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Summary 

If you do not care about 
   computational time, 
 you could forget NMF and 
      use our method PSDTF 
       for audio source separation 

We provide MATLAB source codes! 
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Equiv. 

Overview 
• Our goal: high-quality source separation of monaural audio signals 
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Time-domain separation 
 is equivalent to 
  frequency-domain separation 
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Equiv. 

Overview 
• Our goal: high-quality source separation of monaural audio signals 

– Nonnegative matrix factorization (NMF) is very popular 
• Frequency-domain decomposition for power spectrogram 
• Ignore phase → Cannot separate time-domain signals well 
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Equiv. 

Overview 
• Our goal: high-quality source separation of monaural audio signals 
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Time domain Frequency domain Power Phase 
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Our PSDTF can solve this problem 
  by time-domain separation! 
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Equiv. 

Overview 
• Our goal: high-quality source separation of monaural audio signals 
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Time domain Frequency domain Power Phase 
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Time-domain PSDTF has an equivalent form of 
     frequency-domain PSDTF considering the phase 
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Nonnegative Matrix Factorization (NMF) 
• A nonnegative matrix (power spectrogram       ) is approximated  

  by the product of two nonnegative matrices 
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Itakura-Saito (IS) divergence 
   is often used as a cost function 

– Given the observation matrix      , NMF estimates        and  
                so that their product       can be similar to 
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Nonnegative Matrix Factorization (NMF) 
• Nonnegative vectors are approximated  

by convex combinations of fewer nonnegative vectors 

Nonnegative  
vectors 

Observations … … … … … 

time 

A series of nonnegative observed vectors along the time 

Each vector corresponds to the power spectrogram of 
       a locally observed mixture signal at each frame 
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Nonnegative Matrix Factorization (NMF) 
• Nonnegative vectors are approximated  

by convex combinations of fewer nonnegative vectors 

Nonnegative  
vectors 
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Nonnegative  
vectors 

Observations … … … … … 

time 

A set of nonnegative basis vectors 
      that usually correspond to different pitches 

Each observed vector is approximated 
            by a weighted sum of these basis vectors 
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Nonnegative Matrix Factorization (NMF) 
• Nonnegative vectors are approximated  

by convex combinations of fewer nonnegative vectors 
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  called activations 
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Nonnegative Matrix Factorization (NMF) 
• Nonnegative vectors are approximated  

by convex combinations of fewer nonnegative vectors 

Nonnegative  
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Power spectrum 

is minimized 

IS divergence 

time 

Activations 

The goal of NMF is to estimate basis and activation vectors 
             so that the total reconstruction error can be minimized 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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The observed PSD matrices are a set of local covariance matrices 
   calculated from a locally observed mixture signal at each frame 

By calculating the outer product of the local signal, 
    we can make the PSD matrix 



Beyond NMF: Time-Domain Audio Source Separation without Phase Reconstruction (Yoshii, Tomioka, Mochihashi, Goto) 

Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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A set of basis matrices (PSD matrices) 

Each observed PSD matrix is approximated 
            by a weighted sum of these basis matrices 

Each basis matrix represents statistical 
            characteristics of the source signal 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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Such weights are 
  called activations 
     (same with NMF) 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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The goal of PSDTF is to estimate basis matrices and activation 
vectors so that the total reconstruction error can be minimized 
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Nonnegative Matrix Factorization (NMF) 
• Nonnegative vectors are approximated  

by convex combinations of fewer nonnegative vectors 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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Source Separation based on NMF 
• Wiener filtering based on NMF results 

– Element-wise decomposition of nonnegative power spectrogram 

Mixture 
Power 

Source 1 Source 2 Source 3 

As shown in this equation, Wiener filtering can be regarded 
              as a simple power partition function 

The power of each element             is distributed into 
           different sources               ,              , 
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Phase 

Source Separation based on NMF 
• Wiener filtering based on NMF results 

– Element-wise decomposition of nonnegative power spectrogram 
– Ignore phases and treat frequency bins independently 
Mixture 

Power 
Source 1 Source 2 Source 3 

Just copy & paste 
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Phase 

Source Separation based on NMF 
• Wiener filtering based on NMF results 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 

– Vector-wise decomposition of complex spectrogram 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 

– Vector-wise decomposition of complex spectrogram 

Mixture 
Power 
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Phase 

The complex spectrogram of the observed mixture signal is 
      decomposed in a vector-wise/frame-wise manner unlike NMF 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 

– Vector-wise decomposition of complex spectrogram 
– Consider phases and correlations between frequency bins 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 

– Vector-wise decomposition of complex spectrogram 
– Consider phases and correlations between frequency bins 
Mixture 

Power 
Source 1 Source 2 Source 3 

Estimate phases! 

Phase 

PSDTF considers the correlations between frequency bins! 
Harmonic structure has strong correlations between harmonics 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 
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Phase 
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Source Separation based on PSDTF 
• Wiener filtering based on PSDTF results 

– Vector-wise decomposition of complex spectrogram 
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PSD Matrices 

I intentionally skipped 
 a very important explanation 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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PSD matrices? 
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Gaussian Process (GP) 
• A stochastic process over continuous time 

– GP can be interpreted as a probability distribution 
    over continuous functions     :     →       

Bases 

PSD matrices 

Kernel matrix 
(PSD covariance matrix) 

PSDTF matrix is 
     the kernel matrix (covariance matrix) 
             of Gaussian Process (GP) 
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Gaussian Process (GP) 
• A stochastic process over continuous time 

– GP can be interpreted as a probability distribution 
    over continuous functions     :     →       

Three functions are stochastically sampled from the same GP 
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Gaussian Process (GP) 
• A stochastic process over continuous time 

– GP can be interpreted as a probability distribution 
    over continuous functions     :     →       

The “likelihood” of any signal (function) can be evaluated by GP 
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How to Understand GP? 
• Gaussian process is characterized by its marginal distribution 

– A marginal distribution over any        points can be Gaussian 

Kernel matrix 
(PSD covariance matrix) 

Analogue wave: Gaussian process 

Digital wave: Gaussian distribution 

The function dynamics are determined 
          by the kernel matrix 
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How to Understand GP? 
• Gaussian process is characterized by its marginal distribution 

– A marginal distribution over any        points can be Gaussian 

Kernel matrix 
(PSD covariance matrix) 

Analogue wave: Gaussian process 

Digital wave: Gaussian distribution 

The function dynamics are determined 
          by the kernel matrix 

This means that the uncertainty over   is modeled by 
      a mean vector and a covariance matrix (kernel matrix) 
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Example: Identity Kernel 
• Stationary Gaussian white noise can be generated 

– Marginal: 

We consider equally-spanned sampling points 

In this kernel, 
 there is no correlation 
            between samples 
→ Its GP can generate 
         white noise 
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Example: Squared Exponential Kernel (RBF) 
• Smooth functions can be generated 

– Marginal: 

Strong correlation in the vicinity 
→ Slowly changing function 
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Example: Periodic Kernel (Stripe Pattern) 
• Periodic functions can be generated 

– Marginal: 

Strong corr. at a certain interval 
→ Periodic function 
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Positive SemiDefinite Tensor Factorization (PSDTF) 
• Positive semidefinite (PSD) matrices are approximated  

by convex combinations of fewer PSD matrices 
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NMF vs. PSDTF 
• Nonnegative Matrix Factorization (NMF) 

– Nonnegative vectors → sums of nonnegative vectors 
– Bregman divergence 

• Itakura-Saito (IS) divergence 

• Kullback-Leibler (KL) divergence 

• Positive Semidefinite Tensor Factorization (PSDTF) 
– PSD matrices → sums of PSD matrices 
– Bregman “matrix” divergence 

• Log-Determinant (LD) divergence 

• von Neumann (vN) divergence 
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Frequency-domain PSDTF 
• PSDTF is a natural extension of NMF 

PSDTF 

NMF 
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Comparative Evaluation 
• Source separation performance on synthetic sounds 

– 3 bases (K=3) 
– 3 instruments (from RWC Music Database) 

• Piano / Electric guitar (decaying) / Clarinet (sustaining) 
– BSS Eval Toolbox [Vincent2006]  was used 

 C4 E4 G4 C+E C+G C+E+G E+G 
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Experimental Results 
• LD-PSDTF outperformed KL-NMF and IS-NMF 
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LD-PSDTF (proposed)

15 

20 

25 

30 

10 

[dB] 

SDR 
SIR 

SAR 

Signal-to-Distortion  
Ratio (SDR) 

Signal-to-Interferences  
Ratio (SIR) 

Signal-to-Artifacts  
Ratio (SAR) 



Beyond NMF: Time-Domain Audio Source Separation without Phase Reconstruction (Yoshii, Tomioka, Mochihashi, Goto) 

Conclusion and Future Work 
• Positive Semidefinite Tensor Factorization (PSDTF) 

– A natural extension of Nonnegative Matrix Factorization (NMF) 
– Nonparametric Bayesian extension [Yoshii et al. ICML 2013] 

• Automatically optimize the number of bases 
 

http://staff.aist.go.jp/k.yoshii/psdtf/ 
        or the last tweet of @MasatakaGoto 

We provide MATLAB source codes! (2-Clause BSD License) 

If you do not care about 
   computational time, 
 you could forget NMF and 
      use our method PSDTF 
          for audio source separation 
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We Cannot Ignore Computational Time 
• Current issue: Big computational cost! 

–  Comparison of computational cost 
• #samples: M=512 (frame size: 32ms) 
• #frames: N=1400 (duration: 14s) 
• #bases: K=3  (Mixtures of 3 sounds) 
• MATLAB / Intel Xeon 3.4GHz 

 
• LD-PSDTF: 600s/iteration 

– 16.7 hours (60000s) / 100iterations 
 

• IS-NMF: 0.1s/iteration 
– 10s / 100iterations 
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