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ABSTRACT

This paper presents a principled method called MusicThumb-
nailer to transform musical pieces into visual thumbnail im-

ages based on acoustic features extracted from their audio

signals. These thumbnails can help users immediately guess

the musical contents of audio signals without trial listening.

This method is consistent in ways that optimize thumbnails

according to the characteristics of a target music collection.

This means the appropriateness of transformation should be

defined to eliminate ad hoc transformation rules. In this pa-

per, we introduce three top-down criteria to improve mem-

orability of thumbnails (generate gradations), deliver infor-

mation more completely, and distinguish thumbnails more

clearly. These criteria are mathematically implemented as

minimization of brightness differences of adjacent pixels

and maximization of brightness variances within and be-

tween thumbnails. The optimized parameters of a modified

linear mapping model we assumed are obtained by minimiz-

ing a unified cost function based on the three criteria with a

steepest descent method. Experimental results indicate that

generated thumbnails can provide users with useful hints as

to the musical contents of musical pieces.

1 INTRODUCTION

Music recommender systems are increasingly important in

online music-distribution services to help users discover their

favorite pieces among a huge music collection. For instance,

recommender systems based on collaborative filtering [1, 2]

recommend musical pieces to the user by taking into ac-

count someone else’s ratings of those pieces. Content-based

filtering systems [3, 4] select musical pieces that are similar

to the user’s favorites in terms of musical content (acous-

tic features). Recently, several hybrid systems that integrate

these two techniques have been proposed to enable more ac-

curate recommendations [5, 6].

An important problem that has not been resolved is that

users cannot immediately grasp the musical contents of rec-

ommended pieces after these pieces are listed. Users have

to listen to all listed pieces, including those they do not like,

to find which pieces are worth listening to. This often pre-

vents users from seamlessly listening to their favorite pieces.

Worse still, trial listening is time-consuming because the in-

formation of audio signals (temporal media) is not simul-

taneously delivered to users whereas visual images (spatial
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Figure 1. Expected scenario: A user can roughly guess the

musical contents of unknown pieces by seeing only thumb-

nails and without time-consuming trial listening.

media) can be easily skimmed through.

To solve this problem, we propose an audio-visual trans-

formation method called MusicThumbnailer that generates

compact images corresponding to the audio signals of indi-

vidual pieces. This helps users guess the musical contents

of audio signals without trial listening. For example, this

method will work well in recommender systems, as shown

in Fig. 1. Initially, users only glance at compact thumbnails

attached to recommended pieces when they actually listen

to these pieces. While accumulating this experience, users

will unconsciously associate particular types of thumbnail

with their preferred music. Users thus learn to understand

the musical meanings of the thumbnails’ features. Finally,

users will be able to efficiently select audio signals of their

desired pieces by using their eyes rather than their ears.

One advantage of our method is that the visual features

(colors and patterns) of thumbnails are automatically opti-

mized for a given collection. To achieve this, it is necessary

to eliminate ad hoc rules that arbitrarily associate acoustic

features with visual features, because these rules lack a prin-

cipled justification that is consistent for different collections.

In this paper, we define some top-down criteria on generated

thumbnails from the viewpoint of usability, independently

of the characteristics of music collections. We then mathe-

matically represent these criteria in a unified cost function.

Audio-visual associations are obtained in a self-organized

way so that the cost function is minimized.
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The rest of this paper is organized as follows. Section 2

introduces related work. Section 3 explains the principles of

our audio-visual transformation method and its implemen-

tation. Section 4 reports on our experiment using the RWC

Music Database [7]. Section 5 summarizes the key findings

of this paper.

2 RELATED WORK

Many visualization methods have been proposed for spatial

representation, organization, and browsing of music collec-

tions [8–16]. These methods typically locate musical pieces

in a two- or three-dimensional space so that musical pieces

that have similar musical contents (acoustic features) are ar-

ranged close to each other. This enables users to easily un-

derstand relationships between musical pieces because sim-

ilarity in acoustic features can be observed as spatial dis-

tance. From a mathematical viewpoint, this kind of visu-

alization can be interpreted as information compression of

high-dimensional feature vectors according to some crite-

ria. The self-organizing map (SOM) is often used for this

purpose (e.g., Islands of Music [8]).

In a music-playback interface called Musicream [17], in-

dividual musical pieces are visualized as colored discs using

an ad hoc rule. The disc color (hue and saturation) is deter-

mined from the color circle whose circumference and radius

correspond to hue and saturation, respectively. Each piece is

mapped into the circle according to its feature vector. Princi-

pal component analysis (PCA) is used to reduce the dimen-

sionality of acoustic feature vectors to a two-dimensional

vector on a plane. Musicovery [18] uses arbitrary rules for

associating genres with colors specified in advance.

In the work described in this paper, we aimed to visualize

individual pieces, rather than a collection, as compact im-

ages (thumbnails) without using ad hoc rules. In general, vi-

sual images are represented as super-high-dimensional vec-

tors that contain the color values of numerous pixels. There-

fore, our objective was to find an appropriate mapping from

a low-dimensional acoustic space (several-tens dim.) to a

high-dimensional visual space (several-thousands dim.). A

unique feature of this problem lies in this drastic increase in

degrees of freedom. To solve such an ill-posed problem by

using an optimization method, it is necessary to incorporate

some criteria on the appropriateness of the mapping.

3 MUSIC THUMBNAILER

This section describes our method of generating thumbnails

of musical pieces based on acoustic features.

3.1 Problem Specification

Given a collection of musical pieces (audio signals) as in-

put data, our objective is to output appropriate thumbnails

(visual images) that reflect acoustic features extracted from

these pieces. We first prepare some criteria to evaluate the

appropriateness of the generated thumbnails as discussed

later. In this paper, we focus on generating gray-scale thumb-

nails as the first step towards obtaining full-color thumbnails

in the future. This means we have only to deal with the

brightness of pixels contained in each thumbnail.

We first define constant values in advance. Let N be the

number of musical pieces. Let S be the number of acoustic

features taken into account. Let T be the number of pix-

els contained in each thumbnail, where T is the product of

width, W , and height, H; i.e., T = WH .

The input data is given by X = [x1x2 · · ·xN ], which

is a collection of feature vectors extracted from all musical

pieces. Here, xn = (xn,1, · · · , xn,S)T is an S-dimensional

feature vector of piece n (1 ≤ n ≤ N), where xn,s (1 ≤
s ≤ S) represents the value of feature s in piece n.

The output data is represented as Y = [y1y2 · · ·yN ],
which is a set of brightness vectors of generated thumbnails.

yn = (yn,1,1, · · · , yn,1,H , yn,2,1, · · · , yn,2,H , · · · , yn,W,1,
· · · , yn,W,H )T is a T -dimensional brightness vector of piece

n, where yn,w,h (1 ≤ w ≤W, 1 ≤ h ≤ H) is the brightness

of pixel (w, h) in thumbnail n. The range of yn,w,h is given

by 0 < yn,w,h < 1.

3.2 Top-down Criteria for Principled Transformation

To evaluate the appropriateness of the generated thumbnails,

we introduce three top-down criteria from the viewpoint of

user friendliness (usability) as follows:

1. Memorability: Each thumbnail should be easily re-

membered by users. The visual pattern is an impor-

tant factor that affects the ease of remembering thumb-

nails, as shown in Fig. 2. This is related to how easily

users can understand the musical meanings of visual

patterns based on their memories. We assume that

gradation images are suitable to our purpose.

2. Informational delivery: Each thumbnail should pro-

vide a large amount of information to users. This is

achieved if thumbnail’s pixels have a wide variety of

brightness, as shown in Fig. 3. This enables users to

associate a thumbnail with detailed information about

the music content.

3. Distinguishability: Users should be able to easily dis-

tinguish thumbnail images of different pieces. To en-

able this, each thumbnail should have a distinctive vi-

sual pattern that explicitly reflects the content of mu-

sic, as shown in Fig. 4. This enables users to effi-

ciently find their favorite pieces based on thumbnails

they recognize.

Note that these criteria mention neither specific genres of

music nor specific colors of thumbnails.
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Figure 2. Difference in ease of remembering thumbnails.
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Figure 3. Difference of the amount of information obtained

from thumbnails.
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Figure 4. Difference in ease of distinguishing thumbnails

of different pieces.

These top-down criteria enable us to design thumbnails

in a non-ad-hoc way. In general, system designers tend to

define ad hoc rules that directly associate musical contents

of musical audio signals with specific colors of visual im-

ages (e.g., rock-red, jazz-green, and classic-blue). However,

the appropriateness of these arbitrary rules cannot be guar-

anteed. In contrast, the criteria we proposed only regulate

the appropriateness of transformation. The actual colors and

patterns of thumbnails are optimized for a given collection

in a self-organized way so that the criteria are best satisfied.

Therefore, our approach is methodologically and mathemat-

ically sound.

A remaining problem here is how to mathematically im-

plement these criteria. In this paper, we will present a simple

implementation of the three criteria below.

3.3 Mathematical Formulation

From a mathematical point of view, the objective is to ob-

tain optimal parameters of a mapping model that transforms

a S-dimensional space to a T -dimensional space so that a

cost function defined according to the three criteria is mini-

mized. This transformation has a high degree of freedom; a

higher-dimensional space can always preserve the complete

information of an original space. We thus incorporate linear

mapping into a mapping model. This is reasonable because

linear mapping can strongly limit the degree of freedom in

transformation. In addition, musical pieces which are close

to each other in an acoustic space are expected to be mapped

still close to each other in a visual space. This effect is suit-

able to achieve the expected scenario shown in Fig. 1. We

define the mapping model as

Y = Sig(AX), (1)

where A is a T -by-S transformation matrix to be optimized,

which is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
1,1
...

AT
1,H
...

AT
W,1
...

AT
W,H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1,1 A1,1,2 · · · A1,1,S

...
...

A1,H,1 A1,H,2 · · · A1,H,S

...
...

AW,1,1 AW,1,2 · · · AW,1,S

...
...

AW,H,1 AW,H,2 · · · AW,H,S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

and Sig is the sigmoid function given by

Sig(x) =
1

1 + e−x
(−∞ < x <∞). (3)

In Eq. (1), we applied the sigmoid function to each cell of

matrix AX so that the value of each cell of matrix Y ranges

from 0 to 1. Note that the differential of the sigmoid func-

tion is given by Sig’(x) = Sig(x) (1− Sig(x)) .
To evaluate the appropriateness of the mapping model,

we define a cost function, C, as

C = Cs + αwCw + αbCb, (4)

where Cs, Cw, and Cb are the costs corresponding to the

three criteria described in Section 3.2, and αw and αb are

the weighting parameters. We mathematically define these

three costs below.

3.3.1 Minimization of adjacent-pixel distances

To generate gradation images, we focus on a necessary con-

dition that the brightness values of adjacent pixels should be

close to each other. One way to mathematically implement

this condition is to minimize the differences of the bright-

ness values of adjacent pixels included in each thumbnail.
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However, this calculation is not efficient because it would

have to be repeated for all thumbnails. To solve this prob-

lem, we directly define the cost function, Cs, for the trans-

formation matrix, A, as follows:

Cs =
1

WHS

∑
w,h,s

Dw,h,s, (5)

where Dw,h,s is the average of the following eight distances:

Dw,h,s =
1
8

∑
i,j=±1

(Aw,h,s −Aw+i,h+j,s)
2

(6)

+
1
8

∑
i=±1

(Aw,h,s −Aw+i,h,s)
2

(7)

+
1
8

∑
j=±1

(Aw,h,s −Aw,h+j,s)
2
. (8)

3.3.2 Maximization of within-thumbnail variances

To increase the amount of information delivered by a thumb-

nail, the brightness variance within the thumbnail should be

maximized. We formulate this condition for each thumbnail

and define the cost function, Cw, based on the average of

brightness variances over all thumbnails:

Cw = − 1
N

∑
n

1
WH

∑
w,h

(yn,w,h − ȳn)2 , (9)

where ȳn is an average of the brightness values of wh pixels

within a thumbnail of piece n, given by

ȳn =
1

WH

∑
w,h

yn,w,h. (10)

Note that maximization of within-thumbnail variances is equiv-

alent to minimization of the cost function Cw.

3.3.3 Maximization of between-thumbnail variances

To enable users to clearly distinguish generated thumbnails,

the brightness vectors of these thumbnails should be far from

each other. A simple way to satisfy this condition is to max-

imize the brightness variance between all thumbnails, where

the between-thumbnail variance is calculated in each posi-

tion, (w, h). We define the cost function, Cb, based on the

average of brightness variances over all positions as

Cb = − 1
WH

∑
w,h

1
N

∑
n

(yn,w,h − ȳw,h)2 , (11)

where ȳw,h is an average of the brightness values of n pixels

in the same position (w, h), given by

ȳw,h =
1
N

∑
n

yn,w,h. (12)

Note that maximization of between-thumbnail variances is

equivalent to minimization of the cost function Cb.

3.4 Parameter Optimization

To minimize the total cost function, C, as an optimization

method, we use a steepest descent method that iteratively

updates the parameters until the cost reduction is converged.

The updating formula is given by

Aw,h,s ← Aw,h,s − η
∂C

∂Aw,h,s
, (13)

where η is a learning parameter (0 < η < 1) and ∂C
∂Aw,h,s

is

decomposed into three terms:

∂C

∂Aw,h,s
=

∂Cs

∂Aw,h,s
+ αw

∂Cw

∂Aw,h,s
+ αb

∂Cb

∂Aw,h,s
. (14)

3.4.1 Derivation of updating formula

We now explain how to derive the updating formula. The

first term in Eq. (14) is obtained by

∂Cs

∂Aw,h,s
=

2
WHS

(
Aw,h,s − Āw,h,s

)
, (15)

where Āw,h,s is an average of the values in the vicinity of

Aw,h,s, given by

Āw,h,s =
Aw,h±1,s + Aw±1,h,s + Aw±1,h±1,s

8
. (16)

The second and third terms are calculated as

∂Cw

∂Aw,h,s
=

∂Cw

∂yn,w,h
· ∂yn,w,h

∂Aw,h,s
, (17)

∂Cb

∂Aw,h,s
=

∂Cb

∂yn,w,h
· ∂yn,w,h

∂Aw,h,s
, (18)

where

∂Cw

∂yn,w,h
= − 2

NWH
(yn,w,h − ȳn) , (19)

∂Cb

∂yn,w,h
= − 2

NWH
(yn,w,h − ȳw,h) , (20)

∂yn,w,h

∂Aw,h,s
= Sig’(AT

h,wxn)xn,s (21)

= Sig(AT
h,wxn)

(
1− Sig(AT

h,wxn)
)

xn,s.

(22)

3.4.2 Visual effects of updating formula

Next, we will discuss the visual effects of the three terms

of Eq. (14) in the mathematically derived updating formula.

Eq. (15) means the first term tries to make transformation

coefficients close to their smoothed versions. Eq. (16) cor-

responds to a visual processing algorithm that is used for

smoothing images by using a convolution matrix. Eq. (19)

and Eq. (20) mean the second and third terms try to make

the brightness value of each pixel far from the within- and

between-thumbnail averages. This enhances the dynamic

range of each thumbnail and the variety of generated thumb-

nails. These effects intuitively match our expectation.
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4 EXPERIMENT

This section reports on a thumbnail-generation experiment

done to evaluate the usefulness of MusicThumbnailer.

4.1 Experimental Conditions

As a music collection, we used the “RWC Music Database:

Music Genre” (RWC-MDB-G-2001) [7], which consists of

100 pieces (N = 100) in total with three pieces prepared for

each of 33 genres and one for a cappella. This database is

divided into 10 main genre categories (popular, rock, dance,

jazz, Latin, classical, march, world, vocal, and traditional

Japanese music) and 33 subcategories (pops, ballad, rock,

heavy metal, rap/hip-hop, house, techno, funk, soul/R&B,

big band, modern jazz, fusion, bossa nova, samba, reggae,

tango, baroque, classic, romantic, modern, brass band, blues,

folk, country, gospel, African, Indian, flamenco, chanson,

canzone, traditional-style Japanese popular music, Japanese

folk music, and ancient Japanese court music).

To extract acoustic features, we used the MARSYAS [19].

We obtained a 42-dimensional feature vector for each piece,

which consists of the average and variance of local spec-

tral features (centroid, rolloff, and flux) and zero-crossings

across the entire piece (8 dimensions), average and variance

of Mel-frequency cepstral coefficients (MFCC) across the

entire piece (26 dimensions), and rhythmic content features

reflecting periodicity in beat (8 dimensions). We then used

PCA to reduce the dimensionality; the 42-dimensional space

was transformed into a 20-dimensional space still account-

ing for 95% of the variance of the original data (S = 20).

The size of thumbnails was 50× 50 (W = H = 50, T =
2500). In this experiment, gray-scale thumbnails were con-

verted to full-color ones according to a lookup table shown

in Table 1 (called “Jet” color scheme in MATLAB) from an

aesthetic point of view. Note that this is just for convenience

because we should essentially eliminate such an ad hoc rule.

The values of parameters, αw, αb, and η were empirically

set to 0.4, 0.4, and 0.1.

4.2 Experimental Results

The experimental results indicate that the generated thumb-

nails are useful for guessing the musical contents, as shown

in Fig. 5. At the main-category level, thumbnails of pop-

ular/rock pieces, those of classical (orchestra) pieces, and

those of marches seem to be close to each other, respec-

tively. In the dance category, similar thumbnails were ob-

tained in each subcategory, where we can find the simi-

larity between rap/hip-hop and funk. The thumbnails of

funk pieces somewhat resemble those of reggae and African

pieces across the main category. This corresponds with the

fact that funk music has been developed while absorbing

the characteristics of African music and reggae. In the cat-

egories of Latin, world, and traditional Japanese, we can

Table 1. Lookup table for converting brightness to RGB.

Brightness 0.00 0.33 0.66 1.00

RGB (0,0,1) (0,1,1) (1,1,0) (1,0,0)

roughly say that similar thumbnails were obtained in each

subcategory. In the vocal category, each subcategory yielded

the similar thumbnails, which have especially unique pat-

terns among the database. In the jazz category, however,

there were comparatively wide variations in thumbnails of

each category. Moreover, fusion pieces tend to reflect and

mix the styles of other pieces.

5 CONCLUSION

We presented an audio-visual transformation method called

MusicThumbnailer that generates thumbnail images reflect-

ing acoustic features of audio signals. To achieve principled

transformation free from ad hoc rules, we designed three

top-down criteria regarding memorability, informational de-

livery, and distinguishability. These criteria are used to eval-

uate the appropriateness of generated thumbnails from the

viewpoint of usability rather than to associate specific acous-

tic features with actual colors and patterns of thumbnails.

From a mathematical viewpoint, we formulated this prob-

lem as a constrained minimization of a cost function based

on the three criteria. The experiment showed promising re-

sults as to the usefulness of MusicThumbnailer.

Many issues still remain regarding the refinement of our

method through subjective experiments. First, we plan to in-

troduce a new criterion to preserve the topological relations

of feature vectors in audio-visual transformation. Then, we

will improve the mathematical implementation of each cri-

terion and attempt to use a more sophisticated optimization

algorithm that can achieve fast convergence while avoiding

the local-minimum problem. Several experiments using dif-

ferent features and collections would be important. An in-

teresting application of our method would be to generate a

visual effect (a temporal sequence of visual images) that dy-

namically represents the local musical contents in a musical

piece. This can be done by interpreting feature vectors ex-

tracted from individual time frames in a musical piece in the

same way as for those extracted from individual pieces in a

music collection. Such a visualizer will give users a practi-

cal overview of structures within a musical piece.
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