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ABSTRACT

This paper presents novel probabilistic models that can be
used to estimate multiple fundamental frequencies (FOs)
from polyphonic audio signals. These models are nonpara-
metric Bayesian extensions of nonnegative matrix factor-
ization (NMF) based on the source-filter paradigm, and in
them an amplitude or power spectrogram is decomposed
as the product of two kinds of spectral atoms (sources and
filters) and time-varying gains of source-filter pairs. In this
study we model musical instruments as autoregressive sys-
tems that combine two types of sources—periodic signals
(comb-shaped densities) and white noise (flat density)—
with all-pole filters representing resonance characteristics.
One of the main problems with such composite autore-
gressive models (CARMsS) is that the numbers of sources
and filters should be given in advance. To solve this prob-
lem, we propose nonparametric Bayesian models based on
gamma processes and efficient variational and multiplica-
tive learning algorithms. These infinite CARMs (iCARMs)
can discover appropriate numbers of sources and filters in
a data-driven manner. We report the experimental results
of multipitch analysis on the MAPS piano database.

1. INTRODUCTION

Multiple fundamental frequency estimation (a.k.a. multip-
itch analysis) is the basis of various kinds of music content
analysis. Recently, nonnegative matrix factorization (NMF)
has gained a lot of popularity [1-13]. The standard NMF
approximates an amplitude or power spectrogram (nonneg-
ative matrix) as the product of two nonnegative matrices,
one of which is a compact set of spectral bases and the
other of which is a set of the corresponding time-varying
gains [15, 16]. Such low-rank approximation is well justi-
fied by the fact that each musical piece consists of only lim-
ited kinds of sounds that repeatedly appear. In addition, a
practical advantage of NMF is that the bases and gains can
be alternately optimized by using efficient iterative algo-
rithms called multiplicative update (MU) rules. The stan-
dard NMF, however, has three fundamental limitations:

1. The spectral bases are time-invariant, and only their
gains vary over time. A large number of independent
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Figure 1. Overview of composite autoregressive models:
The combinatorial products of I sources and .J filters yield
1J spectral bases, which are activated according to the cor-
responding time-varying gains at each frame. We take the
infinite limit as both I and J diverge to infinity.

bases are needed to fully represent the timbral vari-
ations of instrument spectra (e.g., envelopes) even if
these spectra share the same fundamental frequency
(F0). Such an unconstrained increase of model com-
plexity is likely to result in optimization algorithms
easily getting stuck in bad local optima.

. A post-processing step for estimating the FOs from
individual bases is required because the FOs are not
parameterized for representing the spectral bases. If
the shapes of spectral bases are unconstrained, the
resulting bases often deviate from natural harmonic
spectra. This makes FO estimation difficult and we
need to judge the existence of an FO.

3. The number of bases (model complexity) should be
carefully specified in advance because it has a strong
impact on the decomposition results. Note that this
limitation is closely related to the first. A naive solu-
tion is to exhaustively test all possible complexities
and find an optimal value, but such model selection
is often computationally impractical.

As noted above, unconstrained NMF is too flexible for a
set of musically-meaningful bases to be induced automati-
cally. Although these limitations have partially been dealt
with in previous studies [1-13], no study has overcome all
of them simultaneously in a principled manner.

In this paper we propose infinite composite autoregres-
sive models ICARMs) (Fig. 1) developed for fusing the
following techniques into a unified Bayesian framework:

1. Source-filter factorization (inspired by [1])
We further factorize the spectral bases as the combi-
natorial products of sources and all-pole filters. This
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idea originates in the autoregressive (AR) modeling
of speech signals: various vowels can be generated
by changing the shape of the vocal tract (filter) while
keeping the same FO (source). This factorization en-
ables us to represent a wide variety of instrumental
sounds in terms of two separate aspects (timbre and
FO) with reasonable complexity.

2. Harmonicity modeling (inspired by [7] and [9])

We represent each source as a comb-shaped function
that uses an FO parameter for representing equally-
spanned harmonic partials of the same weight. Since
such sources are multiplied by acoustically-inspired
AR filters, the relative weights of partials of the bases
are constrained to take realistic values as natural har-
monic sounds. In addition, we can directly optimize
the values of the FOs jointly with decomposition.
As proposed in [7, 14], we additionally introduce a
special source representing white noise (flat density).
This enables us to deal with percussive and transient
sounds having widely distributed spectra. Their tim-
bres (envelopes) are characterized by AR filters.

3. Bayesian nonparametrics (inspired by [12])
We build nonparametric Bayesian models that can
automatically adjust the numbers of sources and fil-
ters needed to factorize a given spectrogram. Rather
than these numbers being specified, the infinite limit
of the conventional source-filter NMF [1] is taken as
the numbers of sources and filters diverge to infinity.
We perform sparse learning by introducing infinite-
dimensional priors in such a way that only limited
numbers of sources and filters are actually activated.

To optimize the iCARMs, we propose a new class of itera-
tive algorithms that integrates a variational Bayesian (VB)
technique with standard MU rules [8, 9].

The rest of this paper is organized as follows: Section 2
discusses the positioning of this study. Section 3 presents
the iCARMs. Section 4 describes the evaluation. Section 5
concludes the paper with a mention of future work.

2. RELATED WORK

This section introduces two machine-learning (ML) tech-
niques, i.e., NMF and Bayesian nonparametrics.

2.1 Nonnegative Matrix Factorization

NMF is a powerful tool for sparse decomposition of non-
negative matrix data [15]. It was first used for representing
face images as linear combinations of a compact set of ba-
sis images corresponding to “local parts” such as eyes and
noses. Such parts-based sparse representation is sponta-
neously induced by the nonnegativity constraint that allows
only summation of basis images. Therefore, NMF fits nat-
urally into audio spectrogram decomposition because the
energy of harmonic sounds is concentrated at the discrete
frequencies of harmonic partials.

2.1.1 Optimization Criteria

To perform NMF, we need some criterion for evaluating
the “goodness-of-fit” of reconstructed data (linear combi-
nations of spectral bases) to observed data (a spectrogram).
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Method | Divergence | Sources # | Filters #
Kameoka [1] IS - I AR J
Badeau [2] IS H 1 MA J
Durrieu [3] IS (H) I - J
Virtanen [4] KL - I - J
Carabias-Orti [5] KL H I - J
Heittola [6] KL - I - J
Yasuraoka [7] KL H+N I*| AR J
Hennequin [8] | Beta (0.5) - I | ARMA J*
Proposed | KL or IS H+N oo AR 00

(H: harmonic sources, N: noise source, -: others, *: varying over time)
Table 1. Several variants of source-filter NMF

As shown in Table 1, for example, Kullback-Leibler (KL)
[15] and Itakura-Saito (IS) [16] divergences have been used
intensively. Some studies used beta divergence [17], which
includes KL and IS divergences as special cases.

In the context of audio modeling, although IS-NMF is
justified in theory (see [16] and Section 3.2.1), KL-NMF
often yields better results in a maximum likelihood estima-
tion setting. One main reason is that the nonconvexity of IS
divergence makes it difficult for gradient-descent-type op-
timization algorithms to find global optima. Note that no
comparative tests have been conducted under a Bayesian
estimation setting. In this paper we formulate two kinds of
iCARMs, i.e., KL-iCARM and IS-iCARM.

2.1.2 Source-Filter Factorization

One extension is obtained with the source-filter paradigm,
as listed in Table1. Kameoka and Kashino [1], for example,
originally proposed the idea of the composite autoregres-
sive model (CARM) using fixed numbers of unconstrained
sources and autoregressive (AR) filters (all-pole transfer
functions). Although similar models were devised by some
researchers [3-5], filters were not acoustically constrained.
Badeau et al. [2] used moving-average (MA) filters (all-
zero transfer functions) with harmonic sources.

Some NMF variants allow sources or filters to vary over
time to richly capture temporal variations of spectral bases
at the cost of increasing complexity. Heittola ez al. [6] and
Yasuraoka and Okuno [7] used time-varying sources while
a fixed number of filters was shared over time. Hennequin
et al. [8], on the other hand, used time-varying ARMA fil-
ters that could be estimated by efficient MU rules.

2.1.3 Harmonicity Modeling

Another extension is based on harmonicity constraints on
spectral bases or sources. For example, Vincent et al. [10]
and Bertin ef al. [11] assumed each basis as a weighted
sum of narrowband template spectra consisting of a few
adjacent harmonic partials. In the source-filter paradigm,
Badeau et al. [2] represented each source as a binary vector
whose elements are determined by independent Bernoulli
trials, where particular elements corresponding to harmonic
partials are more likely to take the value of 1. Yasuraoka
and Okuno [7] and Hennequin et al. [9] represented each
source as a parametric function based on a (weighted) sum
of atomic functions (e.g., Gaussian functions) correspond-
ing to harmonic partials. Carabias-Orti et al. [5] proposed
to further factorize a set of partials’ weights as a weighted
sum of several patterns. Efficient MU rules for estimating
the parameters of the function were proposed in [5, 9].
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A key feature of [7] is to consider an additional source
having a flat density. This idea was inspired by the speech
production mechanism. Excitation signals produced by vo-
cal cords are roughly categorized into periodic signals (har-
monic comb-shaped spectra) and white noise (flat spectra).
These signals are then articulated by the vocal tract whose
resonance characteristics can be represented by AR filters.
This assumption is widely accepted as reasonable to some
extent for music signal modeling. In this study we model
this generative process in a Bayesian framework.

2.2 Bayesian Nonparametrics

Another emerging ML technique is Bayesian nonparamet-
rics [18], which is a generalization of the classical Bayesian
technique. In the typical Bayesian framework, we put prior
distributions on unknown random variables of interests and
then, given observed data, estimate a posterior distribution
over those variables. However, this framework cannot be
used for determining model complexities (the numbers of
sources and filters in this study) because these complexi-
ties are simply treated as hyperparameters. We thus have to
use an expensive grid search for combinatorial model se-
lection. Bayesian nonparametrics enables us to treat model
complexities as random variables and estimate their opti-
mal values jointly with posterior computation.

Bayesian modeling is being used in music signal analy-
sis, and Bayesian extensions of NMF [19] have been used
with great success for audio decomposition (source separa-
tion). An especially important breakthrough was recently
made by Hoffman et al. [12]. They proposed a nonpara-
metric Bayesian extension called the gamma-process NMF
(GaP-NMF) that in theory allows an observed spectrogram
to contain an infinite number of bases. A limited effective
number of bases can be obtained by using an efficient vari-
ational inference algorithm. This extension is the basis of
a more elaborate model that can consider infinite kinds of
temporal variations of each basis [13].

3. PROPOSED MODELS

This section presents new nonparametric Bayesian models
called infinite composite autoregressive models iCARMs).
The essential concept of these models is inspired by a com-
posite autoregressive model (CARM) [1] that decomposes
a power spectrogram into fixed numbers of sources and AR
filters by using IS divergence as an optimization criterion.
We formulate another CARM that decomposes an ampli-
tude spectrogram by using KL divergence. To enforce har-
monicity we explicitly represent each source—except for a
single source that has a flat spectral density (white noise)—
as a parametric comb-shaped function as proposed in [7].
Finally, both KL-CARM and IS-CARM are extended to in
theory contain infinite numbers of sources and filters by
using gamma processes as suggested in [12].

3.1 Overall Framework

We first define mathematical symbols as shown in Table 2.
Let X be an M x N complex-valued spectrogram, where
M is the number of frequency bins and N is the number
of frames. Let I be the number of sources and J be the
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M Number of frequency bins

N Number of frames

I Number of sources (diverges to infinity)

J Number of filters (diverges to infinity)
Xmn Amplitude (power) at m-th bin and n-th frame
Yin Reconstructed value at m-th bin and n-th frame

0; Global gain of i-th source

o Global gain of j-th filter
Wim Amplitude (power) of i-th source at m-th bin
Ajm Gain of j-th filter at m-th bin
H;;, | Gain of i-th source & j-th filter pair at n-th frame

Table 2. Definition of mathematical symbols

number of filters, which are assumed to go to infinity. Let
the lower-case letters m, n, ¢, and j indicate the indices.

In this paper we aim to factorize a nonnegative rep-
resentation of X (amplitude or power spectrogram) into
three kinds of “factors” W, A, and H as follows:

I,J—o0
|an| or |an|2 ~ Z 92¢]WzmAJmHUn
i,

where Wiy, A, and H;j, respectively indicate the am-
plitude (power) of the i-th source at the m-th bin, the gain
of the j-th filter at the m-th bin, and the gain of the ¢-th
source and j-th filter pair at the n-th frame. In addition,
two kinds of variables, 6; and ¢;, are introduced to respec-
tively indicate the global gain of the i-th source and the
global gain of j-th filter over all N frames. Even when [
and J diverge to infinity, finite numbers of the elements of
0 and ¢ are expected to be substantially greater than zero
while all other elements are negligibly small. This makes it
possible for the “effective” numbers of sources and filters,
I and J7, to be estimated in a data-driven manner.

Our goal is, given the spectrogram X, to compute a pos-
terior distribution p(0, ¢, H| X ; W A) over random vari-
ables and estimate parameters that represent W and A. We
will discuss concrete forms of priors p(0), p(¢), p(H),
likelihood p(X |0, ¢, H; W, A), and parametric functions
of W and A according to KL or IS divergence.

ey

3.2 Mathematical Formulation

We explain the different formulations of iCARMs based on
KL and IS divergences.

3.2.1 Observation Likelihoods for X

We use KL or IS divergence as an optimization criterion.
Let Ymn be Eij Ynlljn, where Y,:Zn = 91¢JWzmA]mHz]n
We aim to optimize Y, such that the KL or IS divergence
between X,,,, and Y, is minimized, as shown in Eq.(1).
This is known to be equivalent to maximum likelihood esti-
mation of a Poisson or exponential distribution having Y,,,,,
as its parameter, given an observation X,,,, [16]. We here
introduce a complex-valued latent variable X/, that indi-
cates the contribution of the i-th source and j-th filter pair
in X,,,, such that X, = >, X4 is satisfied.

The KL-iCARM is based on an amplitude-additivity as-
sumption; i.e., [ X,,| = 3,5 [ X77,|. This is obviously in-
correct but is useful in practice. If | X, | ~ Poisson(Y, ),

the reproductive property of the Poisson distribution leads
t0 [ Xy | ~ Poisson(}_,; Y37, ), which means

| X | ~Poisson (Yy,,) )
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The IS-iICARM is based on a complex-domain additivity
assumption (see Section 3.2.5). If X%~ N.(0,Y,d ),
the reproductive property of the complex Gaussian leads
t0 Xpun ~ Ne(0,,;Y,7,). This assumption, however,
may be violated when the sources are not stationary Gaus-

sian noise (see Section 3.2.4). We nonetheless assume

| X ,un|? ~Exponential (Y;,,,,) 3)

3.2.2 Gamma Process Priors on 6 and ¢

We put gamma process (GaP) priors on infinite-dimensional
vectors @ and ¢. More specifically, we introduce indepen-
dent gamma priors on elements of 8 and ¢ as follows:

6; ~ Gamma (%, a) ,  ¢j ~Gamma (%ﬁ) 4

As the truncation level I diverges to infinity, the vector 8
approximates an infinite sequence drawn from a GaP with
shape parameter a.. It is proven that the effective number
of elements, /T, such that §; > ¢ for some number € > 0
is almost surely finite. If we set I to be sufficiently larger
than a, we can expect that only a few of the I elements of 8
will be substantially greater than zero. This condensation
property enables sparse learning in an infinite space. The
same reasoning can be applied to the GaP on ¢.

3.2.3 Gamma Chain Priors on H

To impose smooth transitions on H, we put a gamma chain
prior [20] on a temporal sequence of gains of each source-
filter pair. More specifically, H ;; is modeled as follows:

H;j1 ~ Gamma (3, 8/d)
Gijn ~ Gamma (63 5Hijn—1)
H;jn ~ Gamma (3, 8Gjn) 5)

where (3 is a hyperparameter that controls the strength of
the priors (degree of smoothness) and Gy, is an auxiliary
variable that imposes a positive correlation between tem-
porally adjacent gains H;j,—1 and Hyj, ( Eprior[Gijn] =
Hi;i_l and Epior[Hijn] = sz ). Marginalizing G';n
out, we obtain a positively correlated Markovian transition
0(28) (Hijn-1Hijn)"? -1

2I(B) (Hijn—1+Hijn)?P " "ign’

3.2.4 Comb-shaped Functions for W

We represent each harmonic source W; as a comb-shaped
function that is the sum of H Gaussian functions, where H
is the number of harmonic partials. Specifically,

ZQXP< m— hm))

where f1; indicates FO! and ¢ indicates an energy diffusion
around the frequencies of partials. Note that only the last
source is reserved as white noise, i.e., Wp,,, = 1.

3.2.5 All-pole Transfer Functions for A

We assume each basis signal £/ = {x,’ }2M in a frame to
be represented as a P- order AR process as follows:

__E : J
= axt p—i—st

! When the value of FO is given by ji; [Hz], pt; = fi; /(r/2M) [bins],
where 7 is a sampling rate and 2M is a window size of frequency analysis.

kernel as p(H;jn|H;jn—1) =

(6)

N
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where s

a‘j‘E {%a
(a} = 1). Let wi = {wi}?M be the autocorrelation of s’
and {W;,,}2M | be a complex (amplitude) spectrum den-
sity obtained by discrete Fourier transform (DFT) of w*.

Let {X/7}2, be a complex spectrum density obtained by
DFT of 2%, If the source signal s' is a stationary Gaussian

noise, each X7 is independently distributed as a complex

= {si12M is a signal of the i-th source and
p}T is a coefficient vector of the j-th filter

Gaussian N, (0, X% ), where X% = W;,, A, and
1 1
Ajm = 2 = T ®)
S gape 2] O Umas

U,,isa(P+1)x (P+1) Toeplitz matrix with [U,,|pq =
cos(2m 5% (p — ¢)). This means that | X,7|? is distributed
as an exponential distribution having W;,,, A4, as its scale
parameter. In other words, maximum likelihood estimation
of a; for z is equivalent to minimizing the IS divergence
between {|X”| }m 1 and {WZmA]m}m 1

In the iCARMSs based on KL and IS divergences, the
above discussion leads to the following formulations:

IS 1

1
———— or =
T ) T )
a; Una; a; Un.a;

jm
A reason for taking the “root” in the KL-iCARM is that we
assume an “amplitude” spectrogram as observed data.

AKL =

jm

C))

3.3 Variational and Multiplicative Optimization

The posterior over random variables p(0, ¢, H| X; W, A)
and W and A (parameters u, o, and a) are determined
such that the log-evidence log p(X; W, A) is maximized.
Since this cannot be analytically computed, we use an ap-
proximate method called variational Bayes (VB), which re-
stricts the posterior to a factorized form given by

:Hq Hq d)j Hq ’L]TL

gn
and iteratively updates this form by monotonically increas-
ing a lower bound® of the log-evidence, L, given by

logp(X; W, A) > Ellogp(X|0, ¢, H; W, A)|
+ Eflog p(0)] + E[log p(¢)] + Ellog p(H)]
— E[log ()] — E[log ¢(¢)] — E[log q(H)]
The iterative update rules are

q(0) < exp(Eq(p,m)[logp(X, 0,0, H; W, A)])

(@) o exp(Eq0,m)[logp(X, 0, ¢, H; W, A)])
q(H) o exp(Eq(q,4)[logp(X, 6, ¢, H; W, A)]) (12)
To optimize W and A (i, o, and a), we use multiplica-

tive update (MU) rules inspired by [8,9]. A general rule is
obtained from the partial derivative of a “cost” function,

(10)

=L (1)

e.g., —L. For example, if we can write the derivative as the
difference of two positive terms, i.e., B?f Gy, —F,,,an

update rule for ; is given by p; < p; X

becomes constant if the derivative is zero, ariLd is updated in
the opposite direction of the derivative. We omit detailed
derivations and only describe update rules below.

2 In linear predictive coding (LPC), the source signal s° is generally
limited to white noise (W;,, = 1). This is a conventional assumption.
3 More specifically, a further lower bound of £ should be computed.
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3.3.1 Variational Updates for KL-iCARM

The variational posterior of each random variable is set to
be the same family as its prior distribution as follows

¢(0;) = Gamma(af, b)), g¢(¢;) = Gamma(a],b?)
q(Hijn) = Gamma(ajj,,, bjf,) (13)
The variational parameters are given by
Q
af = T + Zmnj ‘an‘)\mnij
b? =a+ Emnj E[¢jWi7nAj7nHijn]
B
b =7 + X i B0 Wi A jom Hijn]
gn = 2/8 + Zm |X7rm|>\7rmij (14)

bit, = BE[Gijn+Gijni1] + X El0:id; Wim Ajm]
where A5 is an auxiliary variable given by
Amnij < exp(E[log(0;0; Wi Ajm Hijn)])
3.3.2 Variational Updates for IS-iCARM

As proposed in [12], the variational posterior of each vari-
able is given by a generalized inverse-Gaussian (GIG) dis-
tribution (see the Appendix) as follows:

15)

q(0;) = GIG(al,b{ ), q(¢;) = GIG(af,b],c?)
q(Hijn) = GIG(a]],, bii,. c/t,) (16)

The variational parameters are given by

«
_ 0 _ E[¢; Wim Ajm Hijnl
a,; —?7 b OZ"‘Z"”L]

7 §7nn
0 __ 1
& = 2 mny | Xmnl ”mnijE[¢JW“,LAJ,”HW]
¢ _ 7 E[0i Wim Ajm Hijn]
a; =7 b —7+me €
)

aH = 26a CH = Zm |an|27772nnij]E[0i¢jW1mAjm}

ijn
E[0ipiWimAjm
un = BE[ Ljn+Gijn+1] + Zm % a7

where 7,545 and &, are auxiliary variables given by
Nmnij X E[W}_l s.t. Eij Nmnij = 1
=i El0i¢iWin Ajm Hijn] (18)
3.3.3 Multiplicative Updates for KL- and 1S-iCARMs
The MU rules for p, 0, and a are given by j1; <+ G;il s,
o2 G;21F0202 and a; <+ GilFa] a;, where

m—hp;
F,, = Zmnjh h(mvnfnzj +h:uL mnzg)exp( ( ﬂ) )

i 552
Gui =2 mnjn P (meanJ + hpi ’ULI’LLJ) xp(— %)
For = me’jh anjm‘; (m — hps)? ( (m 252“1 )
Go2 = 3 mnijn Vainis (M — hiti) exp( (m b))
FKL = ni Vi ¢3WWHWLA U,,

GKL = mi \Xm,L|>\,,mUA U,

G, = me | X nmij[m]Um (19)
anfmj and anmj are given by V,fmj =E[6;¢;AjmHijn]
and V,§ .o = | Xomn|Amni; W, in the KL-iCARM. On
the other hand, V,/,,; = w and V& .. =
| X mn 020, E [m} in the IS-ICARM.
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4. EVALUATION

We report comparative experiments that were conducted to
evaluate the performance of the iCARMs based on KL and
IS divergences as multipitch analyzers.

4.1 Experimental Conditions

We used thirty pieces of “ENSTDKCI” subset included in
the MAPS piano database [21]. We truncated each piece to
30sasin [5,11] and converted the original CD-quality sig-
nals into monaural signals sampled at 16 [kHz]. The spec-
trograms were obtained with short-time Fourier transform
(STFT) with a window size of 2048 samples and a shifting
interval of 10 [ms], i.e., M = 1024 and N = 3000. The
amplitude or power spectrogram of each piece was scaled
such that 1 > | Xpn| = 1 or max,y, [Xma|? = 1.
The hyperparameters were specified as [ = 88+1, J = 10,
a=1,=v=0.1,H =20, P =4, and d=Eeup[| Xpmn]
or Eemp[| X mn|?]. Although J = 10 was too small to accu-
rately approximate the GaP, it was sufficiently large in our
experiments because the audio signals contain only piano
sounds. We initialized {u;}52, as the frequencies corre-
sponding to the 88 keys of the standard piano. The other
parameters were initialized randomly.

Multiple FOs were detected at each frame in a threshold-
ing process. If the gain of the i-th source, Z 0:;¢;H;jn,
was larger than the threshold, we judged that the n-th frame
includes an FO indicated by ;. The threshold was globally
determined such that the frame-level precision and recall
rates were balanced to yield the best average F-measure.

4.2 Experimental Results

We first tested our models on toy data obtained by extract-
ing the first 4.9 s (490 frames) of the piece “alb_se2,” which
contains five different FOs and a polyphony level that in-
creases one by one up to five (D4, +C#4, +C4, +A3, +F#3).
As shown in Fig. 2, the KL-iCARM could successfully dis-
cover the correct number of sources (five harmonic sources
+ one white-noise source) in a data-driven manner. In addi-
tion, we could separate X into harmonic and noise compo-
nents by computing E[Y}! ] = Z E[0:¢;Wim AjmHijn)s
which represents the component of the i-th source at the
m-th bin and n-th frame.

As shown in Fig. 3, on the other hand, the IS-iICARM
overestimated the numbers of sources and filters and made
many octave errors (half-FO errors). One reason is that IS
divergence permits a reconstructed power to exceed an ob-
served power with a smaller penalty. It is therefore difficult
to reduce false alarms of harmonic partials.

We then used the 30 pieces for evaluation. The KL- and
IS-iCARMs achieved the frame-level F-measures of 48.4%
and 35.1% respectively. Although these preliminary results
were not really impressive compared with the state-of-the-
art results [5,11], we consider our framework to be promis-
ing because of its elegant nature of sparse learning over an
infinite space. A main limitation of the KL-iCARM is that
we still need to resort a thresholding process for temporal
gains although limited numbers of sources and filters can
be obtained by using GaPs. One solution would be to intro-
duce binary latent variables that indicate note existences.
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5. CONCLUSION

We presented nonparametric Bayesian models called infi-
nite composite autoregressive models iICARMSs) that de-
compose an observed spectrogram into three kinds of fac-
tors, i.e., sources, filters, and time-varying gains of source-
filter pairs. The experimental results showed that appropri-
ate numbers of sources and filters can be discovered in a
data-driven manner by using gamma processes for sparse
learning. To improve the accuracy of multipitch analysis,
we are considering the use of log-frequency spectrograms
obtained by constant-Q or wavelet transform. We also plan
to use these models for “timbre-based” source separation
by distinguishing different resonance characteristics of in-
strument and vocal sounds by AR filters.
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