Infinite Latent Harmonic Allocation:
A Nonparametric Bayesian Approach to Multipitch Analysis

Kazuyoshi Yoshii and Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)

l. Why Take Bayesian Approach? m “Completely” Bayesian Treatment

We need a methodology to deal with Posterior distributions of all unknown variables
uncertainty inherent in music analysis (not limited to parameters) should be estimated
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Key feature (1): Nonparametric Bayesian formulation
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Nested f|n|te GMMs for polyphonic spectra KT I Most weights are almost equal to 0

= Each GMM corresponds E <
r- - 4 _ to a harmonic strﬁcture m I=m E o, Small(x Large (Y
&S SN DN | Ty 1 —Ty—— | ) 270 s
> ] M TGMMe Fruency I [cent] Stick-breaking <—7~T3-><— 1 — 73— 2 3
&7 —— Mix KGMM:s A o construction: Tk
o C A;:umfic;ggere _dditive || Recursively break the stick of length 1 k — o0 k— o0
Mn-( :) " P The average splitting ratiois 1 : « Short-tailed Long-tailed
’ - = Prior: 7, ~ Beta(1, a) L) | How optimize influential hyperparameter (v ?

Frequency a:‘ [cent]
Z T Z Tkm N

Mixing welght of sound source £ in frame d
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The concentration parameter (hyperparameter) of the DP
is assumed to follow a noninformative Gamma hyperprlor
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V. Proposed Nonparametric Models

Nested infinite GMMs for polyphonic spectra
Model complexities are considered to be infinite
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VIl. Conclusion VI. Comparative Evaluation ‘I
Our contributions Data: Polyphonic audio of piano/guitar performances PreFEst  HTC

We proposed an ultimate mixture-model-based 6 pieces from RWC-MDB-J-2001: Jazz Music JNo.1 75.8 79.0 70.7 82.2
method for multipitch analysis 2 pieces from RWC-MDB-C-2001: Classical Music JNo.2 78.5 780  69.1  77.9
This is the first attempt to apply the nonparametric 23 [s] excerpted from the beginning of each piece JNo.6 704 /8.3 498  71.2
Bayesian framework to multipitch analysis Frequency analysis: Gabor wavelet transform JNo.7  83.0 860 70.2 855

L Evaluation criterion: Frame-level F-measures JNo.8 857 844 559  84.6

Future directions JNo.9 859 895 689 847
We p_Ian_to use this framework in a wide range of The complet_el_y automated rnethod (iLHA) yielded CNo.30 76.0 336 81.4 816
appl_lcatlo_ns such as con_tent-based cIusterln_g of very competitive results against carefully tuned CNo.35 728 760 589 796
musical pieces and musical structure analysis conventional methods (PreFEst and HTC) Total 794 820 658 81.7




