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ABSTRACT

In this paper, we propose a stochastic representation of a
sung melodic contour, calledstochastic phase representa-
tion (SPR), which can characterize both musical-note in-
formation and the dynamics of singing behaviors included
in the melodic contour. The SPR is constructed by fit-
ting probability distribution functions to F0 trajectories in
the F0-∆F0 phase plane. Since fluctuations in singing
can be easily separated by using SPR, we applied SPR
to a melodic similarity measure for query-by-humming
(QBH) applications. Our experimental results showed that
the SPR-based similarity measure was superior to a con-
ventional dynamic-programming-based method.

1 INTRODUCTION

The goal of this study is to build a model that can rep-
resent the dynamics of various singing behaviors (e.g.,
fluctuations in a musical note and continuous transitions
between notes) in a sung melodic contour. Although a
symbolic melodic contour (a sequence of musical notes)
can be easily modeled by a discrete-time stochastic rep-
resentation such as n-grams, this representation cannot be
used for modeling a sung melody because it is difficult
to represent the singing dynamics of its melodic contour,
such as vibrato and overshoot. The dynamic representa-
tion for modeling a sung melody is important for defining
an appropriate melodic similarity between sung melodies,
which is useful for various applications such as query-by-
humming (QBH) and automatic clustering of songs.

Most previous studies including symbolic melodic sim-
ilarities [1, 2] and melodic similarities for sung melodies
[3, 4, 5, 6] focused on the retrieval performance. For sung
melodies, for example, a melodic contour was represented
by a discrete symbolic sequence of musical notes [3, 4] or
a sequence of pitch histograms for unstable pitch contours
[5, 6]. Since they did not model the dynamics at all, their
melodic similarities are sometimes too sensitive to singing
behaviors that may differ among singers.

Therefore, we propose a novel stochastic graphical rep-
resentation of the dynamic properties of sung melodic con-
tours, calledstochastic phase representation (SPR). This
representation is a generative model of melodic contours
and can separate the dynamics of various singing behav-
iors from an original musical note sequence. By using this
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Figure 1. Schematic view of constructing stochastic phase rep-
resentation (SPR). The original F0 contour (a) is mapped onto
the F0-∆F0 phase plane (b). By fitting Gaussian mixture mod-
els to trajectories on the phase plane, stochastic representation
of the F0 dynamics (c) can be constructed.

representation, we also define a melodic similarity mea-
sure for QBH applications. In our experiments, we show
the effectiveness of this similarity measure based on SPR.

2 STOCHASTIC PHASE REPRESENTATION
(SPR) FOR MELODIC CONTOUR

Figure 1 shows an example of an SPR constructed from
singing melodic contours represented as trajectories of the
fundamental frequency (F0). We assume that the F0 tra-
jectories are generated by a dynamic system and repre-
sented in a two-dimensional phase plane,~f(x, ẋ), where
x is the F0 anḋx is its differential. That is,~f(x, ẋ) repre-
sents the local direction of an F0 trajectory. A fluctuation
in a sung melody can be modeled by a damped oscilla-
tion of the dynamic system and appears as a curling tra-
jectory around a certain target point, i.e., an attractor of
the system. The advantage of this modeling is that typi-
cal singing behaviors can be characterized by the shape of
curling trajectories. As shown in Fig. 1(b), for example,
a vibrato within a musical note appears as a circular pat-
tern because it has the quasi-periodic modulation of the
F0, and an overshoot after a note change appears as a spi-



ral pattern because the F0 of the overshoot transitionally
exceeds the F0 of a (target) musical note just after the note
change. Here, the location of each attractor corresponds
to the F0 of its target musical note.

Therefore, we model the curling trajectories by fitting
a Gaussian mixture model (GMM) so that the likelihood
of observing the given trajectories becomes the maximum.
We refer to this GMM-based representation of the F0 tra-
jectories (sung melodic contours) asstochastic phase rep-
resentation (SPR)shown in Fig. 1(c). The F0 of musical
notes is represented by the location of the local maxima
of the SPR, and the singing behavior of those notes is rep-
resented by the shape around the local maxima. Because
each (target) note and its relative length in a melodic con-
tour are captured as the location and its height of the cor-
responding local maximum, respectively, the divergence
between GMM-based distributions in the phase plane is
expected to be a robust melodic similarity measure that
can reduce variations by singing behaviors and focuses on
the original (target) melodic information.

3 EXPERIMENTS

The potential of SPR was preliminarily evaluated on
a small QBH application. The song database consists of
50 short excerpts from 25 pop songs of the RWC Music
Database (RWC-MDB-P-2001) [7]. The average length
of those excerpts is 12 s. For query melodies, 75 subjects
listened to each of the above 50 excerpts and then sang its
melody with lyrics [8]. The number of recorded samples
was 3,750 (75× 50), but we used 3,257 samples after
excluding samples whose melody was extremely different
from the original melody.1

The F0 contour of the query melodies was estimated
for every 10 ms by using YIN [9]. The F0 contour of the
50 excerpts in the song database was manually annotated
[10]. Both F0 contours were represented in cents so that
one equal-tempered semitone corresponds to 100 cents,
and then normalized by subtracting the average F0 value
over each contour.

Finally, the similarity between a query melody and
each excerpt in the song database was calculated by using
a histogram-intersection distance [11] between their dis-
cretized SPRs. SPRs were modeled by 16-mixture GMMs
and converted into discretized SPRs where F0 and∆F0
were uniformly partitioned into square cells (100 cent F0
× 25 cent/sec∆F0) and relative occurrences (frequencies)
within square cells were calculated.

However, since this discretized-SPR-based distance
did not take into account the temporal order of notes, we
divided a long contour into several short segments so that
short segments of the query can be compared with the cor-
responding short segments of each database excerpt in or-
der. Their similarity was calculated by the cumulative sum
of their distances. We thus investigated the performance
improvement by increasing the number of segments. As
for the baseline performance, we also evaluated a tradi-

1 Since all songs in RWC-MDB-P-2001 were original compositions,
the subjects were not familiar with these melodies.

Table 1. Percentage of Mean Reciprocal Rank (MRR)
DTW Proposed

# of segment 1 2 4 8
MRR [%] 64.3 45.6 57.1 65.6 71.1
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Figure 2. ROC curves of similarity measures.

tional dynamic time warping (DTW) matching technique
using F0 contours.

4 RESULTS AND DISCUSSIONS

The obtained QBH results of the mean reciprocal rank
(MRR) and ROC curves are shown in Table 1 and Fig.
2. The proposed distance using the original contours was
inferior to the baseline DTW. However, if we used the pro-
posed cumulative distance after dividing each query con-
tour and each database excerpt into eight segments, the
MRR performance and the ROC curve were improved and
were better than the DTW.

These preliminary results showed that our histogram-
based distance using SPR is promising for measuring
melodic similarity. In the future, we plan to evaluate it
in detail on a larger database. Although SPR has great
potential for representing and generating singing dynam-
ics, we have not tested it yet. Future work will include
the evaluation of its ability to automatically detect partic-
ular singing behaviors such as vibrato and overshoot, and
the generation of melodic contours that reflect personal
singing behaviors.
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