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ABSTRACT

This paper describes AutoMashUpper, an interactive

system for creating music mashups by automatically se-

lecting and mixing multiple songs together. Given a user-

specified input song, the system first identifies the phrase-

level structure and then estimates the “mashability” be-

tween each phrase section of the input and songs in the

user’s music collection. Mashability is calculated based on

the harmonic similarity between beat synchronous chro-

magrams over a user-definable range of allowable key

shifts and tempi. Once a match in the collection for a given

section of the input song has been found, a pitch-shifting

and time-stretching algorithm is used to harmonically and

temporally align the sections, after which the loudness of

the transformed section is modified to ensure a balanced

mix. AutoMashUpper has a user interface to allow visu-

alisation and manipulation of mashups. When creating a

mashup, users can specify a list of songs to choose from,

modify the mashability parameters and change the granu-

larity of the phrase segmentation. Once created, users can

also switch, add, or remove sections from the mashup to

suit their taste. In this way, AutoMashUpper can assist

users to actively create new music content by enabling and

encouraging them to explore the mashup space.

1. INTRODUCTION

Mashups form a key part of the remix culture in mu-

sic production and listening. Created by mixing together

multiple songs, or elements within songs, music mashups

hold strong potential for entertaining and surprising lis-

teners by bringing together disparate musical elements in

unexpected ways. Until recently, the process for creating

mashups relied on two elements: first, the requisite mu-

sical imagination (and access to a large and varied music

catalogue) to determine which songs to mix together, and

second, the technical ability to use a Digital Audio Work-

station to produce high quality results.

Due to the high popularity of mashups, some commer-

cial systems and online tools have become available to as-

sist users (both professional DJs and amateurs) in mixing
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Figure 1. The concept of multi-song mashups.

songs and creating mashups. DJ Mix Generator 1 is an

online database of 30,000 songs, where users can search

by tempo, key and genre to find compatible songs to mix

together. The Harmonic Mixing Tool 2 offers similar func-

tionality, but instead of presenting results through an on-

line search engine, it analyses a user’s collection to iden-

tify song compatibility and can create a “harmonic fade”

when mixing between songs. Mashup 3 also provides a

harmonic compatibility measure between songs, which is

determined using a key signature detection algorithm and

relationships in the circle of fifths. To allow the manual

creation of mashups, Mashup has an advanced audio edit-

ing interface.

Given the existence of these commercial mashup tools

and their use of MIR techniques such as key detection, beat

tracking and tempo estimation, it is quite surprising that so

few research papers exist on this topic. Of those which do,

their scope appears limited to using just a handful of mu-

sical excerpts, and they focus on the engineering aspects

of time-stretching multiple songs simultaneously [7] or on

visualisation as part of the mashup making process [12].

While these elements are certainly important, we believe

that there are many opportunities for the development of

MIR techniques within the field of music mashups. In-

deed, mashup creation was recently highlighted as one of

the “grand challenges” of MIR [5, p.222].

It is within this light that we propose AutoMashUpper,

a system for making automatic multi-song mashups, as

shown in Figure 1. The main novelty of our system lies

1 http://www.djprince.no/site/DMG.aspx
2 http://www.idmt.fraunhofer.de/en/Service_

Offerings/technologies/e_h/harmonic_mixing_tool.
html

3 http://mashup.mixedinkey.com/
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Figure 2. Screenshot of the AutoMashUpper user interface. Additional descriptions of the functionality are overlaid.

in the estimation of what we term “mashability” - a mea-

sure of how well two songs fit, or mash together. Look-

ing beyond the functionality of existing mashup systems

which guide users to songs with matching key signatures

and similar tempi, we incorporate a measure of harmonic

similarity of beat synchronous chromagrams. This allows

us to look for deeper matches than those possible from key-

signature alone. Furthermore our measure of mashability

can identify matches between songs in completely differ-

ent key-signatures, by directly exploiting the knowledge

that songs can be pitch-shifted by some number of semi-

tones to “force” a match.

By identifying the phrase-level structure of a given in-

put song, AutoMashUpper can determine the mashability

between each phrase section of the input and songs in a

user’s music collection. In this way, multiple songs can

be used in the mashup at different times and this can radi-

cally increase the range and variety of possible mashups.

To produce the mashup, we use existing techniques for

pitch-shifting and time-stretching for harmonic and tem-

poral alignment respectively, and loudness adjustment to

create a balanced sound mixture.

In addition to the fully automatic mode, AutoMashUp-

per has a user interface to allow visualisation and manipu-

lation of mashups, as shown in Figure 2. When creating a

mashup, users can specify a list of songs to choose from,

modify the mashability parameters and change the granu-

larity of the phrase segmentation. Once created, users can

also switch, add, or remove sections from the mashup to

suit their taste, and additionally save the results for re-use.

The remainder of this paper is structured as follows. In

Section 2 we describe the phrase-level segmentation used

to partition songs in AutoMashUpper. In Section 3 we

present our method for mashability estimation and describe

how we produce the mashups. We then present the inter-

face of AutoMashUpper in Section 4 and illustrate its main

modes of operation. Finally, in Section 5, we discuss the

potential impact of our system, towards motivating further

research into mashup generation, and present some areas

for future work.

2. PHRASE-LEVEL SEGMENTATION

A central component of our mashup system, and the key

to enabling multiple songs to be used to produce the mu-

sical result, is a phrase-level segmentation of the input.

While much research has been conducted into structural

segmentation of music signals (e.g., [11, 13]) their goal is

to identify boundaries of long sections corresponding to

intro, verse and chorus, and to apply labels to these sec-

tions to identify repetitions. For our purpose in creating

mashups, we require a similar type of analysis, however

our concern is not directly in labelling the sections, but

rather in precisely identifying temporal boundaries. Fur-

thermore we wish to identify shorter sections correspond-

ing to musical phrases, rather than longer time scale struc-

ture such as verse or chorus.

Through informal experimentation with existing seg-

mentation algorithms with publicly available implementa-

tions (e.g., [13]) we discovered that it was not trivial to

reliably sub-divide the estimated sections into downbeat

synchronous phrases. On this basis, and in the interest of

avoiding multiple separate stages of processing the input

signal, we devise our own method for phrase segmenta-

tion, adapting elements from existing systems to suit our

needs. Since an important element of mashups is the har-

monic compatibility of the mixed music signals, we base

our phrase-level segmentation on a harmonic representa-

tion of the input.

To generate the harmonic signal representations for

phrase-level segmentation and the subsequent estimation

of mashability, we use the NNLS Chroma plugin [8] within

Sonic Annotator [2]. Given an input audio signal, we

extract three results from the NNLS Chroma plugin: the

global tuning, t, of the input, an 84-bin (7 octave), tuned

semitone spectrogram, S, and a 12-dimensional chroma-

gram (the distribution of energy across the chromatic pitch
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classes in a musical octave), C. All outputs are extracted

using the default parameters. To create beat-synchronous

versions of S and C, we use the QM Vamp beat tracking

plugin in Sonic Annotator, and take the median across the

time frames per beat. For ease of notation, we will continue

to use S and C to refer to the beat-synchronous versions.

To simplify our approach, we make the following as-

sumptions about the songs to be used for mashups: all

phrase sections are a whole number of measures, all songs

have a constant 4/4 time-signature, and the input tempo is

approximately constant.

To determine the phrase boundaries, we group the

beat-synchronous frames of S into measures, to create a

downbeat-synchronous semitone spectrogram. To identify

the downbeats we used a modified version of the method

by Davies and Plumbley [3] with S as the main input. As

shown in [13] it can be beneficial for segmentation per-

formance to “stack” beat frames together when estimat-

ing section boundaries. In this way, we group sets of

four consecutive beat frames (starting at each downbeat

and without overlap) to create a downbeat-synchronous

stacked semitone spectrogram.

Given the beats and downbeats, we then follow the

classical approach of Foote [4] for structural segmen-

tation. We calculate a self-similarity matrix from the

downbeat-synchronous stacked semitone spectrogram us-

ing the Itakura-Saito distance [6] and slide a Gaussian

checkerboard kernel along the main diagonal to generate

a novelty function to emphasise section boundaries. As

shown in [4] the size of this kernel has a direct impact on

the level of the segmentation and temporal precision of the

boundaries. Since our interest is in finding short phrase-

level sections, we use a small kernel of size eight down-

beats. To obtain an initial set of phrase boundaries we

peak-pick the resulting novelty function. We then employ

a technique derived from [11] to maximise the regularity

of the detected phrase boundaries. A graphical example is

shown in Figure 3 along with a flow chart in Figure 4(a).

3. MAKING MASHUPS

This section describes how the mashability is estimated be-

tween beat-synchronous chromagrams for each phrase sec-

tion of the input song, and the songs in a music collection.

Then we address the requisite processing to physically cre-

ate the mashup itself. A graphical overview of the com-

plete mashup creation process is shown in Figure 4.

3.1 Estimating Mashability

Once the set of phrase segment boundaries has been deter-

mined, we turn our attention to finding a match for each

phrase section of the input with songs in the users’ music

collection by estimating what we refer to as “mashability”.

For each song in the collection, we pre-calculate a beat-

synchronous chromagram using the techniques described

in Section 2 prior to estimating the mashability.

In contrast to existing systems which guide users to-

wards mixing songs with matching key signature and have
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Figure 3. Phrase-level segmentation overview. (top left)

a beat synchronous tuned semitone spectrogram. (bottom

left) a downbeat-synchronous spectrogram, where groups

of four beat frames are stacked into measures. (top right)

a self-similarity matrix generated from the downbeat-

synchronous semitone spectrogram. (bottom right) a nov-

elty function whose peaks highlight likely phrase bound-

aries. The vertical dotted lines show raw phrase bound-

aries and the solid grey lines show the result of regularity-

constrained realignment.

similar tempi, we argue that there is a much wider scope of

potential matches (and potentially more interesting musi-

cal results) by considering mashups between songs in dif-

ferent keys and tempi. In effect, our approach is not only

to look for matches according to the existing properties of

songs, but also to look for matches in a kind of “trans-

form” domain, in the knowledge that we can subsequently

use time-stretching to temporally align songs, and pitch-

shifting (by some number of semitones) to create, or in-

deed “force” a harmonic alignment.

We base our estimation of mashability around the har-

monic similarity between beat-synchronous chromagrams.

For the current phrase-section p of length K beats from the

input song, i, we isolate the beat-synchronous chromagram

Ci,p (a 12-by-K matrix). To facilitate the search across dif-

ferent key shifts, we rotate the chroma bins of Ci,p across

a range of integer semitone shifts, r, which can be set from

0 to ±6 semitones according to user preference. For each

key-shifted chroma section of the input, Ci,p,r we mea-

sure its harmonic similarity across each rotational shift, r
to all possible beat increments k, (for K-beat frame chro-

magrams) for each song n in the user’s song collection us-

ing the Cosine similarity,

Hn(r, k) =
Ci,p,r · Cn,p,k

||Ci,p,r|| ||Cn,p,k|| (1)
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Figure 4. Overview of the mashup creation process. (a) Pre-processing and phrase level segmentation, (b) mashability

estimation, and (c) mashup creation.

where high harmonic similarity will have H close to unity

and low similarity will have H close to zero. A graphical

overview is shown in Figure 4(b).

To move from harmonic similarity to mashability, M ,

we include an additional term which rewards songs whose

tempo, Tn is within a user specified ratio, η, of the input

tempo, Ti, such that:

Mn(r, k) =

{
Hn(r, k) + γ, if |1− |(Ti/Tn)|| ≤ η

Hn(r, k), otherwise

(2)

where γ=0.2 was found to give favourable results. Note

that the greater the value of η the more permissive the sys-

tem in terms of allowable tempo matches between the input

and songs in the collection.

Once the mashability has been calculated across the

song collection we find the song, n, beat increment, k,

(i.e. starting point) and rotational shift, r, which lead to

the highest mashability for the current input phrase sec-

tion, Ci,p,r. We apply the rotations of chroma to the input
chromagram and not to the songs in the database, which

remain unaltered by the search across mashability space.

Therefore, when we come to implement any required key-

shift to match the selected song with the input, we must

pitch-shift the selected song by −1 ∗ r semitones.

By measuring the harmonic similarity across all beat in-

crements k and rotational shifts r we create a large search

space, which in turn gives the highest possibility for find-

ing regions of high harmonic similarity. Furthermore we

have found matching between chroma matrices at incre-

mental beat shifts, rather than looking at individual chroma

frames, we can implicitly capture aligned chord changes

between songs – a factor we have found improves the qual-

ity of the resulting mashup.

3.2 Mashup Creation

The final part of the automatic mashup creation process is

to transform the selected section and mix it with the input,

as shown in Figure 4(c).

To create this mix, several steps are required. First, we

use the open-source Rubberband time-stretching and pitch-

shifting library 4 to temporally align (or “beat-match”) the

matching section with the current phrase section of the in-

put song. This is achieved using the mapfile function

(within Rubberband) which specifies a set of anchor points,

i.e., the beats of the song to be transformed, and a cor-

4 http://breakfastquay.com/rubberband/
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responding set of target times – the beats of the current

phrase section of the input.

Once aligned in time, the matching section is then har-

monically aligned to the input phrase using the pitch-

shifting functionality of Rubberband. This harmonic align-

ment addresses two areas: pitch-shifting by the required

number of semitones, r, to match the key-signature of the

songs, and a tuning correction, identified as the ratio be-

tween the estimated tuning for the input song and selected

matching song. In the event that both a tuning and pitch

correction are required, we combine these factors into a

single processing call to Rubberband. In the event that the

two songs are already matched in key, (i.e. r=0) and the

difference in tuning is less than 1Hz, then the mashup can

be made by beat-matching alone.

The final stage in mixing the sections of the two songs

together, is to address any imbalance in the loudness be-

tween the current input section and the transformed match.

To this end, we estimate the perceptual loudness in the in-

put phrase section and transformed signal using the Replay

Gain algorithm [10]. While traditionally used to equalise

loudness between songs, we wish to give greater promi-

nence in the mix to the input song, hence we scale the am-

plitude of transformed section to have 90% of the loudness

of the input phrase section.

4. AUTOMASHUPPER

Up to this point we have described the backend process-

ing to enable the automatic creation of mashups. To al-

low users of AutoMashUpper to be involved in the mashup

creation process, we have built a user interface, which is

shown in Figure 2. To illustrate the functionality of the

user interface and to provide sound examples, demonstra-

tion videos are available here 5 .

4.1 Interface Overview

The layout of the interface is split into three sections. On

the left hand side there are two main panels, the top for

visualising the waveform of the input song and the esti-

mated phrase level section boundaries. Below this is the

mashup visualizer which shows the songs currently used

in the mashup. In addition, a set of playback controls are

included for listening to the input song and the mashup.

On the right hand side is a panel containing the list of pre-

analysed songs in the music collection. Below this list-

box are buttons to select songs from the library to use in

the mashup. In the central panel we have a listbox which

shows the current songs selected for use in the mashup, as

well a set of sliders for manipulating the parameters of the

mashabilty calculation. These specify the range of allow-

able key-shifts, and the preferred tempo range. Beneath

the list box are buttons for creating the automatic mashup

and then subsequent manipulation of the result. This func-

tionality is described in the following subsection.

5 http://www.youtube.com/user/automashupper

4.2 User interaction

The typical scenario we envisage for AutoMashUpper is

as follows. The user loads a song of their choice into the

system, after which a waveform of the input song appears

in the top left panel along with vertical bars to indicate the

estimated phrase section boundaries. The user can listen to

the input song and click on different sections for the play-

back to jump directly to these parts of the song. In addi-

tion the user can explore finer segmentations where phrase

sections can be sub-divided into 16, 8 or 4-beat units using

the segmentation level drop-down menu. Having selected a

segmentation level, the user can then choose a set of songs

from the song library on the right hand side of the inter-

face. For this, three options are available: i) to manually

select a sub-set of their choice; ii) to select all of the songs

in the library; or iii) to pick ten random songs.

When manually choosing a subset, we have found that

only picking songs from the same artist, or the same album,

i.e., artist-level-mashups or album-level-mashups, can lead

to very pleasing results due to high timbral compatibility.

The songs chosen by the user then appear in the listbox

of selected songs in the middle of the interface. Using the

sliders above this listbox, the user can specify how wide a

range of key shifts and tempi to allow in the mashability es-

timation. Specifying a small range of key shifts and tempi

can lead to somewhat conservative results, whereas allow-

ing a wide range of possibilities in the mashup space can

facilitate better matches, but perhaps at the cost of creat-

ing more unusual results, for example where a transformed

song could be pitch-shifted up or down by five semitones

or radically changed in speed.

Once AutoMashUpper has been parameterised, the user

can then hit the auto mashup! button to generate a

mashup. Or, the user may simply hit this button right af-

ter loading the input song. As each section is identified

and added to the mashup it appears in the lower left hand

panel, where each song is displayed in a different colour.

When the processing has finished the user can listen to the

result – once again with the ability to navigate between

phrase sections by clicking in the appropriate region of the

waveform representation or the mashup visualizer panel.

During playback, a red vertical line indicates the currently

playing phrase section of the input song.

Clicking a particular bar in the mashup visualizer will

highlight the name of the chosen song in the selected songs

listbox. It will also re-order the remaining songs in de-

scending order of mashability. At this point the user can

make a subjective judgement over whether they like the

mashup as it is or which to change it. The user has three

options: first, they can delete the currently used section

from the mashup, second, they can choose a different song

from the selected songs listbox to replace it or third, they

can choose to add another song from the list to the mashup.

If the user is pleased with the resulting mashup they can

use save button, which will create time-stamped .wav files

for the input song, the generated mashup by itself and the

mixture of the input and mashup. In addition it records a

screenshot of the interface to show the list of songs used
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and mashability parameters.

5. DISCUSSION

In this paper we have presented AutoMashUpper, a system

for the creation of multi-song mashups. Our main contri-

bution in this work is a method for mashability estimation

which enables the automatic creation of music mashups.

Our work forms part of the emerging field of creative-

MIR, where music analysis and transformation techniques

are used within real applications towards the transfer of

knowledge outside the MIR research community. We have

designed AutoMashUpper with the aim of assisting users

(who might lack music composition skills) to become mu-

sic creators through simple interactions with a user inter-

face. Our hope is that AutoMashUpper will encourage

users to explore a wide space of mashup possibilities by

manipulation of the mashability parameters, perhaps even

creating a new genre of “auto” mashups.

We believe a particular advantage of the automatic ap-

proach to searching for mashability within a large collec-

tions of songs is that such a system can uncover musical

relationships which might otherwise never be found. This

is especially relevant if we consider the size of the search

space when allowing for matches at the phrase-level of

songs. Our current system uses a catalogue of around 300

songs from which we have been able to create many in-

teresting mashups, with minimal effort. Furthermore, even

when the phrase-level segmentation has errors, this has the

potential to create unusual and unexpected results.

We have been particularly surprised by the quality of re-

sults achieved when using the “pick ten random songs” op-

tion in AutoMashUpper. This indicates that many hidden

relationships exist between different sections of songs, and

discovering them in the context of a music mashup appears

a particularly good way to enjoy them. In this sense, the

possibilities when applying this system to a very large mu-

sic collection could be almost endless. However, the tran-

sition from a medium-sized collection to a very large one

presents many challenges due to scalability and increased

computational cost, and would require a much faster search

technique, (e.g., [1]). We intend to explore this area within

our future work as well as investigating source separation

methods (e.g., [9]) to offer users even greater mashup cre-

ation possibilities.

Since mashups, by definition, contain multiple songs

playing at once, they represent an interesting category of

music from an auditory scene analysis perspective, where

it is listeners’ familiarity with songs in the mashup which

allow them to understand a musical scene which might oth-

erwise be too complex to process and hence appreciate [5].

To further explore these ideas and to address the lack of

a formal evaluation of AutoMashUpper, we plan to under-

take subjective listening tests to explore listeners’ levels of

musical engagement and understanding of mashups.

Looking beyond the current version of AutoMashUp-

per, we recognise that mashability is not fully explained by

harmonic similarity alone, and we can envisage many ad-

ditional uses of MIR techniques for creating more sophis-

ticated measures of mashability, e.g. by exploring rhyth-

mic and spectral compatibility. On this basis we strongly

encourage other researchers to explore mashup creation

methods to expand the field of creative MIR.
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