Music Scene Description Project Toward Audio-based Real-time Music Understanding

Overview

Introduction

Our goal

- Build a real-time system that can understand real-world music signals (CD recordings) in a human-like fashion
 - hum the melody
 - notice a phrase being repeated
 - find chorus sections

Useful in various applications
 MIR, music production/editing, entertainment, etc.

Brain mechanisms have not been understood Difficult to implement these abilities

Music Scene Description

□ Real-time music-scene-description system

Obtain descriptions intuitively meaningful to
 untrained listeners

from real-world audio signals containing simultaneous sounds of various instruments (w/ or w/o drum-sounds)

Five descriptions

Consider what is to be achieved to understand music

Real-time methods

- Audio-based real-time beat-tracking method
 [Goto and Muraoka, 1999][Goto, 2001a]
- Predominant-F0 estimation method for detecting melody and bass lines (PreFEst) [Goto, 2001b][Goto, 2003b]
- Chorus-section detection method (RefraiD)
 [Goto, 2003a][Goto, 2003c]

Previous Work

- Two popular approaches
 - Sound source separation
 - Automatic transcription

Neither separation nor transcription is necessary or sufficient for understanding music

 Human auditory system does not extract each individual audio signal

Even if a mixture cannot be separated, that the mixture includes certain components can be understood

• Untrained listeners understand music without mentally representing audio signals as scores

Even if we could derive separated signals and musical notes, it is still difficult to obtain high-level descriptions like melody and chorus

Beat Structure

Audio-based real-time beat-tracking method

 Recognize a hierarchical beat structure Quarter-note and measure levels

Advantage

Track beats above the quarter-note level by using three kinds of musical knowledge

- onset times
- chord changes
 drum patterns
- Multiple agent architectureOverview

Beat-tracking application

• Beat-driven real-time computer graphics Various movements and lighting properties can be changed with musical beats

Masataka Goto 1,2

¹"Information and Human Activity," PRESTO, JST ²National Institute of Advanced Industrial Sci. and Tech. (AIST)

Methods

Beat Structure

Beat-driven Dancers

Melody and Bass Lines

Chorus/Repeated Sections

Melody and Bass Lines

- Predominant-F0 estimation method for detecting melody and bass lines (PreFEst)
 - Estimate the fundamental frequency (F0) of melody and bass lines

	•	
$\left(\right)$	Melody line	~_~_~)
(Bass line	

- Advantage
 - Deal with monaural complex music signals
 - Not assume the number of sound sources
 - Not locally trace frequency components
 - Not rely on F0's frequency component

• MAP estimation using the EM algorithm (maximum a posteriori probability) (expectation-maximization) Introduce original mixture density model

contain every possible harmonic structure with different weights (model parameter)

Estimate the F0's PDF (probability density function) (relative dominance of every possible F0)

Chorus/Repeated Sections

Chorus-section detection method (RefraiD)

 Detect all the chorus sections in a song and several repeated sections

 \longrightarrow time

• Advantage

- Obtain a list of the start and end points of every chorus section in CD recordings

- Detect modulated chorus sections (with key change)
- Overview

 Regard the most repeated sections as the chorus sections in popular music
 Detect without using prior information about spectral characteristics of chorus sections

• Extract 12-dimensional chroma vectors (Sum of power at frequencies of each pitch class)

URL of the Masataka Goto's Home Page: http://staff.aist.go.jp/m.goto/

Metadata

Metadata Editor

- Multipurpose music-scene labeling editor
 - Hand-label musical pieces with metadata (correct descriptions)
 - Evaluate music-scene-description methods

Functions

- Deal with both audio files and SMFs
- Support interactive audio/MIDI playback
- Show subwindows in which any selected descriptions can be displayed and edited
- Support practical editing aids
 - magnifying-glass function
 - region-based cut-and-paste operation
 - cursor movement between
 - context-dependent grid points (e.g., beats)

RWC Music Database: Popular Music

- Hand-labeled chorus sections of all 100 songs (RWC-MDB-P-2001 No.1 - 100)
- Evaluated the RefraiD Compare the output with correct sections Correctly detected in 80 of the 100 songs

Conclusion

- Music Scene Description Project
 - Build a music-scene-description system Understand real-world audio signals w/o deriving musical scores or separating signals
 - Develop a metadata editor Enable a user to hand-label audio files/SMFs with descriptions of the music in those files
 - Hand-labeled 100 songs of RWC-MDB-P-2001
 with their chorus sections

2003/10/28 ISMIR 2003 poster