Beyond NMF: Time-Domain Audio Source Separation without Phase Reconstruction

Kazuyoshi Yoshii (AIST, Japan)
Ryota Tomioka (Univ. of Tokyo , Japan)
Daichi Mochihashi (ISM , Japan)
Masataka Goto (AIST , Japan)

2013/11/06 ISMIR 2013

Summary

If you do not care about computational time, you could forget NMF and use our method PSDTF for audio source separation

We provide MATLAB source codes!

• Our goal: high-quality source separation of monaural audio signals

Time-domain separation is equivalent to

frequency-domain separation

- Our goal: high-quality source separation of monaural audio signals
 - Nonnegative matrix factorization (NMF) is very popular
 - Frequency-domain decomposition for power spectrogram

- Our goal: high-quality source separation of monaural audio signals
 - Nonnegative matrix factorization (NMF) is very popular
 - Frequency-domain decomposition for power spectrogram
 - Ignore phase → Cannot separate time-domain signals well

• Our goal: high-quality source separation of monaural audio signals

Our PSDTF can solve this problem by time-domain separation!

• Our goal: high-quality source separation of monaural audio signals

Time-domain PSDTF has an equivalent form of frequency-domain PSDTF considering the phase

- A nonnegative matrix (power spectrogram X) is approximated by the product of two nonnegative matrices WH
 - Given the observation matrix X, NMF estimates W and H so that their product Y can be similar to X

 <u>Nonnegative vectors</u> are approximated by convex combinations of fewer <u>nonnegative vectors</u>

A series of nonnegative observed vectors along the time

Each vector corresponds to the power spectrogram of a locally observed mixture signal at each frame

 <u>Nonnegative vectors</u> are approximated by convex combinations of fewer <u>nonnegative vectors</u>

 <u>Nonnegative vectors</u> are approximated by convex combinations of fewer <u>nonnegative vectors</u>

The goal of NMF is to estimate basis and activation vectors so that the total reconstruction error can be minimized

The observed PSD matrices are a set of local covariance matrices calculated from a locally observed mixture signal at each frame

By calculating the outer product of the local signal, we can make the PSD matrix X_n

The goal of PSDTF is to estimate basis matrices and activation vectors so that the total reconstruction error can be minimized

 <u>Nonnegative vectors</u> are approximated by convex combinations of fewer <u>nonnegative vectors</u>

- Wiener filtering based on NMF results $s_{kmn} = y_{kmn} y_{mn}^{-1} s_{mn}$
 - <u>Element-wise</u> decomposition of <u>nonnegative</u> power spectrogram

As shown in this equation, Wiener filtering can be regarded as a simple power partition function

The power of each element s_{mn} is distributed into different sources s_{1mn} , s_{2mn} , s_{3mn}

- Wiener filtering based on NMF results $s_{kmn} = y_{kmn} y_{mn}^{-1} s_{mn}$
 - <u>Element-wise</u> decomposition of <u>nonnegative</u> power spectrogram
 - Ignore phases and treat frequency bins independently

- Wiener filtering based on NMF results $s_{kmn} = y_{kmn} y_{mn}^{-1} s_{mn}$
 - <u>Element-wise</u> decomposition of <u>nonnegative</u> power spectrogram
 - Ignore phases and treat frequency bins independent

- Wiener filtering based on PSDTF results $s_{kn} = Y_{kn}Y_n^{-1}s_n$
 - <u>Vector-wise</u> decomposition of <u>complex</u> spectrogram

- Wiener filtering based on PSDTF results $m{s}_{kn} = m{Y}_{kn} m{Y}_n^{-1} m{s}_n$
- The complex spectrogram of the observed mixture signal is decomposed in a vector-wise/frame-wise manner unlike NMF

- Wiener filtering based on PSDTF results $m{s}_{kn} = m{Y}_{kn} m{Y}_n^{-1} m{s}_n$
 - <u>Vector-wise</u> decomposition of <u>complex</u> spectrogram
 - Consider phases and correlations between frequency bins

• Wiener filtering based on PSDTF results $s_{kn} = Y_{kn}Y_n^{-1}s_n$ PSDTF considers the correlations between frequency bins! Harmonic structure has strong correlations between harmonics

- Wiener filtering based on PSDTF results $m{s}_{kn} = m{Y}_{kn}m{Y}_n^{-1}m{s}_n$
 - <u>Vector-wise</u> decomposition of <u>complex</u> spectrogram
 - Consider phases and correlations between frequency bins

- Wiener filtering based on NMF results $s_{kmn} = y_{kmn} y_{mn}^{-1} s_{mn}$
 - <u>Element-wise</u> decomposition of <u>nonnegative</u> power spectrogram
 - Ignore phases and treat frequency bins independently

- Wiener filtering based on PSDTF results $m{s}_{kn} = m{Y}_{kn} m{Y}_n^{-1} m{s}_n$
 - <u>Vector-wise</u> decomposition of <u>complex</u> spectrogram
 - Consider phases and correlations between frequency bins

PSD Matrices

I intentionally skipped a very important explanation

Gaussian Process (GP)

- A stochastic process over <u>continuous time</u>
 - GP can be interpreted as a probability distribution p(f)over continuous functions $f: t \rightarrow x$

Gaussian Process (GP)

- A stochastic process over <u>continuous time</u>
 - GP can be interpreted as a probability distribution p(f)over continuous functions $f: t \rightarrow x$

Three functions are stochastically sampled from the same GP

Gaussian Process (GP)

- A stochastic process over <u>continuous time</u>
 - GP can be interpreted as a probability distribution p(f)over continuous functions $f: t \to x$

How to Understand GP?

Gaussian process is characterized by its marginal distribution

- A marginal distribution over any M points can be Gaussian

How to Understand GP?

Gaussian process is characterized by its marginal distribution

– A marginal distribution over any M points can be Gaussian

Example: Identity Kernel

- Stationary Gaussian white noise can be generated
 - Marginal: $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K})$ $\boldsymbol{f} \subset \boldsymbol{x} = [t_1, t_2, \cdots, t_M]^T$ $\boldsymbol{x} = [x_1, x_2, \cdots, x_M]^T$

Example: Squared Exponential Kernel (RBF)

• Smooth functions can be generated - Marginal: $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K})$ $f \searrow \boldsymbol{x} = [x_1, x_2, \cdots, x_M]^T$

Example: Periodic Kernel (Stripe Pattern)

• Periodic functions can be generated - Marginal: $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{K})$ $f \longrightarrow \boldsymbol{x} = [x_1, x_2, \cdots, x_M]^T$

NMF vs. PSDTF

- Nonnegative Matrix Factorization (NMF)
 - Nonnegative vectors \rightarrow sums of nonnegative vectors
 - Bregman divergence
 - Itakura-Saito (IS) divergence $\mathcal{D}_{IS}(\boldsymbol{x}_n | \boldsymbol{y}_n) = \sum_m \left(-\log x_{mn} y_{mn}^{-1} + x_{mn} y_{mn}^{-1} - 1 \right)$
 - Kullback-Leibler (KL) divergence $\mathcal{D}_{\text{KL}}(\boldsymbol{x}_n|\boldsymbol{y}_n) = \sum_m \left(x_{mn}\log x_{mn}y_{mn}^{-1} x_{mn} + y_{mn}\right)$
- Positive Semidefinite Tensor Factorization (PSDTF)
 - PSD matrices \rightarrow sums of PSD matrices
- $oldsymbol{X}_n pprox oldsymbol{Y}_n = \sum_{k=1}^K h_{kn} oldsymbol{V}_k$

 $oldsymbol{x}_n pprox oldsymbol{y}_n = \sum h_{kn} oldsymbol{w}_k$

k=1

- Bregman "matrix" divergence
 - Log-Determinant (LD) divergence $\mathcal{D}_{\text{LD}}(\boldsymbol{X}_n|\boldsymbol{Y}_n) = -\log \left|\boldsymbol{X}_n\boldsymbol{Y}_n^{-1}\right| + \operatorname{tr}\left(\boldsymbol{X}_n\boldsymbol{Y}_n^{-1}\right) - M$
 - von Neumann (vN) divergence $\mathcal{D}_{vN}(\boldsymbol{X}_n|\boldsymbol{Y}_n) = \operatorname{tr}\left(\boldsymbol{X}_n\log \boldsymbol{X}_n - \boldsymbol{X}_n\log \boldsymbol{Y}_n - \boldsymbol{X}_n + \boldsymbol{Y}_n\right)$

Frequency-domain PSDTF

• PSDTF is a natural extension of NMF

Comparative Evaluation

- Source separation performance on synthetic sounds
 - 3 bases (K=3)
 - 3 instruments (from RWC Music Database)
 - Piano / Electric guitar (decaying) / Clarinet (sustaining)
 - BSS Eval Toolbox [Vincent2006] was used

Experimental Results

• LD-PSDTF outperformed KL-NMF and IS-NMF

Conclusion and Future Work

- Positive Semidefinite Tensor Factorization (PSDTF)
 - A natural extension of Nonnegative Matrix Factorization (NMF)
 - Nonparametric Bayesian extension [Yoshii et al. ICML 2013]
 - Automatically optimize the number of bases

If you do not care about computational time, you could forget NMF and use our method PSDTF for audio source separation

We provide MATLAB source codes! (2-Clause BSD License) http://staff.aist.go.jp/k.yoshii/psdtf/ or the last tweet of @MasatakaGoto **Beyond NMF:** Time-Domain Audio Source Separation without Phase Reconstruction

Kazuyoshi Yoshii (AIST, Japan)
Ryota Tomioka (Univ. of Tokyo , Japan)
Daichi Mochihashi (ISM , Japan)
Masataka Goto (AIST , Japan)

2013/11/06 ISMIR 2013

We Cannot Ignore Computational Time

- Current issue: Big computational cost!
 - Comparison of computational cost
 - #samples: M=512 (frame size: 32ms)
 - #frames: N=1400
 - **#bases:** K=3 (Mixtures of 3 sounds)

(duration: 14s)

- MATLAB / Intel Xeon 3.4GHz
- LD-PSDTF: 600s/iteration $O(M^3NK)$ - 16.7 hours (60000s) / 100iterations
- IS-NMF: 0.1s/iteration - 10s / 100iterations

O(MNK)