Beyond NMF:

Time-Domain
Audio Source Separation
without Phase Reconstruction

(PNSDTFJ
Kazuyoshi Yoshii  (AIST, Japan)

Ryota Tomioka (Univ. of Tokyo , Japan)
Daichi Mochihashi (ISM, Japan)
Masataka Goto (AIST, Japan)

2013/11/06 ISMIR 2013



Summary

If you do not care about
computational time,
you could forget NMF and
use our method PSDTF
for audio source separation

We provide MATLAB source codes!



Overview

« Our goal: high-quality source separation of monaural audio signals

Time-domain separation

is equivalent to
frequency-domain separation
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Overview

 Our goal: high-quality source separation of monaural audio signals
— Nonnegative matrix factorization (NMF) is very popular
« Frequency-domain decomposition for power spectrogram
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Overview

 Our goal: high-quality source separation of monaural audio signals

— Nonnegative matrix factorization (NMF) is very popular

Mixture

Source 1

Source 2

Source 3

« Frequency-domain decomposition for power spectrogram
* Ignore phase — Cannot separate time-domain signals well
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Overview

« Our goal: high-quality source separation of monaural audio signals

Our PSDTF can solve this problem
by time-domain separation!
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Overview

Our goal: high-quality source separation of monaural audio signals

Time-domain PSDTF has an equivalent form of
frequency-domain PSDTF considering the phase
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Nonnegative Matrix Factorization (NMF)

- A nonnegative matrix (power spectrogram x ) is approximated
by the product of two nonnegative matrices WH

— Given the observation matrix X, NMF estimates W and H
so that their product Y can be similar to x
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Itakura-Saito (IS) divergence
is often used as a cost function
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Nonnegative Matrix Factorization (NMF)

- Nonnegative vectors are approximated

by convex combinations of fewer nonnegative vectors
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Nonnegative
vectors

-« Observations

A series of n:onnegative observed vectors along the time

Each vector :correspondé to the bowér spectrogram of
a locally observed mixture signal at each frame



Nonnegative Matrix Factorization (NMF)

- Nonnegative vectors are approximated

by convex combinations of fewer nonnegative vectors
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Nonnegative
vectors

-- Observations

A set of nonhegative' basis vectors
that usuaIIy correspond to different pitches

Each observed vector is apprommated

by a weighted sum of these basis vectors



Nonnegative Matrix Factorization (NMF)

« Nonnegative vectors are approximated

by convex combinations of fewer nonnegative vectors

Nonnegative
vectors L

Bases

L wl
» [YTYW W

w2

YT TN T

AAAAA.A .

100

L1700 L1100{ 1300

1 ]

=

-

by

—

Activations

Nonnegative
vectors

-- Observations
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called activations



Nonnegative Matrix Factorization (NMF)

The goal of NMF is to estimate basis and activation vectors
so that the total reconstruction error can be minimized
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Positive SemiDefinite Tensor Factorization (PSDTF)

Local signal
 Positive semidefinite (PSD) matrices are approximated . ot
by convex comblnatlons of fewer PSD matrlces/> E

Outer prod
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""" .- Observations

X,, Covariance

The observed PSD matrices are a set of local covariance matrices
calculated from a locally observed mixture signal at each frame

By calculating the outer pro'duct of the local signal,
we can make the PSD matrix X,



Positive SemiDefinite Tensor Factorization (PSDTF)

Local signal
Positive semidefinite (PSD) matrices are approximated = SOy
by convex comblnatlons of fewer PSD matrlces/> é

Outer prod

gxmu X700 Xnms XISDG PSD matrices
PSD matrices h =
- R L L S . Observations

Bases

X,, Covariance

A set of basi§ matricés (PSD matrices)

Each basis matrix rebresénts statistical
characterlstlcs of the source signal

Each observed PSD matrix is approximated
by a weighted sum of these basis matrices




Positive SemiDefinite Tensor Factorization (PSDTF)

Local signal
 Positive semidefinite (PSD) matrices are approximated _ ot

by convex combmatlons of fewer PSD matrloes/>

.- Observations

Actiilations

X, Covariance

| Such weights are

called activations
(same with NMF)



Positive SemiDefinite Tensor Factorization (PSDTF)

Aaral fiamnal

The goal of PSDTF is to estimate basis matrices and activation
vectors so that the total reconstructlon error can be m|n|m|zed
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Nonnegative Matrix Factorization (NMF)

« Nonnegative vectors are approximated
by convex combinations of fewer nonnegative vectors

' time. Nonnegative
Nonnegative 2100 T700| [T1100| [£1300 vectors
vectors .
cee cese oo .o oo Observatlons
]
Bases . ‘ ;
% Iy, Power spectrum

: W1 K - A
Lm..t : . KI\A = IS divergence
S L) N N N N i
| N is minimized

YT TN T

v K
w3 § h3 | Yn = hnw
g ‘ L‘ | : 1 n ; knWEk

AAAAA.A .

Acti{/ations



Positive SemiDefinite Tensor Factorization (PSDTF)

Local signal
- Positive semidefinite (PSD) matrices are approximated _ /s
by convex combmatlons of fewer PSD math E e
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Source Separation based on NMF

« Wiener filtering based on NMF results Stmn = ykmny;q}zsmn

— Element-wise decomposition of nonnegative power spectrogram
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S1mn = YlmnYmnSmn S2mn = Y2mnYmnSmn S3mn = Y3mnUpmnSmn

As shown in this equation, Wiener filtering can be regarded
as a simple power partition function

The power of each element Smn is distributed into

different sources S1mn,S2mn ,S3mn



Source Separation based on NMF

« Wiener filtering based on NMF results Sitmn = ykmny;,}zsmn

— Element-wise decomposition of nonnegative power spectrogram
— Ignore phases and treat frequency bins independently
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Source Separation based on NMF

Wiener filtering based on NMF results Sikmn = ykmny;,}zsmn

— Element-wise decomposition of nonnegative power spectrogram
— Ignore phases and treat frequency bins independs-
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Source Separation based on PSDTF

Complex spectrogram

« Wiener filtering based on PSDTF results Sk, = YknYn_lsn
— Vector-wise decomposition of complex spectrogram
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Source Separation based on PSDTF

« Wiener filtering based on PSDTF results Sk, = YknYn_lsn

The complex spectrogram of the observed mixture signal is
decomposed in a vector-wise/frame-wise manner unlike NMF
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Source Separation based on PSDTF

« Wiener filtering based on PSDTF results Sk, = YknYn_lsn
— Vector-wise decomposition of complex spectrogram

— Consider phases and correlations between frequency bins
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Source Separation based on PSDTF

« Wiener filtering based on PSDTF results Sk, = YknYn_lsn

PSDTF considers the correlations between frequency bins!
Harmonic structure has strong correlations between harmonics
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Source Separation based on PSDTF

Wiener filtering based on PSDTF results Sgn = YknYn_lsn
— Vector-wise decomposition of complex spectrogram

— Consider phases and correlations between frequency bins
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Source Separation based on NMF

« Wiener filtering based on NMF results Sitmn = ykmny;,}zsmn

— Element-wise decomposition of nonnegative power spectrogram
— Ignore phases and treat frequency bins independently
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Source Separation based on PSDTF

« Wiener filtering based on PSDTF results Sk, = YknYn_lsn
— Vector-wise decomposition of complex spectrogram

— Consider phases and correlations between frequency bins
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PSD Matrices

| intentionally skipped
a very important explanation



Positive SemiDefinite Tensor Factorization (PSDTF)

.. . .. . . Local signal
 Positive semidefinite (PSD) matrices are approximated 5 ot
by convex combinations of fewer PSD matrices/->.§;
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Gaussian Process (GP)

« A stochastic process over continuous time

— GP can be interpreted as a probability distribution (/)

over continuous functions f: t =X

PSDTF matrix is
the kernel matrix (covariance matrix)
of Gaussian Process (GP)

x ~ N(0, K)

Kernel matrix

(PSD covariance matrix)



Gaussian Process (GP)

« A stochastic process over continuous time

— GP can be interpreted as a probability distribution (/)
over continuous functions f: { >

‘\‘ 4/ A

fz(t

Three functions are stochastically sampled from the same GP



Gaussian Process (GP)

« A stochastic process over continuous time

— GP can be interpreted as a probability distribution (/)
over continuous functions f: { >

T = f1(t) ‘

X

The “likelihood” of any signal (function) can be evaluated by GP

p(f1) p(f2) p(/3)




How to Understand GP?

 Gaussian process is characterized by its marginal distribution
— A marginal distribution over any M points can be Gaussian

_‘ | | Analogue ane: Gauésian rocess
T = f(t) 9 P

333 ........................................................... ; Digital wave: Gaussian diStribution

............

Kernel matrix
(PSD covariance matrix)

The function dynamics are determined
by the kernel matrix




How to Understand GP?

 Gaussian process is characterized by its marginal distribution
— A marginal distribution over any M points can be Gaussian

Analogue wave: Gaussian process -

Digital wave: Gaussian distribution
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This means that the hncertainty over & is modeled by
a mean vector and a covariance matrix (kernel matrix)

t=[tite, ot 2~ N(0, K
"Gz lorm ol %

The function dynamics are determined
by the kernel matrix

Kernel matrix

(PSD covariance matrix)



Example: Identity Kernel

- Stationary Gaussian white noise can be generated
—~ Marginal: x ~ N(0, K) f( t=[t1,t2,-- ,tm]"
€Xr — [x17a727 o oo ,ZCM]T
{1 Ty

i1

K=

X

Lm

tm

In this kernel, i) 3
there is no correlation , ,
between samples

— Its GP can generate . . .
white noise We consider equally-spanned sampling points




Example: Squared Exponential Kernel (RBF)

- Smooth functions can be generated ( t=|t1,to, - ,tM]T
L = [33'1,.@2, xM-T

- Marginal: z ~ N (0, K)
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Strong correlatlon |n the V|cm|ty t
— Slowly changing function




Example: Periodic Kernel (Stripe Pattern)

 Periodic functions can be generated t = [t1, to, - ,tM]T
— Marginal: x ~ N (0, K) <
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Positive SemiDefinite Tensor Factorization (PSDTF)

Local signal
- Positive semidefinite (PSD) matrices are approximated _ /s
by convex combmatlons of fewer PSD math E e

-« Observations

X, Covariance
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Local sig
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Log-Det divergence
DLD (X'n, ‘ Yn)

is minimized
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NMF vs. PSDTF

« Nonnegative Matrix Factorization (NMF)
— Nonnegative vectors — sums of nonnegative vectors

— Bregman divergence Ty R Yy = Z R Wi
« Itakura-Saito (IS) divergence k=1
Dis (wn|yn) : Zm (_ log xmny;z% + xmny;z}z - 1)
 Kullback-Leibler (KL) divergence
Dxr(Tn|Yn) = D0, (mmn 108 TrrnYrmp, — Tmn + ymn)
 Positive Semidefinite Tensor Factorization (PSDTF)

. . K
— PSD matrices = sums of PSD matrices X, ~Y, = Z he Vi

— Bregman “matrix” divergence k=1

« Log-Determinant (LD) divergence

Din(Xn|Yn) = —log | X, Y, | +tr (X,Y,; ') — M

« von Neumann (vN) divergence

Do (X0 |Yn) =tr (X, log X, — X, logY, — X, + Y,)



Frequency-domain PSDTF

« PSDTF is a natural extension of NMF

PSDTF

Factorize

""")*"'? F : Discrete Fourier transform (DFT) matrix
| @ Local signal of frame 7
. | Fa,: Complex spectrum of frame 1

| | NMEF focuses only on diagonal elements
(noticeable correlation structures are ignored)
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Factorize

Tensor data: a set of covariance matrices ~ Matrix data: a set of power spectra
(a set of positive semidefinite matrices) (a set of nonnegative vectors)



Comparative Evaluation

Source separation performance on synthetic sounds
— 3 bases (K=3)
— 3 instruments (from RWC Music Database)
« Piano / Electric guitar (decaying) / Clarinet (sustaining)
— BSS Eval Toolbox [vincent2006] was used
C+E  C+G E+G  C+E+G
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Experimental Results

« LD-PSDTF outperformed KL-NMF and IS-NMF

B30 — Signal-to-Distortion
Ratio (SDR)

Signal-to-Interferences
Ratio (SIR)

Signal-to-Artifacts
Ratio (SAR)

m KL-NMF
m IS-NMF
LD-PSDTF (proposed)

SAR



Conclusion and Future Work

 Positive Semidefinite Tensor Factorization (PSDTF)
— A natural extension of Nonnegative Matrix Factorization (NMF)
— Nonparametric Bayesian extension [Yoshii et al. ICML 2013]
 Automatically optimize the number of bases

CIf you do not care about A
computational time,
you could forget NMF and
use our method PSDTF
\_ for audio source separation Y

We pro vide MATLAB source codes! (2-Clause BSD License)

http://staff.aist.go.jp/k.yoshii/psdtf/
or the last tweet of @MasatakaGoto
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We Cannot ignore Computational Time

« Currentissue: Big computational cost!
— Comparison of computational cost

- #isamples: M=512 (frame size: 32ms)
- #fframes: N=1400 (duration: 14s)
- #bases: K=3 (Mixtures of 3 sounds)

« MATLAB / Intel Xeon 3.4GHz

- LD-PSDTF: 600s/iteration O(M°’NK)
—16.7 hours (60000s) / 100iterations

« IS-NMF: 0.1s/iteration O(MNK)
—10s / 100iterations
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