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Abstract

This paper describes a system that can automatically
synchronize between polyphonic musical audio signals and
corresponding lyrics. Although there were methods that can
synchronize between monophonic speech signals and cor-
responding text transcriptions by using Viterbi alignment
techniques, they cannot be applied to vocals in CD record-
ings because accompaniment sounds often overlap with vo-
cals. To align lyrics with such vocals, we therefore devel-
oped three methods: a method for segregating vocals from
polyphonic sound mixtures, a method for detecting vocal
sections, and a method for adapting a speech-recognizer
phone model to segregated vocal signals. Experimental re-
sults for 10 Japanese popular-music songs showed that our
system can synchronize between music and lyrics with sat-
isfactory accuracy for 8 songs.

1. Introduction

A vocal track and its lyrics play an important role in
many musical genres, especially in popular music. To rep-
resent the theme and story of the song, they are essential
elements that create an impression of the song. When a
song is heard, for example, most people listen to the vo-
cal melody and follow the lyrics. This is why music videos
often display synchronized lyrics as a caption, helping the
audiences enjoy the music.

In this paper we propose an automatic synchronization
system for polyphonic audio signals of songs and their
lyrics. This system can automatically estimate the tempo-
ral relationship (alignment) between audio signals and the
corresponding lyrics. This approach is different from direct
lyrics recognition like speech recognition and takes advan-
tage of the vast amount of lyrics embedded in the web. Our
system has various applications, such as automatic genera-

tion of music video captions and a music playback interface
that can directly access to specific words or passages of in-
terest.

Wang et al. [19] have worked on a similar system. They
have integrated higher structural information (such as beat
tracking and chorus detection) and lower level lyrics align-
ment. Their lower level lyrics alignment method uses only
the duration of each phoneme as a cue. However, this
method is not consistently effective because the durations of
uttered phonemes differ based on location, even though they
are the same phonemes. The method also requires many as-
sumptions about the structure and meter of the song in order
to obtain higher structural information. Other related stud-
ies have focused on lyrics recognition[8, 16, 7]. They use a
speech recognizer for lyrics recognition. These studies pre-
sume pure monophonic singing voices without accompani-
ment, posing additional difficulties for practical use with
musical audio signals like CD recordings.

Because current speech recognition techniques are inca-
pable of automatically synchronizing lyrics with music in-
cluding accompaniments, we developed three methods: a
method for segregating vocal (singing) signals from poly-
phonic audio signals, a method for detecting sections in-
cluding vocal signals, and a method for adapting a phone
model of speech recognizers to segregated vocal signals.

The rest of this paper is organized as follows. In the
next section, we describe an overview of our system for au-
tomatic synchronization between music and lyrics. From
Section 3 to Section 5, we describe our system in detail. In
Section 6, we describe our experiments and present the re-
sults. In Section 7, we draw conclusions and discuss future
directions.
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2. Automatic Synchronization between Music
and Lyrics

Given musical audio signals and the corresponding
lyrics, our system can locate the start and end times for each
phrase of the lyrics by automatic synchronization between
music and lyrics. The system deals with real-world musi-
cal audio signals such as popular music CD recordings that
contain a singer’s vocal track and various accompaniment
sounds. We assume that the main vocal part is sung by
a single predominant singer (except for choruses), but do
not assume anything about the number and kind of sound
sources in the accompaniment sounds.

To solve this problem, the basic idea is to use the Viterbi
alignment (forced alignment) technique that is often used
in automatic speech recognition. This technique, however,
does not work well when there are accompaniment sounds
that are performed together with a vocal and when there
are interlude sections during which the vocal is not per-
formed. We therefore first extract and resynthesize the har-
monic structure of the vocal melody and obtain the vocal
signals by using an accompaniment sound reduction method
that we proposed previously [4]. Then, we detect the vo-
cal sections (regions) from segregated vocal signals by us-
ing a vocal activities detection method based on a Hidden
Markov Model (HMM). Finally, we align the lyrics with the
segregated vocal audio signals by using a Viterbi alignment
technique. We also propose a method for adapting a phone
model to the segregated vocal signals of the target singer.

3. Accompaniment Sound Reduction

To extract a vocal feature representing the phonetic infor-
mation of a singing voice from polyphonic audio signals,
it is necessary to reduce the influence of accompaniment
sounds. We therefore resynthesize vocal signals from the
harmonic structure of the melody line by the following three
parts:

1. Estimating the fundamental frequency (F0) of the
melody line (vocal) in CD recordings by using a
predominant-F0 estimation method called PreFEst [5].

2. Extracting the harmonic structure corresponding to the
F0 of the melody line.

3. Resynthesizing the audio signal (waveform) corre-
sponding to the melody line using a sinusoidal syn-
thesis.

Thus, we obtain a waveform corresponding only to the
melody line. Figure 1 shows an overview of the accompa-
niment sound reduction method. Note that the melody line
obtained with this method may contain instrumental (i.e.,
non-vocal) sounds in interlude sections as well as voices in
vocal sections, because the melody line here is defined as
the most predominant F0 in each frame [5]. It is therefore
necessary to detect the vocal sections by using the method
described in section 4.

2. Harmonic Structure
Extraction

3. Resynthesis

1. F0 Estimation

Input (Polyphonic audio signals)

Output (Melody’s audio signals)

Figure 1. Accompaniment Sound Reduction.

3.1. F0 Estimation

We use Goto’s PreFEst [5] to estimate the F0 of the
melody line. PreFEst estimates the most predominant F0 in
frequency-range-limited sound mixtures. Since the melody
line tends to have the most predominant harmonic structure
in middle- and high-frequency regions, we can estimate the
F0s of the melody line by applying PreFEst with adequate
frequency-range limitation.

We describe a summary of PreFEst below. Hereafter, x is
the log-scale frequency denoted in units of cents (a musical-
interval measurement), and t is discrete time. Although a
cent originally represented tone interval (relative pitch), we
use it as a unit of absolute pitch using 440 × 2

3
12−5 Hz as a

criterion, according to Goto [5]. The conversion from Hz to
cent is expressed as follows:

fcent = 1200 log2

fHz

440 × 2
3
12−5

, (1)

where fcent and fHz represent frequency in cents and Hz,
respectively.

Given the power spectrum Ψ(t)
p (x), we first apply a

band-pass filter (BPF) that is designed so that it covers
most of the dominant harmonics of typical melody lines.
The filtered frequency components can be represented as
BPF (x)Ψ(t)

p (x), where BPF (x) is the BPF’s frequency
response for the melody line. In this paper, we designed
the BPF according to Goto’s specifications [5]. To make
the application of statistical methods possible, we represent
each of the bandpass-filtered frequency components as a
probability density function (PDF), called an observed PDF,
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p
(t)
Ψ (x):

p
(t)
Ψ (x) =

BPF (x)Ψ(t)
p (x)∫ ∞

−∞
BPF (x)Ψ(t)

p (x)dx

. (2)

Then, we consider each observed PDF to have been gener-
ated from a weighted-mixture model of the tone models of
all the possible F0s, which is represented as follows:

p(x|θ(t)) =
∫ Fh

Fl

w(t)(F )p(x|F )dF (3)

θ(t) = {w(t)(F )|Fl ≤ F ≤ Fh}, (4)

where p(x|F ) is the PDF of the tone model for each F0, and
Fh and Fl are defined as the lower and upper limits of the
possible (allowable) F0 range, and w(t)(F ) is the weight of
a tone model that satisfies

∫ Fli

Fhi

w(t)(F )dF = 1. (5)

A tone model represents a typical harmonic structure and in-
dicates where the harmonics of the F0 tend to occur. Then,
we estimate w(t)(F ) using an EM algorithm and regard it as
the F0’s PDF. Finally, we track a dominant peak trajectory
of F0s from w(t)(F ) using multiple agent architecture.

3.2. Harmonic Structure Extraction

Based on the estimated F0, we extract the power of fun-
damental frequency component and harmonic components.
For each component, we allow r cent error and extract the
peak in the allowed area. The power Al and frequency Fl

of l th overtone (l = 1, . . . , L) can be represented as

Fl = argmax
F

|S(F )|

(lF · (1 − 2
r

1200 ) ≤ F ≤ lF · (1 + 2
r

1200 )), (6)

Al = |S(Fl)|, (7)

where S(F ) denotes the spectrum and F denotes the F0
estimated by PreFEst. In our experiments, we set r to 20.

3.3. Resynthesis

We resynthesize the audio signals of the melody line
from the extracted harmonic structure using a sinusoidal
model [12]. We denote the frequency and the amplitude of l

th overtone at time t as F
(t)
l and A

(t)
l , respectively. Changes

of a phase are approximated using a quadratic function so
that a frequency changes linearly, and changes of amplitude
are approximated using linear function. Resynthesized au-
dio signals, s(k), are expressed as

θl(k) =
π(F (t+1)

l − F
(t)
l )

K
k2 + 2πF

(t)
l k + θ

(t)
l,0 , (8)

sl(k) =
{

(A(t+1)
l − A

(t)
l )

k

K
+ A

(t)
l

}
sin (θl(k)) ,

(9)

s(k) =
L∑

l=1

sl(k), (10)

where k represents a time in units of seconds and defines
time t as k = 0, K represents the duration between (t) and
(t + 1) in units of seconds, and θ

(t)
l,0 means an initial phase.

In the first flame, θ
(t)
l,0 was set to 0. Fron then on, θ

(t)
l,0 was

given by
π(F

(t)
l

−F
(t−1)
l

)

2K + θ
(t−1)
l,0 , where F

(t−1)
l denotes a

frequency of lth overtone in the previous flame and θ
(t−1)
l,0

denotes an initial phase in the precious flame.

4. Vocal Activities Detection

We remove non-vocal sections using the vocal activities
detection method. The melody waveform obtained with
the accompaniment sound reduction method contains in-
strumental sounds in non-vocal sections. The existence of
long non-vocal sections negatively influences the execution
of the Viterbi alignment between the audio signal and the
lyrics, if interlude sections are not removed.

We propose a vocal activities detection method that can
control a balance between hit rate and correct rejection rate.
Generally, there is a trade-off relationship between hit rate
and correct rejection rate, and proper balance between them
depends on the application. For example, since our system
positions the vocal activities detection method as a prepro-
cessing of Viterbi alignment, we attach importance to hit
rate instead of correct rejection rate. In other words, we
want to detect all regions that contain vocals. On the other
hands, other applications such as singer identification re-
quire maintenance of a high correct rejection rate, and de-
tection of the regions that certainly contain vocals.

In previous vocal activities detection methods [2, 18, 13],
no studies have ever tried to control a balance between hit
rate and correct rejection rate.

4.1. Basic Formulation

We introduce a Hidden Markov Model (HMM) that tran-
sitions back and forth between vocal state, sV , and non-
vocal state, sN , as shown in figure 2. The vocal state means
that vocals are present and the non-vocal state means that
vocals are absent. Given the feature vectors of input audio
signals, the problem is finding the most likely sequence of
vocal and non-vocal states, Ŝ = {s1, · · · , st, · · ·}.

Ŝ = argmax
S

∑
t

{log p(x|st) + log p(st+1|st)} , (11)

where p(x|s) represents an output probability of state s, and
p(si|sj) represents a state transition probability from state
sj to state si.

Proceedings of the Eighth IEEE International Symposium on Multimedia (ISM'06)
0-7695-2746-9/06 $20.00  © 2006



)|( Vsxp

Non-Vocal State NsVs

)|( Nsxp
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Figure 2. A Hidden Markov Model (HMM) for
vocal activities detection.

The output log probability of each state is approximated
with the following equations:

log p(x|sV ) = logNGMM(x; θV ) − 1
2
η, (12)

log p(x|sN ) = logNGMM(x; θN ) +
1
2
η, (13)

where NGMM(x; θ) denotes the probability density func-
tion of the Gaussian mixture model (GMM) with param-
eter θ, and η represents a threshold parameter that controls
trade-off between hit rate and correct rejection rate. The pa-
rameters of the vocal GMM, θV, and the vocal GMM, θN,
are trained on feature vectors extracted from vocal sections
and nonvocal sections of the training data set, respectively.
We set the number of mixture of the GMM at 64.

4.2. Calculation of Threshold

The balance of vocal activities detection is controlled by
changing η in Equations (12) and (13). However, there is
bias in the log likelihoods of GMMs for each song and it
is difficult to decide universal value of η. Therefore, we
divide η into bias correction value, ηdyn., and application
dependent value, ηfixed.

η = ηdyn. + ηfixed (14)

While the application dependent value, ηfixed, is set by
hand, the bias correction value, ηdyn., is determined by us-
ing Otsu’s method for threshold selection [15] as follows.
We first calculate a difference of log likelihood, l(x), of all
the feature vectors in input audio signals.

l(x) = logNGMM(x; θV ) − logNGMM(x; θN ). (15)

Then we create a histogram of l(x) and select a threshold
to maximize the between-class variance.

4.3. Feature Extraction

Feature vectors used in this method consist of the follow-
ing two features.

• LPC-derived mel cepstral coefficients (LPMCCs):
We use LPC-derived mel cepstral coefficients (LPM-
CCs) as spectral feature for vocal/non-vocal discrim-
ination. LPMCCs are mel-cepstral coefficients of the
LPC spectrum [1]. We have reported that, in the con-
text of singer identification, LPMCCs represent vocal
characteristics better than mel-frequency cepstral co-
efficients (MFCCs) [3, 10], which are widely used for
music modeling [4]. We derive LPMCCs by comput-
ing the MFCC from the LPC spectrum because of sim-
plicity of implementation.

• ∆F0s:
We use the derivative of F0s (∆F0s) [14], which rep-
resent the dynamics of the F0’s trajectory, because
singing voice tends to have temporal variation of F0s
because of vibrato and, therefore, ∆F0s are expected
to be good cues for vocal/non-vocal discrimination.

∆F0 is calculated as a regression parameter over five
frames:

∆f [t] =

2∑
k=−2

k · f [t + k]

2∑
k=−2

k2

, (16)

where f [t] represents the frequency in units of cents at
the time t.

5. Viterbi Alignment

In this section, we describe our method of executing
Viterbi alignment between lyrics and segregated signals.
We first create a language model from the given lyrics and
then extract feature vectors from segregated vocal signals.
Finally, we execute the Viterbi alignment between them.
We also describe our method of adapting a phone model
to the specific singer of the input audio signals.

5.1. Lyrics Processing

Given the lyrics corresponding to input audio signals, we
create a language model for forced alignment. In this lan-
guage model, we deal with only vowel phonemes because
the unvoiced consonant phonemes do not have a harmonic
structure and cannot be extracted by using the accompani-
ment sound reduction method. In addition, the voiced con-
sonant phonemes are usually uttered for a short time and it
is difficult to estimate F0s stably. We first convert the lyrics
to a sequence of the phonemes and then create a language
model using the following rules:

• Ignore all the consonant phoneme except the syllabic
nasal.

• Convert each boundary of sentences or phrases into
multiple short pauses.
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立ち止まる時またふと振り返る

tachidomaru toki mata futo furikaeru

language model

sequence of the phonemes

aa oo spspii

ee

uuaa oo ii

spsp aa aa spsp uu oo

uu aaii uuspsp

original lyrics (Japanese)

Figure 3. Example of lyrics processing.

Figure 4. Example of phoneme labels.

• Convert each boundary of words into a single short
pause.

Figure 3 shows an example of conversion from lyrics to the
language model.

5.2. Adaptation of a Phone Model

We adapt a phone model to the specific singer of input
audio signals. Our adaptation method consists of the fol-
lowing three steps:

Step 1. We adapt a phone model for clean speech to a clean
singing voice.

Step 2. We adapt the phone model for a clean singing voice
to the singing voice segregated using the accompani-
ment sound reduction method.

Step 3. We adapt the phone model for segregated speech
to the specific singer of input audio signals using the
unsupervised adaptation method.

Steps 1 and 2 are carried out preliminarily, and step 3 is
carried out at runtime.

As an adaptation method, we use MLLR and MAP adap-
tation. We manually annotated phoneme labels to the adap-
tation data for supervised adaptation. Figure 4 shows an
example of phoneme labels.

5.3. Alignment

We execute the Viterbi alignment (forced alignment) by
using the language model created from the given lyrics, the

Table 1. Evaluation data set from RWC-MDB-
P-2001.

Song # Singer Name Gender

012 Kazuo Nishi Male
027 Shingo Katsuta Male
032 Masaki Kuehara Male
037 Hatae Yoshinori Male
039 Kousuke Morimoto Male
007 Tomomi Ogata Female
013 Konbu Female
020 Eri Ichikawa Female
065 Makiko Hattori Female
075 Hiromi Yoshii Female

feature vectors extracted from segregated vocal signals, and
the adapted phone model for the specific singers. MFCCs
[3], ∆ MFCCs, and ∆ power are used as a feature vector
for the Viterbi alignment.

6. Experiments

We conducted the experiments to evaluate the perfor-
mance of our system.

6.1. Experimental Condition

For the evaluation data set, we used the 10 songs listed
in Table 1 taken from “RWC Music Database: Popular Mu-
sic” (RWC-MDB-P-2001) [6]. These songs are mainly sung
in Japanese, but small portion of the vocal part is sung in
English. In this experiments, we approximate the English
phonemes using similar Japanese phonemes. Using these
data, we conducted a 5 fold cross validation for each gen-
der, that is, when we evaluated a song by a particular singer
we adapted a phoneme model using the remaining songs of
the same gender.

As the training data for the vocal activities detection
method, we used 19 songs of 11 singers listed in Table 2
which are also taken from “RWC Music Database: Popular
Music” (RWC-MDB-P-2001). These 10 singers differ from
the singers used for evaluation. We applied the accompani-
ment sound reduction method to these training data. We set
ηfixed to 1.5.

Table 3 shows the analysis conditions of the Viterbi
alignment. As an initial phone model, we used the gender
dependent monophone model of ISRC Software [9]. For
conversion from lyrics to a sequence of phonemes, we use
the readings created by ChaSen [11], which is a Japanese
morphological analysis system. For feature extraction, the
Viterbi alignment, and an adaptation of the phone model,
we use HCopy, HVite,and HAdapt in the Hidden Markov
Toolkit (HTK) [17].
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Table 2. Training data for vocal activities de-
tection from RWC-MDB-P-2001.

Singer Name Gender Piece Number

Hiroshi Sekiya M 048, 049, 051
Katsuyuki Ozawa M 015, 041
Masashi Hashimoto M 056, 057
Satoshi Kumasaka M 047
Oriken M 006
Tomoko Nitta F 026
Kaburagi Akiko F 055
Yuzu Iijima F 060
Reiko Sato F 063
Tamako Matsuzaka F 070
Donna Burke F 081, 089, 091, 093, 097

Table 3. Analysis conditions of Viterbi align-
ment.

Sampling 16 kHz, 16 bit
Window function Hamming

Frame length 25 ms
Frame period 10 ms

12th order MFCC
Feature vector 12th order ∆MFCC

∆Power

Evaluation was done by using phrase level alignment. In
these experiments, we define phrase as a section that was
delimited by a space or a line feed in the original lyrics. As
an evaluation measure, we calculate proportion of a length
of the sections that are correctly labeled in phrase level to
a total length of a song (Figure 5). The system output of
a song is judged to be satisfactory if its accuracy was over
90%.

6.2. Evaluation of Whole System

We conducted experiments using the system in which
all the methods described in this paper were implemented.
Figure 6 shows the results of these experiments.

6.3. Evaluation of Adaptation Method

The purpose of this experiment was to investigate the ef-
fectiveness of the adaptation method. We conducted exper-
iments under the following four conditions:

(i) No adaptation: We did not execute the phone model
adaptation.

(ii) One-step adaptation: We adapted a phone model for
clean speech directly to segregated vocal signals. We

Total length of the song

Length of “correct” regions

Phrase CPhrase BPhrase A

Phrase CPhrase BPhrase A

Correct Correct CorrectIncorrect Incorrect

Accuracy =

Ground truth annotation (manually labeled)

System output

Audio signal

Figure 5. Evaluation measure.
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#012 #027 #032 #037 #039 #007 #013 #020 #065 #075

Male Female

Figure 6. Experimental result: evaluation of
whole system.

did not execute the unsupervised adaptation to input
audio signals.

(iii) Two-step adaptation: First, we adapted a phone
model for clean speech to clean vocal signals, and then
we adapted the phone model to segregated vocal sig-
nals. We did not execute the unsupervised adaptation
to input audio signals.

(iv) Three-step adaptation (proposed): First, we adapted
a phone model for clean speech to clean vocal signals,
and then we adapted the phone model to segregated
vocal signals. Finally, we adapted the phone model to
the specific singer of input audio signals.

In this experiment, the vocal activities detection method was
enabled. Figure 7 shows the result of these experiments.

6.4. Evaluation of Vocal Activities Detec-
tion

The purpose of this experiment was to investigate the
effectiveness of the vocal activities detection method. We
also investigated the performance of the vocal activities de-
tection method. We compared the results of disabling the
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Figure 7. Experimental result: evaluation of
adaptation.
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Without detection
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Figure 8. Experimental result: evaluation of
vocal activities detection.

vocal activities detection with the results of enabling it. In
this experiment, the three-step adaptation was executed to
adapt a phone model to the specific singer of input audio
signals. Figure 8 shows the results of these experiments and
Figure 9 shows hit rate and correct rejection rate of the vocal
activities detection method.

6.5. Discussion

As shown in Figure 6, the accuracy was more than 90%
for 8 songs. When we compare the results for the males
and female singers, the accuracy for the female singers is
lower. This is because it is difficult to capture the charac-
teristics of the voices with high F0 [16]. When we analyzed
errors in each song, typical errors occurred at sections in
which the lyrics is sung in English. This means that it is
sometimes difficult to approximate English phonemes using
similar Japanese phonemes. To overcome this problem, we
plan to use an English phone model in combination with a
Japanese one. Other typical errors were caused by a singing

0

10

20

30

40

50

60

70

80

90

100

#012 #027 #032 #037 #039 #007 #013 #020 #065 #075

Hit rate

Correct rejection rate

Male Female

Figure 9. Experimental result: hit rate and
correct rejection rate of vocal activities de-
tection.

style of humming that was not written in the lyrics.
As shown in Figure 7, our adaptation method was ef-

fective for all 10 songs, and as shown in Figure 8, the vo-
cal activities detection method was also effective when ap-
plied to the songs with relatively low accuracy. On the other
hand, this method had poor efficacy to the songs #007 and
#013, even though the accuracies for these songs are rela-
tively low. This is because correct rejection rates for these
songs were not so high as shown in Figure 9. In addition,
when this method was applied to songs with higher accu-
racy, #012 and #037, the accuracy slightly decreased. This
is because the sections improperly rejected by the vocal ac-
tivities detection method are always judged incorrect.

7. Conclusions

We have described a system for automatically synchro-
nizing between musical audio signals and corresponding
lyrics. Our system consists of the following three methods:
accompaniment sound reduction, vocal activities detection,
and Viterbi alignment. We also propose a method for adapt-
ing a phoneme model to the segregated vocal signals of the
specific singer. Experimental results showed that our sys-
tem is robust enough to synchronize lyrics with real-world
music signals containing sounds of various instruments.

The main contributions of this paper can be summarized
as follows:

• We first dealt with the problem of synchronization be-
tween music and lyrics forthrightly by segregating vo-
cal signals from sound mixtures and recognizing the
phonemes. Due to negative influences caused by ac-
companiment sounds, no other studies have succeeded
in applying the technique of speech recognition to this
task.

• We proposed an original vocal activities detection
method that can control the trade-off between hit rate
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and correct rejection rate by changing the parameter.
Although the balance between hit rate and correct re-
jection rate differs depending on the application, lit-
tle attention has been given to this viewpoint. We en-
abled it by dividing the threshold into a bias correction
value and an application dependent value, and obtain-
ing the bias correction value automatically by using
Otsu’s method [15].

• We proposed a method to adapt a phone model for
speech to segregated vocal signals. This method is use-
ful for both alignment between music and lyrics and
lyrics recognition of polyphonic audio signals.

In the future, we plan to conduct experiments using
songs sung in languages other than Japanese. We also plan
to incorporate higher-level information such as song struc-
tures and achieve more advanced synchronization between
music and lyrics.
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