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ABSTRACT

This paper describes a music remixing interface, called In-
strument Equalizer, that allows users to control the volume
of each instrument part within existing audio recordings
in real time. Although query-by-example retrieval systems
need a user to prepare favorite examples (songs) in general,
our interface gives a user to generate examples from exist-
ing ones by cutting or boosting some instrument/vocal parts,
resulting in a variety of retrieved results. To change the vol-
ume, all instrument parts are separated from the input sound
mixture using the corresponding standard MIDI file. For
the separation, we used an integrated tone (timbre) model
consisting of harmonic and inharmonic models that are ini-
tialized with template sounds recorded from a MIDI sound
generator. The remaining but critical problem here is to deal
with various performance styles and instrument bodies that
are not given in the template sounds. To solve this problem,
we train probabilistic distributions of timbre features by us-
ing various sounds. By adding a new constraint of maxi-
mizing the likelihood of timbre features extracted from each
tone model, we succeeded in estimating model parameters
that better express actual timbre.

1 INTRODUCTION

One of promising approaches of music information retrieval
is the query-by-example (QBE) retrieval [1, 2, 3, 4, 5, 6, 7]
where a user can receive the list of musical pieces ranked
by their similarity to a musical piece (example) that the user
gives as a query. Although this approach is powerful and
useful, a user has to prepare or find favorite examples and
sometimes feels difficulty to control/change the retrieved
pieces after seeing them because the user has to find another
appropriate example to get better results. For example, if a
user feels that vocal or drum sounds are too strong in the
retrieved pieces, the user has to find another piece that has
weaker vocal or drum sounds while keeping the basic mood
and timbre of the piece. It is sometimes very difficult to find
such a piece within a music collection.

We therefore propose yet another way of preparing an ex-
ample for the QBE retrieval by using a music remixing inter-

face. The interface enables a user to boost or cut the volume
of each instrument part of an existing musical piece. With
this interface, a user can easily give an alternative query with
a different mixing balance to obtain refined results of the
QBE retrieval. The issue in the above example of finding
another piece with weaker vocal or drum sounds can thus
be resolved. Note that existing graphic equalizers or tone
controls on the market cannot control each individual instru-
ment part in this way: they can adjust only frequency char-
acteristics (e.g., boost or cut for bass and treble). Although
remixing stereo audio signals [8] had reported previously,
it had tackled to control only harmonic instrument sounds.
Our goal is to control all instrument sounds including both
harmonic and inharmonic ones.

This paper describes our music remixing interface, called
Instrument Equalizer, in which a user can listen to and remix
a musical piece in real time. It has sliders corresponding
to different musical instruments and enables a user to ma-
nipulate the volume of each instrument part in polyphonic
audio signals. Since this interface is independent of the suc-
ceeding QBE system, any QBE system can be used. In our
current implementation, it leverages the standard MIDI file
(SMF) corresponding to the audio signal of a musical piece
to separate sound sources. We can assume that it is relatively
easy to obtain such SMFs from the web, etc. (especially for
classical music). Of course, given a SMF, it is quite easy to
control the volume of instrument parts during the SMF play-
back, and readers might think that we can use it as a query.
Its sound quality, however, is not good in general and users
would lose their drive to use the QBE retrieval. Moreover,
we believe it is important to start from an existing favorite
musical piece of high quality and then refine the retrieved
results.

2 INSTRUMENT EQUALIZER

The Instrument Equalizer enables a user to remix existing
polyphonic musical signals. The screenshot of its interface
is shown in Figure 1 and the overall system is shown in Fig-
ure 2. It has two features for remixing audio mixtures as
follows:
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Figure 1. Screenshot of main window.

Figure 2. Instrument Equalizing System.

1. Volume control function. It provides the remixing
function by boosting or cutting the volume of each
instrument part, not by controlling the gain of a fre-
quency band. A user can listen to the remixed sound
mixture as soon as the user manipulates the volume.

2. Interlocking with the hardware controller. In addition
to a typical mouse control on the screen, we allow
a user to use a hardware controller shown in Figure
2 with multiple faders. It enables the user to manipu-
late the volume intuitively and quickly. This hardware
controller makes it easy to manipulate the volume of
multiple parts at the same time, while it is difficult on
a mouse control.

To remix a polyphonic musical signal, the signal must be
separated into each instrument part. We use an integrated
weighted mixture model consisting harmonic-structure and
inharmonic-structure tone models [9] for separating the sig-
nal, but improve the parameter estimation method of this
model by introducing better prior distributions. This sep-
aration method needs a standard MIDI file (SMF) that is
synchronized to the polyphonic signal. We assume that
the SMF has already been synchronized with the input
signal by using audio-to-score alignment methods such as
[10, 11, 12]. For the separation using the integrated model,
the parameters of the model are initialized by template
sounds recorded from a MIDI sound generator. and grad-

Figure 3. System architecture.

ually improved to represent actual sounds in the sound mix-
ture.
2.1 Internal architectures

This section describes the internal architectures of control-
ling the volume of each instrument part. The procedures
described in this section are performed in real time under
the assumption that the musical signals of each instrument
part already have been obtained in advance from the target
polyphonic musical signal, as described in Section 3. Let
xk(c, t) and yk(c, t) be a separated signal and the volume of
instrument k at channel c and time t, respectively. yk(c, t)
satisfies the following condition:

∀k, c, t : 0 ≤ yk(c, t) ≤ 1,

and yk(c, t) is obtained as

yk(c, t) = (value of volume slider k) · (value of the pan c).

The overview of the architecture is shown in Figure 3.

1. Volume control function. The output signal, x(c, t), is
obtained as

x(c, t) =
∑

k

yk(c, t) · xk(c, t).

Each yk(t) is obtained in real-time from the volume
sliders in the GUI in Figure 1.

2. Interlocking with the hardware controller. The GUI
and the hardware controller communicate by MIDI.
If users control the hardware fader, a MIDI message
which represents the new volume is sent to the GUI,
and vice varsa. Since a motor is embeded in the fader,
MIDI messages from the GUI move the fader to the
position corresponding value of the volume.

3 SOUND SOURCE SEPARATION CONSIDERING
TIMBRE VARIETIES

In this section, we first define our sound source separation
problem and the integrated model. We then describe tim-
bre varieties and timbre feature distributions for estimating
parameters of the model.
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3.1 Integratedmodel of harmonic and inharmonic mod-
els

The sound source separation problem is to decompose the
input power spectrogram, X(c, t, f), into the power spec-
trogram corresponding to each musical note, where c, t, and
f are the channel (e.g., left and right), the time, and the fre-
quency, respectively. We assume that X(c, t, f) includes K
musical instruments and the k-th instrument performs Lk

musical notes. We use the tone model, Jkl(c, t, f), to rep-
resent the power spectrogram of the l-th musical note per-
formed by the k-th musical instrument ((k, l)-th note), and
the power spectrogram of a template sound, Ykl(t, f), to ini-
tialize the parameters of Jkl(c, t, f). Each musical note of
the SMF is played back on a MIDI sound generator to record
the corresponding template sound. Ykl(t, f) is monaural be-
cause SMFs may not include any sound localization (chan-
nel) information. Ykl(t, f) is normalized to satisfy the fol-
lowing relation, where C is the total number of the channels:∑

c

∫∫
X(c, t, f) dt df = C

∑
k,l

∫∫
Ykl(t, f) dt df.

For this source separation, we define an integrated model,
Jkl(c, t, f), as the sum of harmonic-structure tone models,
Hkl(t, f), and inharmonic-structure tone models, Ikl(t, f),
multiplied by the whole amplitude of the model, w

(J)
kl , and

the relative amplitude of each channel, rkl(c):

Jkl(c, t, f) = w
(J)
kl rkl(c)

(
Hkl(t, f) + Ikl(t, f)

)
,

where w
(J)
kl and rkl(c) satisfy the following constraints:

∑
k,l

w
(J)
kl =

∫∫
X(c, t, f) dt df, ∀k, l :

∑
c

rkl(c) = C.

All parameters of Jkl(c, t, f) are listed in Table 1. The
harmonic model, Hkl(t, f), is defined as a constrained
two-dimensional Gaussian mixture model (GMM), which is
a product of two one-dimensional GMMs,

∑
E

(H)
kl (m, t)

and
∑

F
(H)
kl (n, t, f), and is designed by referring to

the harmonic-temporal-structured clustering (HTC) source
model [13]. The inharmonic model, Ikl(t, f), is defined as
a product of two nonparametric functions. The definition of
these models is as follows:

Hkl(t, f) = w
(H)
kl

M∑
m=1

N∑
n=1

E
(H)
kl (m, t)F (H)

kl (n, t, f),

E
(H)
kl (m, t) =

ukl(m)√
2πφkl

exp
(
− (t− τkl −mφkl)2

2φ 2
kl

)
,

F
(H)
kl (n, t, f) =

vkl(n)√
2πσkl

exp
(
− (f − nωkl(t))2

2σ 2
kl

)
, and

Ikl(t, f) = w
(I)
kl E

(I)
kl (t)F (I)

kl (t, f),

Table 1. Parameters of the integrated model.
Symbol Description

w
(J)
kl overall amplitude

rkl(c) relative amplitude of each channel
w
(H)
kl , w

(I)
kl relative amplitude of harmonic and inharmonic

tone models
ukl(m) coefficient of the temporal power envelope
vkl(n) relative amplitude of n-th harmonic component
τkl onset time
φkl diffusion of a Gaussian of power envelope
ωkl(t) F0 trajectory
σkl diffusion of a harmonic component along the

freq. axis
E
(I)
kl (t) power envelope of inharmonic tone model

F
(I)
kl (t, f) relative amplitude of frequency f at time t of

inharmonic tone model

where M is the number of Gaussian kernels representing the
temporal power envelope and N is the number of Gaussian
kernels representing the harmonic components. ukl(m),
vkl(n), E

(I)
kl (t), F

(I)
kl (t, f), w

(H)
kl , and w

(I)
kl satisfy the fol-

lowing conditions:

∀k, l :
∑
m

ukl(m) = 1, ∀k, l :
∑

n

vkl(n) = 1,

∀k, l :
∫

E
(I)
kl (t) dt = 1, ∀k, l, t :

∫
F

(I)
kl (t, f) df = 1,

and ∀k, l : w
(H)
kl + w

(I)
kl = 1.

The goal of this separation is to decompose X(c, t, f)
into Jkl(c, t, f) by estimating a spectrogram distribution
function, Δ(J)(k, l; c, t, f), which satisfies

∀k, l, c, t, f : 0 ≤ Δ(J)(k, l; c, t, f) ≤ 1 and

∀c, t, f :
∑
k,l

Δ(J)(k, l; c, t, f) = 1.

With Δ(J)(k, l; c, t, f), the separated power spectrogram,
X

(J)
kl (c, t, f), is obtained as

X
(J)
kl (c, t, f) = Δ(J)(k, l; c, t, f)X(c, t, f).

Furthermore, let Δ(H)(m,n; k, l, t, f) and Δ(I)(k, l, t, f)
be spectrogram distribution functions which decompose
X

(J)
kl (c, t, f) into each Gaussian distribution of the har-

monic model and the inharmonic model, respectively. These
functions satisfy

∀k, l,m, n, t, f : 0 ≤ Δ(H)(m,n; k, l, t, f) ≤ 1,

∀k, l, t, f : 0 ≤ Δ(I)(k, l, t, f) ≤ 1, and

∀k, l, t, f :
∑
m,n

Δ(H)(m,n; k, l, t, f) + Δ(I)(k, l, t, f) = 1.
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To evaluate the ‘effectiveness’ of this separation, we can
use a cost function defined as the Kullback-Leibler (KL) di-
vergence from X

(J)
kl (c, t, f) to Jkl(c, t, f):

Q
(J)
kl =

∑
c

∫∫
X

(J)
kl (c, t, f) log

X
(J)
kl (c, t, f)

Jkl(c, t, f)
dt df.

By minimizing the sum of Q
(J)
kl over (k, l) pertaining to

Δ(J)(k, l; c, t, f), we obtain the spectrogram distribution
function and model parameters (i.e., the most ‘effective’ de-
composition).

By minimizing the Q
(J)
kl pertaining to each parameter of

the integrated model, we obtain model parameters estimated
from the distributed spectrogram. This parameter estimation
is equivalent to a maximum likelihood estimation. The pa-
rameter update equations are described in appendix A.

3.2 Timbre varieties within each instrument

Even within the same instrument, different instrument bod-
ies have different timbres, although its timbral difference is
smaller than the difference among different musical instru-
ments. Moreover, in live performances, each musical note
could have slightly different timbre according to the perfor-
mance styles. Instead of preparing a set of many template
sounds to represent such timbre varieties within each instru-
ment, we represent them by using a probabilistic distribu-
tion.

We use parameters of the integrated model, ukl(m),
vkl(n), and F

(I)
kl (t, f), to represent the timbre variety of in-

strument k by training a diagonal Gaussian distribution with
mean μ

(u)
k (m), μ

(v)
k (m), μ

(F )
k (f) and variance Σ(u)

k (m),
Σ(v)

k (n), Σ(F )
k (f), respectively. Note that other probability

distributions, such as a Dirichlet distribution, are available
in this case. The model parameters for training the prior dis-
tribution are extracted from instrument sound database [14]
(i.e., the parameters are estimated without any prior distri-
butions).

By minimizing the cost function,

Q
(p)
kl =

∑
c

∫∫
X

(J)
kl (c, t, f) log

X
(J)
kl (c, t, f)

Jkl(c, t, f)
dt df

+
1
2

∑
m

(ukl(m)− μ
(u)
k (m))2/Σ(u)

k (m)

+
1
2

∑
n

(vkl(n)− μ
(v)
k (n))2/Σ(v)

k (n)

+
1
2

∫∫
(F (I)

kl (t, f)− μ
(F )
k (f))2/Σ(F )

k (f) dt df,

where the last term is an additional cost by using the prior
distribution, we obtain the parameters by taking into account
the timbre varieties. This parameter estimation is equivalent
to a maximum A Posteriori estimation.

3.3 Cost function without considering timbre feature
distributions

In Itoyama’s previous study [9], they used template sounds
instead of timbre feature distributions to evaluate the ‘good-
ness’ of the feature vector. The cost function, Q

(Y )
kl , used in

[9] can be obtained by replacing the negative log-likelihood,
Q

(p)
kl , with the KL divergence, Q

(Y )
kl , from Ykl(t, f) (the

power spectrogram of a template sound) to J ′
kl(t, f):

Q
(Y )
kl =

∑
c

∫∫
X

(J)
kl (c, t, f) log

X
(J)
kl (c, t, f)

Jkl(c, t, f)
dt df

+
∑

c

∫∫
rkl(c)Ykl(t, f) log

rkl(c)Ykl(t, f)
Jkl(c, t, f)

dt df.

4 EXPERIMENTAL EVALUATION

We conducted experiments to confirm whether the perfor-
mance of the source separation using the prior distribution is
equivalent to the one using the template sounds. In the first
experiment, we separated the sound mixtures which were
generated from a MIDI sound generator. In the other one,
the sound mixtures were created from the signals with mul-
tiple tracks [15] which were before mixdown. In this exper-
iment, we compared the following two conditions:

1. using the log-likelihood of timbre feature distribu-
tions (proposed method, section 3.2),

2. using the template sounds (previous method [9], sec-
tion 3.3).

4.1 Experimental conditions

We used 5 SMFs from the RWC Music Database (RWC-
MDB-P-2001 No. 1, 2, 3, 8, and 10) [16]. We recorded all
musical notes of these SMFs by using two different MIDI
sound generators made by different manufacturers. We used
one of them for the test (evaluation) data and the other for
obtaining the template sounds or training the timbre feature
distributions in advance.

The experimental procedure is as follows:

1. initialize the integrated model of each musical note by
using the corresponding template sound,

2. estimate all the model parameters from the input
sound mixture, and

3. calculate the SNR in the frequency domain for the
evaluation.

The SNR is defined as follows:

SNR =
1

C(T1 − T0)

∑
c

∫
SNRkl(c, t) dt,

SNRkl(c, t) = log10

∫
X

(J)
kl (c, t, f)2(

X
(J)
kl (c, t, f)−X

(R)
kl (c, t, f)

)2 df,
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Table 2. Experimental conditions.
Frequency Sampling rate 44.1 kHz
analysis Analyzing method STFT

STFT window 2048 points Gaussian
STFT shift 441 points

Parameters C 2
M 10
N 30

MIDI sound Test data YAMAHA MU-2000
generator Template sounds Roland SD-90

Table 3. SNRs of the signals separated from sound mixtures
generated from a MIDI tone generator. P1, P2, and P3 are
the SNRs which are based on the prior distribution trained
using 1, 2, and 3 instrument bodies, respectively. T is the
SNR which is based on the template sounds.

P1 P2 P3 T
P001 11.5 12.1 11.6 14.0
P002 12.3 12.3 12.5 12.3
P003 11.5 11.8 12.4 10.8
P008 8.1 7.8 8.3 4.9
P010 9.1 8.8 8.9 12.2
Ave. 10.5 10.6 10.8 10.8

Table 4. SNRs of the signals separated from sound mixtures
generated from CD recordings.

P1 P2 P3 T
P001 9.3 9.4 9.4 9.0
P002 11.4 11.5 11.7 11.6
P003 4.0 4.1 4.2 3.1
P008 7.1 7.2 7.3 6.1
P010 8.4 8.5 8.5 8.0
Ave. 8.1 8.2 8.3 7.6

where T0 and T1 are the beginning and ending times of
the input power spectrogram, X(c, t, f), and X

(R)
kl (c, t, f)

is the ground-truth power spectrogram corresponding to the
(k, l)-th note (i.e., the spectrogram of an actual sound before
mixing). We used a 40-parameters for the prior distributions
(1–10 dimensions: ukl(1), . . ., ukl(M), 11–40 dimensions:
vkl(1), . . ., vkl(N)), where M = 10 and N = 30. Other
experimental conditions are shown in Table 2.

4.2 Experimental results

The results are listed in Tables 3 and 4. In both experiments,
the SNRs were improved by increasing the number of in-
strument bodies for training the prior distributions. Further-
more, the average SNR of P3 is equal to that of T in Table 3
and the average SNRs in Table 4 is improved from the aver-
age SNR of T. This means that although the SNRs decrease
in some cases where the timbre difference between template
sounds and input sounds is large, it can be resolved by using

the better prior distributions.

5 CONCLUSION

In this paper, we have proposed the novel use of a music
remixing interface for generating queries for the QBE re-
trieval, explained our Instrument Equalizer on the basis of
sound source separation using an integrated model consist-
ing of harmonic and inharmonic models, and described a
new parameter estimation method for the integrated model
by using the timbre feature distributions. We confirmed that
this method increased separation performance for most in-
strument parts simply by using the basic timbre features.

Although the use of the timbre feature distributions is
promising, it has not been fully exploited in our experi-
ments. For example, we have not tried to use training data
including various performance styles and instrument bodies.
We plan to evaluate our method by using such various train-
ing data as well as more advanced timbre features. Some
performance benchmark for audio source separation [17]
will helpful to compare our separation method with other
ones. Future work will also include the usability evaluation
of the Instrument Equalizer for the use of the QBE retrieval.
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A DERIVATION OF THE PARAMETER UPDATE
EQUATION

In this section, we describe the update equations of each
parameter derived from the M-step of the EM algorithm.
By differentiating the cost function about each parameter,
the update equations were obtained. Let X

(H)
klmn(c, t, f) and

X
(I)
kl (c, t, f) be the decomposed power:

X
(H)
klmn(c, t, f) = Δ(H)(m,n; k, l, t, f)X(J)

kl (c, t, f)

and X
(I)
kl (c, t, f) = Δ(I)(k, l, t, f)X(J)

kl (c, t, f).

A.1 w
(J)
kl : overall amplitude

w
(J)
kl =

∑
c

∫∫ (∑
m,n

X
(H)
klmn(c, t, f) + X

(I)
kl (c, t, f)

)
dt df.

A.2 rkl(c): relative amplitude of each channel

rkl(c) =
C
∫∫ (∑

m,n X
(H)
klmn(c, t, f) + X

(I)
kl (c, t, f)

)
dt df∑

c

∫∫ (∑
m,n X

(H)
klmn(c, t, f) + X

(I)
kl (c, t, f)

)
dt df

.

A.3 w
(H)
kl , w

(I)
kl : amplitude of harmonic and inhar-

monic tone models

w
(H)
kl =

∑
c,m,n

∫∫
X

(H)
klmn(c, t, f) dt df∑

c

∫∫ (∑
m,n X

(H)
klmn(c, t, f) + X

(I)
kl (c, t, f)

)
dt df

and

w
(I)
kl =

∑
c

∫∫
X

(I)
kl (c, t, f) dt df∑

c

∫∫ (∑
m,n X

(H)
klmn(c, t, f) + X

(I)
kl (c, t, f)

)
dt df

.

A.4 ukl(m): coefficient of the temporal power envelope

ukl(m) =

∑
c,n

∫∫
X

(H)
klmn(c, t, f) dt df + μ

(u)
k (m)∑

c,m,n

∫∫
X

(H)
klmn(c, t, f) dt df + 1

.

A.5 vkl(n): relative amplitude of n-th harmonic com-
ponent

vkl(n) =
∑

c

∫∫
X

(H)
klmn(c, t, f) dt df + μ

(v)
k (m)∑

c,n

∫∫
X

(H)
klmn(c, t, f) dt df + 1

.

A.6 τkl: onset time

τkl =

∑
c,m,n

∫∫
(t−mφkl)X

(H)
klmn(c, t, f) dt df∑

c,m,n

∫∫
X

(H)
klmn(c, t, f) dt df

.

A.7 ωkl(t): F0 trajectory

ωkl(t) =

∑
c,m,n

∫∫
nfX

(H)
klmn(c, t, f) df∑

c,m,n

∫∫
n2X

(H)
klmn(c, t, f) df

.

A.8 φkl: diffusion of a Gaussian of power envelope

φkl =
−A

(φ)
1 +

√
A

(φ)2
1 + 4A(φ)

2 A
(φ)
0

2A
(φ)
1

, where

A
(φ)
2 =

∑
c,m,n

∫∫
X

(H)
klmn(c, t, f) dt df,

A
(φ)
1 =

∑
c,m,n

∫∫
m(t− τkl)X

(H)
klmn(c, t, f) dt df, and

A
(φ)
0 =

∑
c,m,n

∫∫
(t− τkl)2X

(H)
klmn(c, t, f) dt df.

A.9 σkl: diffusion of harmonic component along the
frequency axis

σkl =

√√√√∑
c,m,n

∫∫
(f − nωkl(t))2X

(H)
klmn(c, t, f) dt df∑

c,m,n

∫∫
X

(H)
klmn(c, t, f) dt df

.

A.10 E
(I)
kl (t), F (I)

kl (t, f): inharmonic tone model

E
(I)
kl (t) =

∑
c

∫
X

(I)
kl (c, t, f) df∑

c

∫∫
X

(I)
kl (c, t, f) dt df

and

F
(I)
kl (t, f) =

∑
c X

(I)
kl (c, t, f) + μ

(F )
k (f)∑

c

∫
X

(I)
kl (c, t, f) df + 1

.
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