
is impractical because even the state-of-the-art methods of
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automatic musictranscription [4,11,17,29,38] work poorly
for standard popular music. Conventional distance calcula-
tion based on acoustic features [5] is also inappropriate be-
cause acoustic features of a phrase are drastically distorted
if other sounds are superimposed in a musical piece. In
addition, since it would be more useful to find locations in
which the same phrase is played by different instruments,
we cannot heavily rely on acoustic features.

In this paper we propose a novel method that can per-
form phrase spotting by calculating the distance between a
query andpartial components of a musical piece. Our con-
jecture is that we could judge whether a phrase is included
or not in a musical piece without perfect transcription, like
the human ear can. More specifically, gamma process non-
negative matrix factorization (GaP-NMF) [14] is used for
decomposing the spectrogram of a query into an appropri-
ate number of basis spectra and their activation patterns.
Semi-supervised GaP-NMF is then used for estimating ac-
tivation patterns of the fixed basis spectra in a target mu-
sical piece by presuming the piece topartially consist of
those spectra. This enables appropriate matching based on
activation patterns of the basis spectra forming the query.

2. PHRASE SPOTTING METHOD

This section describes the proposed phrase-spotting
method based on nonparametric Bayesian NMF.

2.1 Overview

Our goal is to detect the start times of a phrase in the poly-
phonic audio signal of a musical piece. An overview of the
proposed method is shown in Figure 1. LetX ∈ RM×Nx

andY ∈ RM×Ny be the nonnegative power spectrogram
of a query and that of a target musical piece, respectively.
Our method consists of three steps. First, we perform NMF
for decomposing the queryX into a set of basis spectra
W (x) and a set of their corresponding activationsH(x).
Second, in order to obtain temporal activations ofW (x)

in the musical pieceY , we perform another NMF whose
basis spectra consist of a set of fixed basis spectraW (x)

and a set of unconstrained basis spectraW (f) that are re-
quired for representing musical instrument sounds except
for the phrase. LetH(y) andH(f) be sets of activations of
Y corresponding toW (x) andW (f), respectively. Third,
the similarity between the activation patternsH(x) in the
query and the activation patternsH(y) in the musical piece
is calculated. Finally, we detect locations of a phrase where
the similarity takes large values.

There are two important reasons that “nonparametric”
“Bayesian” NMF is needed. 1) It is better to automatically
determine the optimal number of basis spectra according
to the complexity of the queryX and that of the musical
pieceY . 2) We need to put different prior distributions
on H(y) andH(f) to put more emphasis on fixed basis
spectraW (x) than unconstrained basis spectraW (f). If
no priors are placed, the musical pieceY is often repre-
sented by using only unconstrained basis spectraW (f).
A key feature of our method is that wepresumethat the

phrase is included in the musical piece when decomposing
Y . This means that we need to make use ofW (x) as much
as possible for representingY . The Bayesian framework
is a natural choice for reflecting such a prior belief.

2.2 NMF for Decomposing a Query

We use the gamma process NMF (GaP-NMF) [14] for
approximatingX as the product of a nonnegative vector
θ ∈ RKx and two nonnegative matricesW (x) ∈ RM×Kx

andH(x) ∈ RKx×Nx . More specifically, the original ma-
trix X is factorized as follows:

Xmn ≈
Kx∑
k=1

θkW
(x)
mkH

(x)
kn , (1)

whereθk is the overall gain of basisk, W (x)
mk is the power

of basisk at frequencym, andH(x)
kn is the activation of

basisk at timen. Each column ofW (x) represents a basis
spectrum and each row ofH(x) represents an activation
pattern of the basis over time.

2.3 Semi-supervised NMF for Decomposing a Musical
Piece

We then perform semi-supervised NMF for decomposing
the spectrogram of the musical pieceY by fixing a part
of basis spectra withW (x). The idea of givingW as a
dictionary during inference has been widely adopted [3, 7,
15,18,24,26,28,30,33,38].

We formulate Bayesian NMF for representing the spec-
trogram of the musical pieceY by extensively using the
fixed basesW (x). To do this, we put different gamma pri-
ors onH(y) andH(f). The shape parameter of the gamma
prior onH(y) is much larger than that of the gamma prior
onH(f). Note that the expectation of the gamma distribu-
tion is proportional to its shape parameter.

2.4 Correlation Calculation between Activation
Patterns

After the semi-supervised NMF is performed, we calculate
the similarity between the activation patternsH(x) in the
query and the activation patternsH(y) in a musical piece to
find locations of the phrase. We expect that similar patterns
appear inH(y) when almost the same phrases are played in
the musical piece even if those phrases are played by differ-
ent instruments. More specifically, we calculate the sum of
the correlation coefficientsr at timen betweenH(x) and
H(y) as follows:

r(n) =
1

KxNx

Kx∑
k=1

(
h
(x)
k1 − h

(x)

k1

)T (
h
(y)
kn − h

(y)

kn

)
∥∥∥h(x)

k1 − h
(x)

k1

∥∥∥ ∥∥∥h(y)
kn − h

(y)

kn

∥∥∥ , (2)

where

h
(·)
ki =

[
H

(·)
ki · · ·H(·)

k(i+Nx−1)

]T
, (3)

h
(·)
kn =

1

Nx

Nx∑
j=1

H
(·)
k(n+j−1) × [1 · · · 1]T . (4)
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Finally, we detect a start framen of the phrase by finding
peaks of the correlation coefficients over time. This peak
picking is performed based on the following thresholding
process:

r(n) > µ+ 4σ, (5)

whereµ andσ denote the overall mean and standard de-
viation of r(n), respectively, which were derived from all
the musical pieces.

2.5 Variational Inference of GaP-NMF

This section briefly explains how to infer nonparametric
Bayesian NMF [14], given a spectrogramV ∈ RM×N .
We assume thatθ ∈ RK , W ∈ RM×K , andH ∈ RK×N

are stochastically sampled according to a generative pro-
cess. We choose a gamma distribution as a prior distribu-
tion on each parameter as follows:

p(Wmk) = Gamma
(
a(W ), b(W )

)
,

p(Hkn) = Gamma
(
a(H), b(H)

)
, (6)

p(θk) = Gamma
( α

K
,αc
)
,

whereα is a concentration parameter,K is a sufficiently
large integer (ideally an infinite number) compared with
the number of components in the mixed sound, andc is the
inverse of the mean value ofV :

c =

(
1

MN

∑
m

∑
n

Vmn

)−1

. (7)

We then use the generalized inverse-Gaussian (GIG) dis-
tribution as a posterior distribution as follows:

q(Wmk) = GIG
(
γ
(W )
mk , ρ

(W )
mk , τ

(W )
mk

)
,

q(Hkn) = GIG
(
γ
(H)
kn , ρ

(H)
kn , τ

(H)
kn

)
, (8)

q(θk) = GIG
(
γ
(θ)
k , ρ

(θ)
k , τ

(θ)
k

)
.

To estimate the parameters of these distributions, we first
update other parameters,ϕkmn, ωmn, using the following
equations.

ϕkmn = Eq

[
1

θkWmkHkn

]−1

, (9)

ωmn =
∑
k

Eq [θkWmkHkn] . (10)

After obtainingϕkmn andωmn, we update the parameters
of the GIG distributions as follows:

γ
(W )
mk = a(W ), ρ

(W )
mk = b(W ) + Eq[θk]

∑
n

Eq[Hkn]

ωmn
,

τ
(W )
mk = Eq

[
1

θk

]∑
n

Vmnϕ
2
kmnEq

[
1

Hkn

]
, (11)

γ
(H)
kn = a(H), ρ

(H)
kn = b(H) + Eq[θk]

∑
m

Eq[Wmk]

ωmn
,

τ
(H)
kn = Eq

[
1

θk

]∑
m

Vmnϕ
2
kmnEq

[
1

Wmk

]
, (12)

γ
(θ)
k =

α

K
, ρ

(θ)
k = αc+

∑
m

∑
n

Eq[WmkHkn]

ωmn
,

τ
(θ)
k =

∑
m

∑
n

Vmnϕ
2
kmnEq

[
1

WmkHkn

]
. (13)

Theexpectations ofW , H andθ are required in Eqs. (9)
and (10). We randomly initialize the expectations ofW ,
H, andθ and iteratively update each parameter by using
those formula. As the number of iterations increases, the
value ofEq[θk] over a certain levelK+ decreases. There-
fore, if the value is 60 dB lower than

∑
k Eq[θk], we re-

move the related parameters from consideration, which
makes the calculation faster. Eventually, the number of
effective bases,K+, gradually reduces during iterations,
suggesting that the appropriate number is automatically de-
termined.

3. CONVENTIONAL MATCHING METHODS

We describe three kinds of conventional matching meth-
ods used for evaluation. The first and the second methods
calculate the Euclidean distance between acoustic features
(Section 3.1) and that between chroma vectors (Section
3.2), respectively. The third method calculates the Itakura-
Saito (IS) divergence between spectrograms (Section 3.3).

3.1 MFCC Matching Based on Euclidean Distance

Temporal locations in which a phrase appears are detected
by focusing on the acoustic distance between the query
and a short segment extracted from a musical piece. In
this study we use Mel-frequency cepstrum coefficients
(MFCCs) as an acoustic feature, which have commonly
been used in various research fields [1, 5]. More specif-
ically, we calculate a 12-dimensional feature vector from
each frame by using the Auditory Toolbox Version 2 [32].
The distance between two sequences of the feature vector
extracted from the query and the short segment is obtained
by accumulating the frame-wise Euclidean distance over
the length of the query.

The above-mentioned distance is iteratively calculated
by shifting the query frame by frame. Using a simple peak-
picking method, we detect locations of the phrase in which
the obtained distance is lower thanm − s, wherem and
s denote the mean and standard deviation of the distance
over all frames, respectively.
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3.2 Chromagram Matching Based on Euclidean
Distance

In this section, temporal locations in which a phrase ap-
pears are detected in the same manner as explained in Sec-
tion 3.1. A difference is that we extracted a 12-dimentional
chroma vector from each frame by using the MIRtool-
box [20]. In addition, we empirically defined the threshold
of the peak-picking method asm− 3s.

3.3 DP Matching Based on Itakura-Saito Divergence

In this section, temporal locations in which a phrase ap-
pears are detected by directly calculating the Itakura-Saito
(IS) divergence [8,37] between the queryX and the musi-
cal pieceY . The use of the IS divergence is theoretically
justified because the IS divergence poses a smaller penalty
than standard distance measures such as the Euclidean dis-
tance and the Kullback-Leibler (KL) divergence when the
power spectrogram of the query is included in that of the
musical piece.

To efficiently find phrase locations, we use a dynamic
programming (DP) matching method based on the IS di-
vergence. First, we make a distance matrixD ∈ RNx×Ny

in which each cellD(i, j) is the IS divergence between the
i-th frame ofX and thej-th frame ofY (1 ≤ i ≤ Nx and
1 ≤ j ≤ Ny). D(i, j) is given by

D(i, j) = DIS(Xi|Yj) =
∑
m

(
− log

Xmi

Ymj
+

Xmi

Ymj
− 1

)
,

(14)
wherem indicates afrequency-bin index. We then let
E ∈ RNx×Ny be a cumulative distance matrix. First,E
is initialized asE(1, j) = 0 for anyj andE(i, 1) = ∞ for
anyi. E(i, j) can be sequentially calculated as follows:

E(i, j) = min


1) E(i−1, j−2) + 2D(i, j−1)
2) E(i−1, j−1) +D(i, j)
3) E(i−2, j−1) + 2D(i−1, j)


+D(i, j). (15)

Finally, we can obtainE(Nx, j) that represents the dis-
tance between the query and a phrase ending at thej-th
frame in the musical piece. We letC ∈ RNx×Ny be a cu-
mulative cost matrix. According to the three cases 1), 2),
and 3),C(i, j) is obtained as follows:

C(i, j) =


1) C(i− 1, j − 2) + 3
2) C(i− 1, j − 1) + 2
3) C(i− 2, j − 1) + 3.

(16)

This means that the length of a phrase is allowed to range
from one half to two times of the query length.

Phrase locations are determined by finding the local
minima of the regularized distance given byE(Nx,j)

C(Nx,j)
. More

specifically, we detect locations in which values of the ob-
tained distance are lower thanM − S/10, whereM andS
denote the median and standard deviation of the distance
over all frames, respectively. A reason that we use the me-
dian for thresholding is that the distance sometimes takes

an extremely large value (outlier). The mean of the dis-
tance tends to be excessively biased by such an outlier. In
addition, we ignore values of the distance which are more
than106 when calculatingS for practical reasons (almost
all values ofE(Nx,j)

C(Nx,j)
range from103 to 104). Once the end

point is detected, we can also obtain the start point of the
phrase by simply tracing back along the path from the end
point.

4. EXPERIMENTS

This section reports comparative experiments that were
conducted for evaluating the phrase-spotting performances
of the proposed method described in Section 2 and the
three conventional methods described in Section 3.

4.1 Experimental Conditions

The proposed method and the three conventional methods
were tested under three different conditions: 1) Exactly the
same phrase specified as a query was included in a musical
piece (exact match). 2) A query was played by a different
kind of musical instruments (timbre change). 3) A query
was played in a faster tempo (tempo change).

We chose four musical pieces (RWC-MDB-P-2001
No.1, 19, 42, and 77) from the RWC Music Database:
Popular Music [10]. We then prepared 50 queries: 1) 10
were short segments excerpted from original multi-track
recordings of the four pieces. 2) 30 queries were played
by three kinds of musical instruments (nylon guitar, clas-
sic piano, and strings) that were different from those origi-
nally used in the four pieces. 3) The remaining 10 queries
were played by the same instruments as original ones, but
their tempi were 20% faster. Each query was a short per-
formance played by a single instrument and had a duration
ranging from 4 s to 9 s. Note that those phrases were not
necessarily salient (not limited to main melodies) in musi-
cal pieces. We dealt with monaural audio signals sampled
at 16 kHz and applied the wavelet transform by shifting
short-time frames with an interval of 10 ms. The reason
that we did not use short-time Fourier transform (STFT)
was to attain a high resolution in a low frequency band.
We determined the standard deviation of a Gabor wavelet
function to 3.75 ms (60 samples). The frequency interval
was 10 cents and the frequency ranged from 27.5 (A1) to
8000 (much higher than C8) Hz.

When a query was decomposed by NMF, the hyperpa-
rameters were set asα = 1, K = 100, a(W ) = b(W ) =
a(H) = 0.1, and b(H

(x)) = c. When a musical piece
was decomposed by semi-supervised NMF, the hyperpa-
rameters were set asa(W ) = b(W ) = 0.1, a(H

(y)) = 10,
a(H

(f)) = 0.01, andb(H) = c. The inverse-scale parameter
b(H) was adjusted to the empirical scale of the spectrogram
of a target audio signal. Also note that using smaller values
of a(·) makes parameters sparser in an infinite space.

To evaluate the performance of each method, we calcu-
lated the average F-measure, which has widely been used
in the field of information retrieval. The precision rate was
defined as a proportion of the number of correctly-found
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Precision (%) Recall (%) F-measure (%)

MFCC 24.8 35.0 29.0
Chroma 33.4 61.0 43.1
DP 1.9 55.0 3.6
Proposed 53.6 63.0 57.9

Table 1. Experimental results in a case that exactly the
same phrase specified as a query was included in a musical
piece.

Precision (%) Recall (%) F-measure (%)

MFCC 0 0 0
Chroma 18.1 31.7 23.0
DP 1.1 66.3 6.2
Proposed 26.9 56.7 36.5

Table 2. Experimental results in a case that a query was
played by a different kind of instruments.

Precision (%) Recall (%) F-measure (%)

MFCC 0 0 0
Chroma 12.0 19.0 14.7
DP 0.5 20.0 2.7
Proposed 15.8 45.0 23.4

Table 3. Experimental results in a case that the query
phrases was played in a faster tempo.

phrases to that of all the retrieved phrases. The recall rate
was defined as a proportion of the number of correctly-
found phrases to that of all phrases included in the database
(each query phrase was included only in one piece of mu-
sic). Subsequently, we calculated the F-measureF by
F = 2PR

P+R , whereP andR denotethe precision and re-
call rates, respectively. We regarded a detected point as a
correct one when its error is within 50 frames (500 ms).

4.2 Experimental Results

Tables 1–3 show the accuracies obtained by the four meth-
ods under each condition. We confirmed that our method
performed much better than the conventional methods in
terms of accuracy. Figure 2 shows the value ofr(n) ob-
tained from a musical piece in which a query phrase (orig-
inally played by the saxophone) is included. We found that
the points at which the query phrase starts were correctly
spotted by using our method. Although the MFCC-based
method could retrieve some of the query phrases in the
exact-match condition, it was not robust to timbre change
and tempo change. The DP matching method, on the other
hand, could retrieve very few correct points because the IS
divergence was more sensitive to volume change than the
similarity based on spectrograms. Although local minima
of the cost function often existed at correct points, those
minima were not sufficiently clear because it was difficult
to detect the end point of the query from the spectrogram of
a mixture audio signal. The chroma-based method worked
better than the other conventional methods. However, it
did not outperform the proposed method since the chroma-

(a)

(b)

(c)

(b)

Figure 2. Sum of the correlation coefficientsr(n). The
target piece was RWC-MDB-P-2001 No.42. (a) The query
was exactly the same as the target saxophone phrase. (b)
The query was played by strings. (c) The query was played
20% faster than the target.

based method often detected false locations including a
similar chord progression.

Although our method worked best of the four, the accu-
racy of the proposed method should be improved for prac-
tical use. A major problem is that the precision rate was
relatively lower than the recall rate. Wrong locations were
detected when queries were played instaccatomanner be-
cause many false peaks appeared at the onset ofstaccato
notes.

As for computational cost, it took 29746 seconds to
complete the retrieval of a single query by using our
method. This was implemented in C++ on a 2.93 GHz
Intel Xeon Windows 7 with 12 GB RAM.

5. CONCLUSION AND FUTURE WORK

This paper presented a novel query-by-audio method that
can detect temporal locations where a phrase given as
a query appears in musical pieces. Instead of pursuing
perfect transcription of music audio signals, our method
used nonnegative matrix factorization (NMF) for calculat-
ing the distance between the query and partial components
of each musical piece. The experimental results showed
that our method performed better than conventional match-
ing methods. We found that our method has a potential to
find correct locations in which a query phrase is played by
different instruments (timbre change) or in a faster tempo
(tempo change).

Future work includes improvement of our method, es-
pecially under the timbre-change and tempo-change con-
ditions. One promising solution would be to classify basis
spectra of a query into instrument-dependent bases (e.g.,
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noise fromthe guitar) and common ones (e.g., harmonic
spectra corresponding to musical notes) or to create an uni-
versal set of basis spectra. In addition, we plan to reduce
the computational cost of our method based on nonpara-
metric Bayesian NMF.
Acknowledgment: This study was supported in part by the JST
OngaCREST project.
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