Proceedings of the 8th Annual Conference of the International Speech Communication Association

(Interspeech 2007), pp.2617-2620, August 2007.

Automatic Transcription for a Web 2.0 Service to Search Podcasts

Jun Ogata, Masataka Goto, and Kouichirou Eto

National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JAPAN

Abstract

This paper describes speech recognition techniques that enable
a Web 2.0 service “PodCastle” where users can search and read
transcribed texts of podcasts, and correct recognition errors in
those texts. Most previous speech recognizers had difficulties
transcribing podcasts because podcasts include various kinds of
contents recorded in different conditions and cover recent top-
ics that tend to have many out-of-vocabulary words. To over-
come such difficulties, we continuously improve speech recog-
nizers by using information aggregated on the basis of Web 2.0.
For example, a language model is adapted to a topic of the tar-
get podcast on the fly, the pronunciations of out-of-vocabulary
words are obtained from a Web 2.0 service, and an acoustic
model is trained by using the results of the error correction by
anonymous users. The experiments we report in this paper show
that our techniques produce promising results for podcasts.
Index Terms: podcast, speech recognition, Web 2.0, acoustic
model, language model

1. Introduction

One of the main applications of the automatic speech recogni-
tion of multimedia data is to serve as the basis for automatic
indexation for an information retrieval system. From this view-
point, spoken document retrieval (SDR) systems have been de-
veloped by many research groups across the world [1][2]. How-
ever, SDR systems or technologies have not been in practical
use such as text retrieval engines (e.g., Google and Yahoo!). be-
cause the automatic transcription and indexation of multimedia
data in the real world is very difficult. The amount of speech
data is increasing rapidly on the web because podcasts that are
often referred to as audio blogs have recently become popu-
lar and widespread. We therefore think SDR technologies and
systems are in great demand especially for web applications or
services.

As an application of SDR technologies based on speech
recognition, we have developed a new web application, called
“PodCastle”’[3], in which podcasts can be searched, read, and
annotated. PodCastle enables a user to search podcasts that in-
clude a search term and read automatically transcribed texts of
the found podcast. Furthermore, it also enables the user to cor-
rect (annotate) recognition errors in the texts via an efficient
error correction interface. If a lot of users contribute to the er-
ror correction, PodCastle can provide relatively accurate tran-
scriptions of podcasts and improve the performance of full-text
search. In addition, the speech recognizer can be trained from
transcriptions whose recognition errors are corrected by users.
Through this system architecture, we aim to improve not only
the search performance but also the speech recognition perfor-
mance.

In this paper, we present a podcast transcription system in-
tegrated into PodCastle. There are two main difficulties in tran-
scribing podcasts. First, the contents and recording environ-
ments of podcasts have a wide variety. Second, podcasts tend
to include words and phrases related to recent topics, which are

2617

usually not registered in the system vocabulary of state-of-the-
art speech recognizers. To overcome these difficulties, we first
introduce a method to keep the language model of our speech
recognizer up-to-date by using on-line news texts. We then
present three methods for improving the speech recognition per-
formance by using information that is aggregated on Web 2.0
services: a language model adaptation method using RSS meta-
data of podcasts, a pronunciation acquisition method using an
external Web 2.0 service that collects various keywords includ-
ing recent ones, and a method of training the acoustic model
of the recognizer from the results of user corrections to speech
recognition errors.

The remainder of the paper is organized as follows. The
next section provides an overview of PodCastle. Section 3 de-
scribes our podcast transcription system used as the baseline,
and Section 4 presents the improving methods on the basis of
Web 2.0. The last section provides conclusions and our future
plans.

2. A new web application for searching,
reading and annotating podcasts

Podcasting is a mechanism in which multimedia files dis-
tributed over the web can be downloaded automatically for
playback on portable media players and personal computers,
and it has become very popular recently. A podcast consists of
several audio data (MP3 files) called episodes and a syndication
feed (RSS) that includes metadata information about episodes.
The feed provides not only the list of URLs of audio files by
which episodes can be accessed but also other information such
as the published date, titles, and summaries. With regard to pod-
casting, the amount of audio data on the web has been steadily
increasing.

PodCastle aims to encourage the structuring of podcasts by
using several technologies such as automatic transcription, full-
text search, and efficient browsing. In this system, first, pod-
casts (i.e., audio data and RSS) are collected by a web crawler.
Then, the audio data are transcribed by the speech recognizer to
create indices for searching. The recognition results include not
only a word sequence but also other information such as the be-
ginning and ending time for each word, competitive candidates,
and confidence scores. By using these recognition results and
RSS feeds, PodCastle has three main functions as follows.

2.1. Searching function

This function performs the full-text searching of podcasts. The
text indices used in searching are generated by the speech rec-
ognizer. When a user inputs a search term, the system displays
a list of episodes that include the search term. Each episode is
accompanied with a text excerpt around the highlighted search
term and the user can listen to each excerpt. When the user
clicks to select an episode, the system moves to the next read-
ing function.

August 27-31, Antwerp, Belgium

Web browser
[_Back |
WE D AfLU— T &% L BIK BRI
I59vR 1] & = [cles|L] x| 2nk =
wE |[o|s160— #
18 T | |] L]
2 51 | ®B

ISR 22

YA

=

||

Figure 1: The error correction interface in PodCastle.

2.2. Reading function

This function enables a user to “read” a podcast by display-
ing the full-texts of a podcast episode. Therefore, the user can
grasp the contents of the episode even without playback equip-
ment for the audio data. In PodCastle, since all the transcribed
texts are open to the public as permalinks, a user can search and
find a podcast episode in the same manner as searching a web
page on a general text-search engine. As a result, it leads to the
recognition of a podcast by more and more users.

2.3. Annotating function

The unique feature of PodCastle is that all users accessing the
PodCastle service can annotate the full text of a podcast. This is
called the annotating function, and it refers to generating a full-
text transcription of the podcast. However, transcribing manu-
ally from scratch is a very costly and time consuming process
for users. Thus, this function provides an error correction inter-
face in which recognition errors can be quickly and easily cor-
rected by users [4]. For each audio data of a podcast episode,
this function displays not only a 1-best word sequence but also
a numbered list of N-best competitive candidates for each word
(not for a sentence) as shown in Figure 1. A user who finds a
recognition error can simply select the correct word from the
candidates. When the correct word is not shown in the candi-
dates, the user can also correct the error by typing through the
keyboard. For the generation of candidates, we adopt a confu-
sion network that is a simple network representing the interme-
diate recognition result and is obtained by condensing a huge
word graph [5].

This error correction by users can be regarded as a so-
cial annotation on Web 2.0. In PodCastle, the performance of
both full-text search and speech recognition will be improved
based on the annotation. However, in order to let users correct
recognition errors easily and efficiently, the recognition results
should have as high quality as possible. Hereafter, we describe
the speech recognition system and methods to improve the per-
formance of speech recognition in order to transcribe podcasts
more accurately.

3. System description

Our speech recognition system aims to generate not only a 1-
best word sequence but also a numbered list of /N-best competi-
tive candidates for each word. In this section, the details of each
component of the baseline transcription system are presented.

3.1. Audio segmentation

In order to transcribe the continuous stream of audio data, seg-
mentation or partitioning techniques to detect speech segments
are important. In this work, a Gaussian mixture model (GMM)
based approach is adopted for prior audio segmentation. As

2618

a preliminary experiment, we considered only three types of
acoustic events: speech, music without speech, and other back-
ground sounds. The speech and background-sound models were
trained on a Japanese speech corpus. For the music-without-
speech model, we used the RWC music database (RWC-MDB-
P-2001, RWC-MDB-R-2001, and RWC-MDB-J-2001) [6]. The
number of the Gaussian mixtures of each model is 64. The
entire audio stream is directly recognized using a conventional
Viterbi decoder with each of the three GMMs in parallel. Since
this approach tends to provide short segments of those events,
we use an inter-class transition penalty that forces the decoding
process to produce longer segments.

3.2. Acoustic model

In general, podcast audio data include various types of speech,
for example, noisy speech, narrow-band speech, and speech
with music. To suppress some noises in such speech segments,
the ETSI advanced front-end [7] is used to estimate MFCCs
in the preprocessing stage. Finally, we obtain an acoustic fea-
ture vector consisting of 39 components (12 MFCCs, normal-
ized log energy, and their first and second differential coeffi-
cients). As for the training data of acoustic modeling, we used
600 hours of presentation speech in the Corpus of Spontaneous
Japanese (CSJ) [8]. The speech recognizer uses a tied-state left-
to-right context-dependent HMM with Gaussian mixture obser-
vation densities where tied states are constructed by using a top-
down clustering method based on a phonetic decision tree. The
cross-word triphone model has 4513 tied states and 16 Gaus-
sians per state.

3.3. Language model

Language modeling is one of the challenging issues in recogniz-
ing the speech of podcasts. Since podcasts have various tasks
and wide domains, it is very difficult to specify the topic and vo-
cabulary to be covered in a language model beforehand. There-
fore, it can be said that large-scale models are ideal to include
as many words to be recognized as possible. In this work, we
used 10 years of Japanese newspaper articles and transcriptions
of spontaneous presentations in the CSJ as a basic text corpus
for training the language model. However, regardless of how
large the scale of the language models is prepared beforehand,
the out-of-vocabulary issue will not be solved drastically in the
recognition process. In particular, this problem is more criti-
cal for podcasts because the latest topics and words appear fre-
quently in newly added episodes on a daily basis. To deal with
this problem, daily updated text data from web news sites are
also used for training of the language model. In this work, we
have collected the text data for each news category from two
popular web news sites (Yahoo! news and Google news) every-
day. Finally, a 3-gram language model was trained on the three
kinds of text corpora/resources (newspapers, the CSJ, and web
news) and contains 152163 words.

3.4. Decoding

For the podcast transcription system, a multi-pass decoding
strategy is used to reduce the computational costs and gener-
ate competitive candidates. Recognition is performed in three
decoding passes as follows:

1. Initial hypotheses are generated using a phoneme recog-
nizer, and the hypotheses are used for unsupervised acoustic
model adaptation using the MLLR technique [9].

2. Word decoding is carried out using the adapted acoustic
model. First, a word graph is generated using a lexical tree
beam search with a 2-gram back-off language model. Then,

Table 1: Description of the test set

Category Length Read or Acoustic
ID (sec.) Spontaneous | conditions
A | commentary | 192.1 spontaneous clean
B commentary 128.2 spontaneous clean
C news 1159.6 read clean
D news 247.3 read music
E chitchat 486.6 spontaneous clean

Table 2: Perplexities (ppl.) and the number of OOV words for
the test set.

LM LM+web
ID | ppl. | #0O0OV words | ppl. | # OOV words
A | 1122 4 104.1 2
B 86.8 0 72.6 0
C 86.5 10 62.1 10
D | 146.6 8 99.6 5
E | 281.0 18 266.2 18

Table 3: Word error rates and network error rates for each lan-
guage model.

LM LM+web
ID [WER(%) | NER(%) | WER(%) | NER(%)
A 28.9 125 275 1.1
B 275 13.4 25.3 9.8
C 24.1 9.1 18.3 8.2
D 45.6 24.8 35.6 13.1
E 48.4 32.3 45.1 29.1

the word graph is rescored using a 3-gram language model
and the word hypotheses are used for the MLLR adaptation.

3. The above mentioned word decoding is conducted again us-
ing the adapted acoustic model, and the word graph is re-
constructed. Finally, the consensus decoding [5] that di-
rectly minimizes the word error rate is conducted, and a
confusion network is generated.

The confusion network generated in the final process is adopted

to the error correction interface as shown in Figure 1.

3.5. Experiments

The transcription performance of the baseline system was eval-
uated with the actual podcast speech data. For testing, we used
five Japanese podcasts and selected one episode from each pod-
cast as shown in Table 1. The test set includes three categories
of podcasts: a commentary focused on the latest economics in
Japan (ID: A, B), a daily news distributed by a Japanese broad-
casting company (ID: C, D), and a chitchat show by a Japanese
popular teen idol (ID: E).

First, we evaluated the performance of the language mod-
els. Table 2 gives the perplexity and the number of out-of-
vocabulary (OOV) words of each episode. In this table, “LM”
indicates the baseline language model trained on two text cor-
pora (newspapers and the CSJ) and “LM+web” indicates the
“up-to-date” language model using web news texts described
in Section 3.3. Our up-to-date language model significantly re-
duced the perplexity of all episodes. As can be seen, it achieved
significant improvements especially for daily-news speeches
(C, D). This means that the up-to-date language model can cap-
ture the latest topic and vocabulary by using web-news texts.

Table 3 shows the word error rate (WER) and network er-
ror rate (NER). The NER is computed as the WER of a word

2619

Table 4: Perplexities (ppl.) and the number of OOV words for
each language model.

LM+web LM+web+adapt
ID | ppl. | #OOV words | ppl. | # OOV words
A | 104.1 2 103.1 2
B 72.6 0 46.9 0
C 62.1 10 61.5 10
D 99.6 5 88.9 5
E | 266.2 18 193.6 18

sequence which best matches the correct word sequence in a
confusion network. According to the improvements of the lan-
guage model, the recognition performance was also improved,
and the effectiveness of the use of web-news texts for language
modeling was confirmed. These results show that a mechanism
to keep a speech recognizer always up-to-date is needed in or-
der to transcribe speech data like podcasts that are updated on a
daily basis.

4. Improving methods on the basis of Web
2.0

In this section, we present methods to improve speech recogni-
tion using Web 2.0 knowledge sources and contents. Recently,
in Web 2.0 services and applications, a huge amount of multi-
media contents and annotations are generated and accumulated
by an unspecified number of users. These resources are steadily
increasing and updated on a daily basis. In this work, we study
the use of these useful resources for training of the speech rec-
ognizer.

4.1. Language model adaptation using RSS metadata

A podcast is distributed using RSS syndication feeds to notify
users about updates. As mentioned above, the feed provides
useful data such as the publishing date, titles, and accompany-
ing text descriptions of the series and each of its episodes. In
this work, we study the use of the text data in RSS for the topic
adaptation of language models. The topic adaptation is con-
ducted for each episode as follows:

1. Parse RSS “title” and “description” for nouns using a
Japanese morphological analyzer Chasen.

2. Retrieve text documents related to the topic of the episode
from the web using a text search engine. We use only nouns
in the parsed text as search terms.

3. Build a web-based language model from the retrieved doc-
uments.

4. Interpolate the web-based language model with the baseline
language model described in Section 3.3

In order to confirm the effectiveness of the adaptation, we eval-
uated the recognition performance of the test set. As a search
engine, we used the Yahoo! web search API [12] and the num-
ber of the retrieved pages was set to a maximum of 200 per
query.

The experimental results of the adaptation are summarized
in Table 4 and 5. The effectiveness of the adaptation varied for
each episode in the test set. For the three episodes (B, D, and
E), the perplexity was reduced significantly and the recognition
performance was also improved. In these episodes, the RSS
feeds contained summaries of the main topics. Hence, text doc-
uments related to the topics were collected from the web. On
the other hand, only slight improvements were achieved for the
two episodes (A, C). This is because no useful information for
the topic adaptation was given in the RSS feed.

Table 5: Word error rates and network error rates for each lan-
guage model.

LM+web LM+web+adapt
ID | WER(%) | NER(%) | WER(%) | NER(%)
A 27.5 11.1 27.2 11.2
B 253 9.8 22.9 9.0
C 18.3 8.2 18.0 8.2
D 35.6 13.1 34.5 12.9
E 45.1 29.1 424 27.4

4.2. Acquiring word pronunciations from the web

Podcasts cover a large range of topics including the newest
proper names and buzzwords. Thus it is impossible to prepare
a dictionary which includes all words (and their pronunciation)
that might occur in a podcast. Many technical terms and coined
words of various topics also have to be considered (e.g., Pod-
Castle, Wikipedia, and so on) in the podcast transcription task.
In this work, we try to automatically obtain their pronuncia-
tions from the web. A Japanese Web 2.0 service “Hatena diary
keyword” [10] publishes a list of new keywords including ex-
planations and pronunciations. The keywords of this list have
been updated by anonymous users, and over 193000 keywords
are registered at present. The site reports that about 300 words
are added daily.

In typical Japanese LVCSR systems, the pronunciations
used in the recognizer are taken from a publicly available
Japanese dictionary [11] that includes various information such
as grammar, parts of speech, and pronunciations of words.
Although the dictionary contains a large amount of general
words, it is insufficient when dealing with podcasts as men-
tioned above. In fact, the pronunciations were not obtained from
the dictionary for 11.5% (17438/152163) of words in our up-to-
date language model. By using the pronunciations of Hatena
diary keyword, the correct pronunciations were obtained for
22.9% (3997/17438) of the words. Unfortunately, we could not
confirm the effectiveness on the recognition performance, be-
cause these words do not occur in the test set. However, since
some of these words are very popular, we believe that this ap-
proach will improve the performance of the speech recognition
system in general.

4.3. Acoustic model training based on error corrections by
users

In PodCastle, the manual annotations for podcasts are basically
the correction of speech recognition errors. Although some
users may thoroughly correct all recognition errors, most users
will correct only errors related to keywords or key sentences ac-
cording to their interests. Therefore, the use of error correction
results to improve the speech recognizer is a considerable chal-
lenge. As the first step of this challenge, we use error correction
results for training the acoustic model. In a podcast, the acous-
tic conditions tend to be similar throughout all episodes, such
as speakers, recording conditions, and the level of background
music. We therefore first trained the acoustic model by using
one episode of each podcast and then evaluated the performance
improvement by using the other episodes in the same podcast.
For each of the five podcasts, one episode where errors were
corrected by users was used for training. However, these error
corrections were not necessarily carried out perfectly. For ex-
ample, only about 50% of the recognition errors were corrected
for the episode of podcast E. To estimate the HMM parameters,
we used the MLLR-MAP method: i.e., the MLLR transformed

2620

Table 6: Performance of MLLR-MAP training.

before training after training
ID | WER(%) | NER(%) | WER(%) | NER(%)
A 27.2 11.2 25.1 9.4
B 229 9.0 19.3 8.5
C 18.0 8.2 16.1 7.9
D 345 12.9 27.8 9.1
E 424 274 40.1 25.1

parameters were used as the priors for MAP estimation. Table
6 shows the effectiveness of the acoustic training. Although the
amount of speech data was limited and the corrected transcrip-
tions used as the training data were not perfect, the recogni-
tion performance was improved overall. In particular, a larger
improvement was achieved for podcast D that has an adversed
acoustic condition. From these results, we confirmed that the
podcast-dependent training of the acoustic model was effective.

5. Conclusions

We have presented speech recognition techniques that enable a
new web service “PodCastle” for searching, reading, and an-
notating podcasts. To overcome the difficulties in transcribing
podcasts, we proposed methods for the language model updat-
ing using web news texts, the language model adaptation using
RSS metadata, and the pronunciation acquisition using a Web
2.0 service. Furthermore, the results of our preliminary exper-
iments show that the acoustic model can be improved by using
transcriptions corrected by users.

In future work, we plan to further investigate the effective-
ness of the methods presented in this paper in larger-scale ex-
periments. We will also study other training techniques for the
speech recognizer so as to make best use of user corrections. At
present, the recognition performance degrades drastically for
very complex podcasts such as those including human-human
conversations, speech with loud background music, and recog-
nition of very emotional speech. We will tackle these issues
using the advantages of PodCastle and the Web 2.0 framework.

6. References

D. Miller, et al., “BBN at TREC7: Using hidden Markov models
for information retrieval,” in Proc. of TREC-7, pp.133—142, 1999.
J.-M. V. Thong, et al., “Speechbot: An experimental speech-based
search engine for multimedia content on the web,” IEEE Transac-
tions on Multimedia, vol.4, no. 1, pp. 88-96, 2002.

M. Goto, et al., “PodCastle: A Web 2.0 Approach to Speech
Recognition Research,” in Proc. of Interspeech 2007, 2007.

J. Ogata and M. Goto, “Speech Repair: Quick error correction just
by using selection operation for speech input interfaces,” in Proc.
of Eurospeech 2005, pp. 133-136, 2005.

L. Mangu, et al., “Finding consensus in speech recognition: word
error minimization and other applications of confusion network,”
Computer Speech and Language, vol.14, no.4, pp.373-400, 2000.
M.Goto, “Development of the RWC music database,” in Proc. of
ICA 2004, pp.1-553-556, 2004.

ETSIES 202 050 v1.1.1 STQ

T.Kawahara, et al., “Benchmark test for speech recognition us-
ing the corpus of spontaneous Japanese,” in Proc. SSPR 2003,
pp.135-138, 2003.

C.L. Leggetter and P.C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
Markov models,” Computer Speech and Language, vol.9, pp.171—
185, 1995.

Hatena diary keyword, http://d.hatena.ne.jp/keyword

ipadic, http://chasen.naist.jp/stable/ipadic

Yahoo! web search API, http://developer.yahoo.co.jp/search

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]
(1]
[12]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

