
Figure 8: By combining two alignments, there are multi-
ple ways to align the score to an interpretation.

1. Set t = 0, and the initial point of the refined alignment
M̃

(t)
k←s to (0, 0).

2. For ϵ < θ < π
2
− ϵ, compute the following cost function:

c(θ) = Eq∼exp (−3q/Q)[min
n

d(t)
n (q, θ)] (8)

where
d(t)

n (q, θ) = ∥M̃ (t)
k←s + q (cos(θ), sin(θ))−M

(n)
k←s∥ (9)

Q is chosen to be 20 frames, and ϵ to be π/20 radian. θ is
evaluated every π/20 radians.

3. Update M̃k←s as follows, for some ∆r ∈ (0, 1]:

M̃
(t+1)
k←s := M̃

(t)
k←s + ∆r

“

cos(θ̂), sin(θ̂)
”

(10)

θ̂ = argmin
θ

c(θ)

We chose ∆r = 1 frame.

4. Exit if M̃
(t)
k←s · (1, 0) ≥ Ns or M̃

(t)
k←s · (0, 1) ≥ Nk.

5. Set t := t + 1, and go to 2.

We assume that observed alignments are corrupted by
independent and identically distributed noise that follows
the Laplace distribution with location parameter M̂i←S(t)
and scale parameter b, for each beat t:

p(t) = exp
“

−∥Mi←S(t) − M̂i←S(t)∥/b
”

/2b (11)

and likewise for Mi←j ◦ Mj←S for j ̸= i. We interpret
M̂i←S as the underlying “correct” alignment that generates
Mi←S and Mi←j ◦Mj←S . Since an estimator of M̂i←S is
the sample median, we update Mi←S as follows:

Mi←S(t) := median({Mi←j ◦ Mj←S(t)}) (12)

As will be shown in the experiment, iterating this step
yields in improved alignment accuracy.
3.3 Tempo Extraction

The tempo is estimated by determining the slope of the
audio-score alignment. We compute the tempo at MIDI
tick t using alignment information obtained between tick
t − T to t + T for T > 0. Only information at note onsets
are used, as alignment results between two note onsets are
not reliable. We choose T dynamically such that at least 20
audio frames that correspond to note onsets are within this
range. Let (s(p), a(p)) contain a parametric representation
of Mi←S that contain the audio frames chosen. s corre-
sponds to the domain (tick of note onsets) and a the range
(audio frame). Then, we compute the BPM at tick t, τ(t)
by first finding the slope m(t) of (s(p), a(p)) using linear
regression, and multiplying its inverse by a scalar factor:

τ(t) =
1

m(t)

audio frame-per-minute
ticks-per-beat

(13)

4. EXPERIMENTS
We evaluate the tempo estimation method, and retrieval of
interpretation on the basis of global tempo query. We ana-
lyzed nine classical pieces of varying instrumentation. Of

Table 1: Average MSE (mean-squared error) improvement
in thousandths (10−3) after iterating Equation (12).

Piece (No. Interp.) None Iter. 1 Iter. 2 Iter. 10
solo-1 (13) 8.9 8.6 8.4 8.4
solo-2 (6) 17.3 15.0 13.0 12.7
solo-3 (5) 266.7 73.1 85.4 98.8
duo-1 (5) 4.5 3.9 3.7 3.8
duo-2 (4) 34.8 22.1 20.6 20.4
duo-3 (4) 185.4 12.5 10.2 10.2
orch-1 (5) 646.8 54.4 47.2 44.9
orch-2 (5) 231.5 14.7 13.3 13.2
orch-3 (5) 3941.6 1091.4 1038.3 833.2

nine pieces, three are orchestral (denoted orch-1 to orch-
3), three are written for small ensemble (denoted duo-1 to
duo-3), and three are solo piano (denoted solo-1 to solo-3).
For each work, multiple interpretations (between four and
thirteen) were obtained and their ground truth tempo data
were entered using an in-house tempo entry utility.
4.1 Evaluation of Audio-Score Alignment
Let τg(t) be the ground truth tempo trajectory. Given an
estimated tempo trajectory τ̂(t), we evaluate the error us-
ing scaled mean squared error (MSE), defined as follows:

MSE =
1

T

Z T

0

„

τg(t) − τ̂(t)

τg(t)

«2

dt (14)

MSE can be considered as the dissimilarity measure be-
tween the ground truth and the estimated tempo.

Table 1 shows the average of MSE over all interpreta-
tion for each of the nine pieces, as the number of iterations
of the update step (Equation (12)) is changed.

The results suggest that, first, our method is capable of
decreasing the error, more so if the initial error is high. For
example, duo-3 has its error decreased by 0.94 times the
original error, after ten iterations. Second, in most cases,
iterating our method multiple times yields in decreased er-
ror. When the error increases with increased number of
iterations, we believe that our assumption that alignments
are corrupted by independent noise fails. For example, in
pieces that involve unnotated candenza (e.g. solo-3), incor-
rect alignment occurs consistently at the cadenza. Then,
taking the median of such corrupted data yields not in
the underlying “true” alignment, as our method posits, but
some meaningless data instead.
4.2 Evaluation of Music Query
We evaluate the robustness of our system against errors in
conducting. When a user conducts like some interpretation
i, the system should retrieve i as the most similar interpre-
tation. Other results may be returned for two reasons:

1. The user could not conduct the piece accurately
enough to return the desired query.

2. Imprecision in tempo estimation method causes in-
correct result to be returned.

In these cases, i may not be the most similar, but one of M
most similar interpretations.

First, we synthesize an artificial query that models hu-
man errors in conducting, by adding a smooth noise to the
ground truth tempo trajectory of each data. For each in-
terpretation i, we use the following tempo trajectory as the
query with some noise variance s :

τquery,i(t; s) = τg,i(t) · 2
√

s
L

PL−1
l=0 n(t−l)|L = 10 (15)

n(t; s) ∼ N (0, 1)
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(c) orch-1
Figure 9: Evaluation results when retrieving up to top 5 results
that are similar to artificially generated query which deviates from
the ground truth by variance s.

Next, we retrieve M interpretations that are most simi-
lar to the artificial query for each interpretation, and eval-
uate the performance of retrieval the F-measure. Let n
be the number of interpretations correctly retrieved by the
query. Let N be the total number of interpretations. Then,
we let recall R = n/N , and precision P = n/(N × M).
The F-measure F is 2PR/(P + R). We show the results
from solo-1, duo-1, and orch-1 in Figure 9 (a), (b), and (c).

Figure 9 (a) and (b) show that the system tolerates small
error in conducting, of up to about s = 0.15, or 0.7 to 1.3
times the original tempo (three-sigma). Figure 9 (c), how-
ever, shows that the F-measure of orch-1 is considerably
lower than the other two.

Retrieving orchestral piece (orch’s) is difficult because
there is very small variation in the two closest playing, and
exacerbated by the particularly unreliable tempo estima-
tion. We compute the smallest dissimilarity measure be-
tween ground truth tempo trajectories of any pair of inter-
pretations. The smallest dissimilarity of orch-1 is about
2×10−3, solo-1 is 20×10−3, and duo-1 is 23×10−3. We
similarly observed that for orchestral piece, the smallest
dissimilarity is much smaller compared to that of cham-
ber (duo’s) or solo (solo’s). On the other hand, we observe
that the average MSE, as seen in Table 1, is substantially
greater for orchestral pieces than chamber or solo.

These results suggest that our system retrieves the de-
sired interpretation with robustness against minor errors in
conducting, as long as the average MSE is small enough to
differentiate the most similar pair of interpretations. The
similarity of interpretation is typically influenced by the
scale of orchestration, and the average MSE is influenced
by the complexity of the ensemble, and the degree to which
the interpretation deviates from the music score.

5. CONCLUSION
This paper presented Query-by-Conducting, an interface
for finding interpretations of a given piece of music. It of-

fers the listener an interactive experience of “conducting”
the global tempo to dynamically tailor the interpretation
played back to the user’s choice. It moreover presents the
listener with a ranking of interpretation based on how the
user conducted through the piece, offering the listener with
a list of interpretations whose tempi that the user might
like, without the hassle of listening through various inter-
pretations. The accuracy of tempo estimation method im-
proved as a result of considering the consistency of audio-
score alignment among different interpretations.

As future work, we would like to deal with aspects
of music interpretation other than the global tempo, such
as the local tempo deviation and emphasis of a particu-
lar melodic line. Integrating these aspects would further
enhance the system’s capability to retrieve the interpreta-
tion of choice. Furthermore, we would like to realize more
ways to visualize and interact with various aspects of mu-
sic interpretation, to allow a listener to further enjoy clas-
sical music.
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