PodCastle

Goal

□ Full-text retrieval of speech data

- Podcasts (audio blogs)
- Individual audio files
- Video clips (YouTube, Ustream.tv, and Nico Nico Douga)

□ ASR (automatic speech recognition) for text transcription

- Difficult to achieve high accuracy
- Diversity of topics, vocabularies,

and speaking styles

Speech data

ASR result The subprime loan crisis is far from over and ...

Collaborative Training of ASR

Incorporate error corrections (wisdom of crowds) into ASR training

Collaborative training of acoustic models (AMs)

Podcast-dependent acoustic model trained

using transcripts corrected by users [Ogata & Goto, Interspeech 2007, 2009, SSCS 2009] Relative error reduction of 21-33%

[Ogata & Goto, Interspeech 2009]

 Collaborative training of <u>language models (LMs)</u> [Ogata & Goto, Interspeech 2012: this paper]

Generate content-specific LM training data

Overcome difficulties in preparing task apositis longuage models in adv

task-specific language models in advance

A common approach of building a task-specific corpus in advance is impractical because it will be too costly and time consuming to cover the diversity

• Use the benefits of our web service PodCastle

Candidate list is generated by using a confusion network
Transcripts voluntarily corrected by end users are used for language-model training

PodCastle

http://podcastle.jp

- Speech retrieval web service based on ASR and crowdsourcing
 - Collect and amplify voluntary contributions

by anonymous users

Automatic learning from the web

- Automatically collect new words/phrases, their pronunciation, and usage examples News articles (Yahoo! news) and web dictionaries
- Add new words to ASR dictionary (0.24M words)

□ Users can find and correct ASR errors

- Original efficient error correction interface
 [Ogata & Goto, Interspeech 2005]
- Improve retrieval performances

by correct indices

Improve recognition performances
 by automatic learning (adaptation/training)

Usage Analysis of PodCastle

- How widely used? (as of Jan 1st, 2012)
 - 877 Japanese speech programs Podcasts and YouTube channels
 - Consist of 147,280 audio files in total
 - 3,279 audio files were partially corrected
 - 580,765 corrected words (errors)

177.1 corrected words per corrected file on average 51.8% were corrected by the candidate selection 48.2% were corrected by the text typing

• There are users who voluntarily cooperate

in the correction

Collaborative Training of Language Models on the Basis of Wisdom of Crowds

Jun Ogata and Masataka Goto (AIST, Japan)

Dynamic Language Modeling System

- Dynamically mix two kinds of LMs for each input episode (audio file)
 - Use corrected ASR transcripts on PodCastle
 - Iterative adaptation system for LVCSR

Topic LMs (background LMs)

- Use web news text from news aggregation site Text articles (Yahoo! news) published during 40 months
- Each covers a different topic Train 25 topic LMs (6 main topics with 25 sub-topics)

Channel-dependent LM

- Use ASR transcripts corrected by end users
- · Generate LM on the fly by using all the other episodes within the same channel/program Assume that episodes belonging to each channel have a linguistic similarity in terms of topics, vocabularies, and frequent phrases

Dynamic mixture of topic LMs

Model-level mixture scheme

Combine n-gram probabilities of 26 component LMs (25 topic LMs with channel-dependent LM)

$$p_{mix}(w \mid h) = \sum_{i} \lambda_i p_i(w \mid h)$$

Mixture weights λ_i are computed by minimizing the perplexity on initial ASR transcript via EM algorithm

Experiments

- Speech data (partially corrected on PodCastle)
 - Test data: 45 episodes from 8 Japanese podcasts
 - Training data for channel-dependent LM

			Test data	Training data
ID	Domain	Main topic	#episodes (#words)	#episodes (#words)
Α	news	multi	4 (11,170)	94 (259,840)
В	news	multi	4 (4,937)	23 (24,908)
С	lecture	politics	20 (13,876)	79 (65,984)
D	lecture	business	5 (10,763)	35 (125,432)
E	quiz show	general knowledge	2 (1,910)	30 (39,098)
F	lecture	health & care	2 (3,292)	71 (193,569)
G	chitchat	music	4 (25,239)	56 (283,414)
Н	chitchat	show business	4 (9,251)	60 (127,840)

ASR system [Ogata, Goto & Eto, Interspeech 2007]

 Multi-pass decoding with unsupervised MLLR GMM-based audio segmentation (speech/music/others)

Confusion network generation Baseline acoustic model:

- Tied-state triphone (4513 states, 16 Gaussians/state) Trained with 600 h of presentation speech data (CSJ) • Language model: 3-gram (vocabulary size: 286,345)
- WER results (average)

			``		U /					
	35	I.					w/o			
	55		35.3			corrections				
R(%)					33.5		32.7		/	
Ř	30						52.1	CO	rectio	ons
WEI									28.9	
3	25								20.5	
	20	h	acolin	o wło	ohanno		w/ cl	hanno	LIM	
baseline w/o channel LM w/ channel LM										
Proposed dynamic language modeling system octed transcripts are effective in language modeling										
cted	d tra	ans	script	s are	effec	tive ir	i lang	luage	mod	eling
bari	SOI	n c	dt we	eight	opti	miza	ition	(VVE	:K%)

 Comp pervi: 33.4

28.6

	unsupervised	sup
w/o channel LM	33.5	
w/ channel LM	28.9	

Corre

unsupervised: w/ recognition hypothesis supervised: w/ manual transcriptions

History

□ http://podcastle.jp since 2006 • 2006/01 Started the project

- Released to the public • 2006/12 The world's first speech retrieval using crowdsourcing
- 2008/06 Press release (media coverage)
- 2011/10 Press release (media coverage)
- 2011/10 Launch the English version Powered by ASR of CSTR, Univ. of Edinburgh in collaboration with CSTR and AIST AIST The Centre for Speech Technology Res The University of Edinburgh

Summary

Dynamic language modeling for spoken content on the web

- Use of topic LMs based on web news
- Use of channel-dependent LM generated by user transcripts (wisdom of crowds)
- Model-level mixture with optimal weights
- Plan to deploy the proposed system on the PodCastle web service to improve ASR results

Video clip of PodCastle: http://staff.aist.go.jp/m.goto/PodCastle/