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Abstract

Preferential Bayesian optimization (PBO) is a vari-
ant of Bayesian optimization that observes relative
preferences (e.g., pairwise comparisons) instead of
direct objective values, making it especially suitable
for human-in-the-loop scenarios. However, real-
world optimization tasks often involve inequality
constraints, which existing PBO methods have not
yet addressed. To fill this gap, we propose con-
strained preferential Bayesian optimization (CPBO),
an extension of PBO that incorporates inequality
constraints for the first time. Specifically, we present
a novel acquisition function for this purpose. Our
technical evaluation shows that our CPBO method
successfully identifies optimal solutions by focusing
on exploring feasible regions. As a practical applica-
tion, we also present a designer-in-the-loop system
for banner ad design using CPBO, where the objec-
tive is the designer’s subjective preference, and the
constraint ensures a target predicted click-through
rate. We conducted a user study with professional
ad designers, demonstrating the potential benefits
of our approach in guiding creative design under
real-world constraints.

1 Introduction

Preferential Bayesian optimization (PBO) [Brochu et al., 2007;
Gonzalez et al., 2017; Koyama et al., 2022] is a variant of
Bayesian optimization (BO) [Shahriari et al., 2016] that ob-
serves relative preferences (e.g., pairwise comparisons) in-
stead of direct objective values. Since relative evaluations
are generally considered easier, faster, and more accurate
than absolute evaluations for human subjective assessments
[Brochu et al., 2010; Yoshida et al., 2024], PBO is particu-
larly well-suited for problems in which human preference
serves as the objective function to be maximized. It has
been effectively employed to implement human-in-the-loop
optimization systems for visual design [Brochu et al., 2007;

An extended version of this paper with an appendix is available
at http://arxiv.org/abs/2505.10954
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Brochu et al., 2010; Koyama et al., 2017; Koyama et al., 2020;
Yamamoto et al., 2022].

However, existing PBO methods have not been adapted to
handle constrained optimization problems. Many real-world
optimization tasks (e.g., product and architectural design, drug
discovery, and recommender systems) involve maximizing
human preferences under additional constraints. For exam-
ple, in product and architectural design, users may express
preferences over usability, while the design must also satisfy
constraints such as durability or thermal performance, often
evaluated through physical simulations. These scenarios re-
quire human-in-the-loop optimization under costly or implicit
constraints, highlighting a technical gap in extending PBO to
such applications.

To address this gap, we propose a new method called con-
strained preferential Bayesian optimization (CPBO), which
incorporates inequality constraints into PBO. As the core of
CPBO, we introduce a novel acquisition function, expected
utility of the best option with constraints (EUBOC), which
extends an existing PBO acquisition function [Lin et al., 2022].
We evaluate the proposed method through simulation experi-
ments, highlighting its ability to find optimal solutions while
effectively accounting for constraints.

As a practical application of CPBO, we propose a novel
designer-in-the-loop framework for banner ad design, where
the predicted click-through rate (CTR) serves as a constraint.
Banner ads are used to promote products or services on-
line, and CTR, the fraction of clicks relative to impres-
sions, is a key metric in the advertising industry [McMa-
han ef al., 2013; Chen et al., 2016; Richardson et al., 2007,
Zhou et al., 2018]. However, focusing solely on maximiz-
ing CTR can lead to designs that, while effective in cap-
turing clicks, may be visually unappealing or even annoy-
ing, negatively affecting brand perception [Zeng et al., 2020;
Zeng et al., 2021]. Consequently, effective banner ad design
requires maximizing visual appeal while maintaining a rea-
sonably high CTR. This task is more complex than typical
visual design tasks that focus solely on subjective preferences,
such as those addressed in previous work [Brochu et al., 2010;
Koyama et al., 2020; Yamamoto et al., 2022]. To evaluate
its effectiveness, we conducted a user study with professional
ad designers, revealing that they positively received the con-
cept of our framework and appreciated its potential to reduce
design workload.
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Our contributions are summarized as follows.

* We propose CPBO, a novel extension of PBO that handles
inequality-constrained optimization problems.

* To implement CPBO, we propose EUBOC, a new acqui-
sition function for CPBO. We evaluate its performance
through simulation experiments.

* As a practical CPBO application, we propose a novel
designer-in-the-loop framework for banner ad design that
integrates CTR considerations. A user study with profes-
sional ad designers validates its real-world viability.

2 Preliminaries

Before describing our proposed CPBO technique, we describe
its foundation: PBO and constrained Bayesian optimization
(CBO). Especially, we detail their acquisition functions: ex-
pected utility of the best option (EUBO) [Lin et al., 2022] for
PBO, and expected improvement with constraints (EIC) [Gard-
ner and Kusner, 2014] for CBO.

Throughout this paper, we assume that the input variables
consist of N continuous parameters, each normalized to the
range of [0, 1] (without loss of generality). We denote these
parameters by x; € [0,1] (¢ = 1,...,N), and define the
vector * = [z1,...,xn] € X, where X = [0,1]V. We
further denote the objective function by f : X — R and the
constraint function by ¢ : X — R.

2.1 Preferential Bayesian Optimization

PBO is a variant of BO that observes relative preferences
instead of direct objective function values. As with standard
BO, the goal of PBO is to identify the global optimum of a
black-box function:

x* = arg max f(x). (1)
reX
However, PBO achieves this by iteratively collecting prefer-
ence data instead of observing the function value f () directly.
In this work, we assume that each observation yields a forced
choice between two candidates, denoted as d = () = )
(i.e., the candidate (¥ is preferred over the candidate (),

PBO is often used in human-in-the-loop settings [Koyama et
al., 2022], where the black-box objective function represents
a human preference, and the goal is to find the most preferred
option through iterative human evaluations.

In PBO, a probabilistic model serves as a surrogate for the
objective function f, and this model is continuously updated
based on the observed preference data through Bayesian in-
ference. Gaussian processes (GPs) [Rasmussen and Williams,
2005] are often used as surrogates owing to their flexibility;
we adopt GPs for this purpose as well.

The likelihood of a preference data d = (? = x() is
often modeled using the Thurstone-Mosteller model [Chu and
Ghahramani, 2005]:

2 _ f(zd)
f@D) = f( ))) o

V20

where ®(-) is the cumulative distribution function of the stan-
dard normal distribution, and o is the standard deviation of the

Paln=o(

Gaussian noise. The likelihood of multiple preference data,
D = {di1,ds,...} is given by P(D|f) = II; P(d;|f). Using
this probability, the surrogate model can be updated; refer to
[Chu and Ghahramani, 2005] for details.

At each iteration of PBO, the next candidate point to be
compared is selected by maximizing an acquisition function
derived from the updated surrogate model. The acquisition
function measures a candidate’s effectiveness, and its design
is critical to the overall performance of PBO.

EUBO [Lin et al., 2022] is one of the state-of-the-art acqui-
sition functions for PBO. It can be expressed in closed form
for two search points () and () as

EUBO(:ac(i)7 ac(j)) = E[max{f(x(i)), f(w(j))}]

= Ad (A> +o¢ <A) + uf(w(j)),
o o
3

where ¢(-) is the probability density function of the stan-
dard normal distribution, A = E[f(x®) — f(x())], 0? =
Var[f () — f(@))], and ! (20)) = E[f(27))]. We adopt
EUBO as the basis of our proposed technique because of its
efficiency and computational simplicity.

2.2 Constrained Bayesian Optimization

CBO is a variant of BO designed for optimization problems
with an additional inequality constraint defined as

c(x) > A\, 4)

where c is a black-box constraint function and A denotes a
threshold for the constraint. In addition to modeling the objec-
tive function, CBO typically constructs a GP surrogate for the
constraint function; we adopt this approach in our work.

EIC [Gardner and Kusner, 2014] is an acquisition function
for CBO. The key idea is to multiply the expected improvement
(EI), a popular acquisition function for BO, by the probability
of satisfying the constraint; that is,

EIC(x) = P(c(x) > \) El(x). Q)

We adopt EIC as the constraint-handling method in our pro-
posed technique because of its simplicity and compatibility
with EUBO. Although many constraint-handling methods ex-
ist [Hern4dndez-Lobato et al., 2015; Amini et al., 2025], most
are incompatible with EUBO, such as those requiring direct
objective values or information-theoretic assumptions. Given
these considerations, we find EIC to be a suitable choice.

3 Constrained Preferential Bayesian
Optimization
3.1 Problem Formulation

We aim to solve the following constrained optimization prob-
lem:
¥ = argmax f(x) s.t
reX

c(z) =2 A, 6)

where A\ denotes a threshold for the constraint. Unlike standard
BO, the objective function value f () is not directly observed;
instead, we observe relative preferences among multiple can-
didates to infer the objective function, as in PBO methods
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Algorithm 1 CPBO with pairwise comparison

I: He—o
2: forn=1,2,...do

3:  select mif ), :cgf ) by optimizing EUBOC:

2V gl = arg max EUBOC(:!:“)7 cc(j))
=) = ex

Ask the evaluator to compare mgf ) and me )

4
5: Evaluate the constraint function to obtain cgf ) and cslj )
6.' H — H U {(m(;elected) — mfrrlmtselecled)) (CS/:) CSL]))}

7:  Update surrogate models f and c based on ‘H

8: end for

(subsection 2.1). In contrast, we assume that the constraint
function value ¢() can be directly observed for any given x
without requiring human feedback. Following the original EIC
assumptions [Gardner and Kusner, 20141, we treat ¢(x) as a
black-box function that is expensive to evaluate, noise-free,
and does not prevent evaluation of the objective when violated.

In practical scenarios, the objective function f often rep-
resents human preferences for a design (i.e., visual appeal),
while the constraint function c¢ captures design feasibility (e.g.,
performance requirements). Accordingly, we estimate f by
iteratively asking human evaluators for relative preferences
among multiple provided candidates, thereby capturing subjec-
tive preferences that would otherwise be difficult to quantify.

3.2 Acquisition Function: EUBOC

We propose a new acquisition function for CPBO, expected
utility of the best option with constraints (EUBOC), which in-
tegrates EUBO with the idea of EIC. Specifically, we propose
multiplying EUBO by the probability that the two points are
both feasible:

EUBOC(z"), (1)

= P(ce(xD) > X, e(x?) > \)EUBO(z®, ). (7)
Assuming a GP for the constraint function ¢, the pair
(c(x™), c(xV))) follows a bivariate normal distribution.

Therefore, the probability of satisfying the inequality con-
straints is

P(c(a:(i)) > )\,C(.’B(j)) >))
- / h /  P(e(@®), e(@@ ) de(@Mde(zD).  ®)
A A

Given the GP assumption, a correlation generally exists be-
tween c(zV) and c(x7)). However, deriving the cumulative
distribution function values analytically for a bivariate normal
distribution is challenging. Therefore, we apply the following
approximation, assuming that ¢(x(")) and ¢(2(7)) are uncorre-
lated:

Equation 8

~ / ” P(e(@®))de(z®) / " Ple(a))de(z)
A A

-(-o (55) (- (55657).
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(a) Objective function

(b) Feasible region

Figure 1: Two-dimensional test function used for evaluation. (a)
Objective function. The star represents the maximum. (b) Constraint
function overlaid onto the objective function. The lightly shaded
white areas indicate infeasible regions, and the star represents the
optimal solution that satisfies the constraint.

where p¢(x) = E[c(x)] and o¢(x) = +/ Var[c(x)].
3.3 Algorithm

The proposed algorithm is presented in Algorithm 1, where H
denotes the history of the evaluation data. At step n, two
points are obtained by solving the maximization problem
of the EUBOC acquisition function (line 3). For the ob-
tained two points :c,(l) and wgf ), we obtain the preference data
(lselected) o gmotselected)y from the (human) evaluator (line 4)
and also their constraint values (cff ), cgf )) by evaluating the
constraint function (line 5). Then, we add these data to the
history H and update the GP surrogate models f and c (lines
6 and 7). This process is repeated for a certain number of

iterations.

3.4 Warm-Starting Constraint Surrogate Model
Update (Optional)

Optionally, it is possible to pre-train the constraint surrogate
model before starting the optimization iterations involving
the human evaluator, given that the evaluator does not inter-
vene in evaluating the constraint function. This warm-start
approach facilitates starting the optimization with lower un-
certainty regarding the constraints, potentially leading to im-
proved optimization efficiency. The efficacy of this approach
is demonstrated in section 4, where we pre-trained the con-
straint surrogate model using points randomly sampled from
the search space and their constraint function values.

4 Technical Evaluation

We conducted simulation experiments to evaluate the proposed
CPBO technique. The goal was to confirm that the proposed
technique can find solutions that satisfy the inequality con-
straint and to understand its efficiency.

4.1 Test Function Setting

In this setting, we simulated both human responses (pairwise
comparison) and constraint queries (direct observation of the
constraint function values) using known synthetic test func-
tions.
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Figure 2: Result of the test function setting. The Optimality gap for (a) 2D and (c) 6D test functions, where the horizontal axis represents the
iteration steps and the vertical axis represents the Optimality gap (lower is better). The Feasible for (b) 2D and (d) 6D test functions, where the
vertical axis represents the Feasible (higher is better), the lines denote the mean, and the lightly shaded areas denote the standard deviation.

Test Functions

We employed two synthetic problems for evaluation. The first
comes from Gardner er al. [2014]. It consists of 2-dimensional
(2D) objective and constraint functions composed of sine and
cosine functions. Figure 1 visualizes the objective function and
feasible region. The second comes from Letham et al. [2019].
It comprises 6-dimensional (6D) objective and constraint func-
tions, representing a higher-dimensional case closer to real-
world tasks. Its objective function is based on a Hartmann 6
function [Picheny et al., 2013], while the constraint function
uses the norm of x (see Appx. B.1 for details).

Methods to be Compared
We compared the following methods:

* EUBOC: Use our EUBOC acquisition function with
warm-starting. We pre-trained the constraint surrogate
model using 200 points randomly sampled from the
search space.

* EUBOC w/o warm-starting: Use our EUBOC acquisi-
tion function without warm-starting.

* EUBO: Use the EUBO acquisition function. This method
ignores the constraints.

* EUBO w/ cons.: Use the EUBO acquisition function;
however, if only one of the two candidate points satisfies
the constraint, we automatically treat it as the winner.
This method represents a naive, post-hoc way of handling
constraints.

¢ Random: Use uniform random sampling. This method
ignores the constraints.

Performance Metrics
The performance metrics for the evaluation are as follows:

* Optimality gap: The difference between the optimal func-
tion value and the best-found function value [Wang er
al., 2016; Koyama et al., 2020]. We set the best-found
function value to the worst (smallest) objective func-
tion value if only infeasible values are observed (follow-
ing [Herndndez-Lobato et al., 2015; Lam and Willcox,
2017]).
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* Feasible: The cumulative proportion of sample points
that satisfy the constraints up to each iteration (following
[Gardner and Kusner, 2014]).

The number of iterations was set to 50. We ran each method
50 times with random initializations and recorded the mean
and standard deviation of the results of all runs.

Results

Figure 2 shows the performance of each method. Overall,
we find that our proposed EUBOC and EUBOC w/o warm-
starting methods consistently outperformed the other meth-
ods across all settings. In addition, compared to EUBOC
w/o warm-starting, EUBOC demonstrated a significant perfor-
mance improvement thanks to the pre-training of the constraint
surrogate model (see Appx. B.2 for further analysis).

As shown in Figure 2 (a), for the 2D test function, the
EUBOC methods could quickly reduce the Optimality gap,
whereas both EUBO and EUBO w/ cons. reduced the gap only
slowly. EUBO struggled because it focused much on sampling
constraint-violating regions. EUBO w/ cons., while slightly
improved by considering the constraint, did not achieve sig-
nificant gains, probably due to its naive constraint handling.
Furthermore, EUBOC shows a smaller standard deviation,
indicating robust convergence regardless of initialization.

As shown in Figure 2 (b), EUBOC successfully explored
only within the feasible region throughout the iterations in
the 2D setting, thanks to warm-starting and the constraint-
aware acquisition function. EUBOC w/o warm-starting and
EUBO w/ cons. gradually increased the Feasible during itera-
tions. EUBOC w/o warm-starting, which explicitly learns the
constraint, could explore the feasible region more quickly.

As shown in Figure 2 (c) and (d), for the 6D test function,
EUBOC effectively focused on feasible regions in almost ev-
ery iteration, efficiently reducing the Optimality gap compared
to the other methods, similar to the performance in 2D. EU-
BOC w/o warm-starting also demonstrated its ability to learn
the constraint during iterations and reduced the gap effectively.

4.2 Banner Ad Design Application Setting

We next simulated human responses to evaluate the effective-
ness of our proposed technique in a practical banner ad design
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Figure 3: Result of the banner ad design application setting. (a)
Image gap (lower is better) and (b) Feasible (higher is better).

context. Our application system, described in section 5.2, ad-
justs the colors (or layouts) of target banner ad images while
ensuring a minimum required click-through rate (CTR) pre-
dicted by a machine learning model.

Task

The task was to adjust the color of a banner ad image so that it
closely matched a predetermined reference image as possible.
The reference image was created by recoloring an original
banner ad, using parameter values selected from the feasible
design space (see Appx. B.3 for the reference image). We set
the threshold A (i.e., the minimum acceptable predicted CTR)
to the average of CTR values obtained from 1,000 randomly
sampled parameters. The target image was described by six
parameters (i.e., a 6D parameter space). At each iteration, the
“human response” to any pairwise comparison was synthesized
so that the chosen image would be closer to the reference
image than its alternative.

Methods to be Compared

The compared methods were the same as those used in sub-
section 4.1, except that for the EUBOC setting, we pre-trained
the constraint surrogate model using 1,000 random recoloring
parameters for the warm start.

Performance Metrics

We used the Image gap as a performance metric [ Yamamoto
et al., 2022]. Tt is defined as the average of the element-wise
absolute difference between the two images, each of which is
represented as a tensor in [0, 255" >3 (W and H denote
the width and height of the image, respectively). We regarded
the Image gap value as 255 if only infeasible values were
observed. We also recorded the Feasible, the proportion of the
images satisfying the constraints (as described in section 4.1).

Results

Figure 3 shows the results. Our EUBOC efficiently reduced
the Image gap by focusing its sampling on feasible regions
(about 90% of the time). Consistent with subsection 4.1, EU-
BOC outperforms others on this problem, which resembles
real-world banner ad design tasks. However, the EUBOC w/o
warm-starting did not reduce the Image gap effectively, show-
ing similar performance to other baselines. This is likely due
to the complex shape of the constraint, which can be difficult
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to learn at the early stages of optimization. Warm-starting
therefore proves especially beneficial here (see Appx. B.2 for
further analysis). Although the constraint was not satisfied at
every iteration, possibly due to the non-exhaustive pre-training
of the constraint surrogate model, the Feasible gradually in-
creased as the constraint surrogate model was also updated
during the iterations. See Appx. B.3 for examples showing
how banner ad images evolved throughout the optimization
process.

S Application: A Designer-in-the-Loop Banner
Ad Design Framework

In addition to proposing CPBO as a novel optimization
method, we apply it to a real-world banner ad design chal-
lenge. This demonstration not only highlights CPBO’s prac-
tical value but also contributes to the human-in-the-loop de-
sign optimization field, where computational methods inte-
grate with human subjective judgment [Brochu er al., 2007;
Koyama et al., 2022].

5.1 Motivation and Background

Human-in-the-Loop Optimization for Graphic Design

Human-in-the-loop optimization allows human evaluators—in
our case, designers—to act as the objective function and guide
the search process [Koyama et al., 2017; Yamamoto ef al.,
2022; Brochu et al., 2010]. Researchers have explored such
methods for various design tasks [Koyama and Goto, 2022],
including visual design [Koyama et al., 2017; Yamamoto et al.,
2022; Brochu et al., 2010; Koyama et al., 2020; Koyama et al.,
2022] and interaction design [Khajah et al., 2016; Liao et al.,
2023; Dudley et al., 2019; Kadner et al., 2021]. Our work adds
to this body of Human-Computer Interaction (HCI) research
by incorporating an additional performance-oriented design
constraint—in our case, CTR—into the designer-in-the-loop
framework.

Banner Ad Design Challenges

Banner ad design poses a unique challenge: achieving vi-
sual appeal (i.e., the designer’s visual preference) while also
maintaining a sufficiently high CTR. Traditional approaches
may require extensive real-world testing to measure actual
CTRs, which is both costly and time-consuming. Moreover,
designers cannot reliably predict how visual changes affect
CTR, and preference often does not align with actual CTR.
Consequently, a method that automatically ensures CTR while
letting designers focus on aesthetics is highly desirable.

Preliminary Study: Designer Preference vs. CTR

To inform and motivate our approach, we conducted a prelimi-
nary study with professional ad designers. Notably, the study
found no positive correlation between a designer’s preference
and the actual CTR. This finding reinforces our core hypothe-
sis that an automated system (rather than the designer) should
manage CTR constraints, freeing the designer to focus on their
creative intent. Detailed procedures and results of this study
are provided in Appx. D.
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Figure 4: Concept of our designer-in-the-loop banner ad design
framework. The designer provides feedback to the system about
preferences, and the system predicts the CTRs. The system then
updates the surrogate models and proposes new design candidates
using our CPBO technique.

5.2 Design Framework

Concept

We propose a designer-in-the-loop framework for banner ad
design that integrates both aesthetic preferences and CTR con-
siderations (Figure 4). By adjusting design parameters (e.g.,
colors, layouts), the system aims to produce visually appealing
ads while maintaining a minimum required CTR. Designers
choose their preferred option from a pair of system-generated
candidate ad images, focusing on creative decisions, while the
system automatically handles CTR constraints using a CTR
prediction model®. This setup addresses the challenge of si-
multaneously considering both preference and CTR during the
design process.

This designer-in-the-loop optimization approach leverages
our CPBO technique. The system maintains surrogate mod-
els for both the preference (objective) and CTR (constraint)
functions. After each step of designer feedback and CTR
prediction, these models are updated, and a new design candi-
date pair is selected to maximize preference under the CTR
constraint. Through repeating this iterative process, the frame-
work enables effective human-Al collaboration between the
designer and the optimization module, ultimately producing
designs that meet both aesthetic and performance goals.

System Implementation
We implemented a proof-of-concept system that supports ban-
ner ad design with two separate modes: a color editing mode
and a layout editing mode. Figure 5 shows the user interface
of our system in color editing mode. Our system is based
on pairwise comparisons and presents the designer with two
banner ad designs in each iteration. Following the designer’s
selection, the next two candidate designs are presented based
on their preference. This iterative process allows the designer
to explore more preferable designs, with the system ensuring
CTR.

We implemented our CPBO technique on BoTorch [Balan-
dat et al., 2020], a BO library. We used Gaussian process
models in BoTorch as the surrogate models for the objective

*Measuring actual CTRs is impractical due to the time and finan-
cial costs, so our framework uses a machine-learning-based CTR
prediction model trained on real-world data instead.
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Figure 5: User interface of our banner ad design system in color
editing mode. This system provides pairs of design candidates for
each iteration.

and constraint functions. We implemented EUBOC by extend-
ing the EUBO implementation in BoTorch.

The CTR prediction model® was built using XGBoost [Chen
et al., 2016], trained on our dataset of real-world banner ad
deployment data. This model predicts a CTR value for each
given banner ad image, and those predictions update the con-
straint surrogate model during the optimization process (and
optional warm-starting). Note that CTR prediction takes ap-
proximately 0.3 milliseconds per image.

Refer to Appx. A and C for more details.

5.3 User Study

We conducted a user study using our system (section 5.2).
This experiment was carried out with the approval of the ethic
examination of Research Institute of Human Engineering for
Quality Life. The goal was to evaluate how our CPBO-enabled
framework impacts on the user experience in banner ad de-
sign. Specifically, we aimed to assess the benefits of having a
designer-in-the-loop design system responsible for CTR con-
straint, allowing designers to focus on their preferences. To
this end, we compared two scenarios: (1) Ours: the system
ensures CTR while the designer focuses on preferences, and
(2) Baseline: the system does not ensure CTR.

Study Design

We recruited 11 professional ad designers (P1-P11) from an ad
agency in Japan (10 females, 1 male, age: M = 28.3,5D =
4.59). They had an average of 5.82 years (SD = 4.79) of
general design experience and 3.55 years (SD = 3.01) of
specific experience in banner ad design.

We prepared two realistic banner ad images (12D and 6D
parameter spaces, respectively) by asking a non-participant
professional designer, using Japanese-language content. Each
participant performed color-editing tasks on both images under
the two system conditions. The image and system condition
pairings and their conduct order were randomized. In each
task, the participant selected the more preferred option from
the pair of color variations the system presented, repeating
this 50 times. (Note: the average time to provide preference
feedback was 4.2 seconds, ranging from 1.0 to 23.1 seconds.)
Participants were told to consider only their preference with

3Note that the CTR prediction model and the CTR surrogate
model are different; the prediction model is a fixed model, while the
surrogate model is dynamically updated during iterations and used
for CPBO computation.



Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)

|| | 3 4 5 [ I

Q1. | found it useful that the system
presents the design considering
the click-through rate (CTR).

Q2. | prefer a design workflow
where the system guarantees
the click-through rate (CTR).

Q3. | found it easier to be presented
with two designs and then choose
the more preferred design.
Q4. | found it stressful to be presented
with two designs and then choose

the more preferred design. -

100% 0% 100%

Figure 6: Questionnaire results, showing the distribution of answers
for each questionnaire item. Q1 to Q3 are better to the right, and Q4
is better to the left.

our system, and both preference and CTR with the baseline.
To reduce the bias from the trust in the model, we informed
participants that the CTR prediction model was validated.

After finishing both tasks, participants completed a 7-point
Likert-scale questionnaire (7: “strongly agree”) and could pro-
vide free-form comments. We also conducted semi-structured
interviews* regarding the tasks performed and questionnaire
answers.

Questionnaire Results

Figure 6 shows the questionnaire results. Overall, professional
ad designers evaluated our framework positively. Q1-Q3 fo-
cus on the CTR consideration (higher is better), while Q4
measures perceived stress (lower is better). Affirmative re-
sponses (i.e., 5—7 for Q1-Q3; 1-3 for Q4) were 63.6% (Q1),
81.8% (Q2), 63.6% (Q3), and 81.8% (Q4). Notably, Q1 and
Q2, which address how the system manages CTR, received
strong support.

Interview Results
We summarize the feedback on the following two points.

How the system’s CTR consideration is helpful We re-
ceived various positive comments about the system’s CTR
consideration. P5 appreciated how it accounts for CTR during
the design process because “as a designer, I want to know
what makes an effective banner from a third-party [objective]
perspective.” P3 noted that the system’s help “reduced the ef-
fort needed to consider CTR,” suggesting an overall reduction
in mental workload. Others also commented on differences in
candidate quality compared to the baseline. P8 thought that
the candidates provided by our system “had better visibility”
and “avoided eyestrain”. P10 complained that, when trying
the baseline, “I got ridiculously bad ones [design candidates]
many times,” making choices trivial; in contrast, with our sys-
tem, “I was quite indecisive” since both candidates were often
good. These comments suggest that the CTR consideration
helped to provide more reasonable and meaningful design
candidates.

“Interviews were conducted in the participants’ native language
(Japanese); the quoted remarks here are translated.
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How the system’s CTR consideration changes future ad
design P9 appreciated the use of actual measured data for
training, saying “It is really powerful for us [ad designers] to
have the designs [created with ours] backed up by thousands
of data.” P9 added that being able to “explain this [mechanism
of CTR consideration] [to the client]” is powerful, making
the tool “branded” and become “a persuasive material when
pitching to clients.” These remarks highlight not only the prac-
tical benefits for designers, but also the potential to improve
client communication and trust, thus adding business value.

Lessons Learned

In our user study, we evaluated the benefits of our approach,
where the system takes responsibility for CTR considerations
in the design process, assisting ad designers. Feedback from
the questionnaires and interviews showed that professional ad
designers responded positively to the framework. Participants
noted that it could be particularly helpful to those struggling to
account for CTR or seeking an objective perspective on their
designs.

Participants also indicated that incorporating CTR consider-
ations improved the quality of design candidates in the iterative
process compared to when CTR was not considered. This sug-
gests that including the CTR constraint enhances optimization
performance, supporting our technical evaluation of CPBO
performance (section 4).

Finally, participants highlighted that our approach helps ex-
plain designs to clients, as they are based on actual data rather
than potentially unreliable intuition. This strengthens commu-
nication and trust between designers and clients, demonstrat-
ing the business value of data-driven insights in improving
both the design process and client relationships.

6 Discussions and Future Work
6.1 Improving Search Efficiency and Capability

Our experiments used search spaces of up to 12 dimensions
and 50 iteration steps—enough to observe optimization be-
havior. In practice, designers may wish to adjust more design
elements, leading to even higher-dimensional search spaces,
and also minimize the required iterations. Thus, improving
search efficiency is crucial.

High-dimensional BO is known to be challenging, and
various methods have been proposed [Wang et al., 2016;
Binois and Wycoff, 2022; Long et al., 2024; Hvarfner et al.,
2024]; future work should explore ways to combine these
methods with CPBO. Another promising avenue is to enable
designers to compare more than two search points simultane-
ously in each step [Koyama et al., 2017; Koyama et al., 2020;
Nguyen et al., 2021]. Although our EUBOC currently only
supports the evaluation of two search points at a time, extend-
ing it by incorporating the concept of qEUBO [Astudillo et
al., 2023], an EUBO extension capable of sampling multiple
search points simultaneously, would be a valuable research
direction.

Another future direction is to handle categorical variables.
While our EUBOC focuses on continuous inputs, we believe
it can theoretically be extended to accommodate categorical
variables—for example, by incorporating kernel adaptations
for GPs [Garrido-Merchén and Hernandez-Lobato, 2020].
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6.2 Toward Practical Design Systems

The purpose of developing our application system was to in-
vestigate the potential benefits of a CPBO-driven design frame-
work. The next step is to build a more comprehensive design
system for professional use. Feedback from professional de-
signers during our interviews provided multiple suggestions
for improving the system. They expressed a desire to adjust
not only colors or layouts, but also other design elements such
as text width, font size, and letter kerning. Some designers
wanted to compare more than two design candidates at a time
to make a better decision (as discussed in subsection 6.1). In
addition, some mentioned that, in their experience, the color
and layout directions are often predetermined to some extent
(e.g., by client requests) before design exploration begins, sug-
gesting the need for a feature that limits the search space to
accommodate these prior intentions, thereby enhancing the
design process.

7 Conclusion

This paper proposed CPBO and a new acquisition function,
EUBOC, to enable this. Our technical evaluation showed
that our method efficiently reduces the gap toward optimal
solutions by focusing on feasible regions. As a practical CPBO
application, we proposed a designer-in-the-loop framework
for designing banner ads that integrates CTR considerations.
The user study demonstrated that our framework effectively
reduced the design burden and proved its usefulness as a real-
world CPBO application.

Ethical Statement

There are no significant ethical concerns regarding our CPBO.
However, the use of CTR models in banner ad design poses
potential risks, such as generating overly attention-grabbing
designs that may unnecessarily encourage user clicks. Our
framework mitigates these risks by facilitating collaboration
between designers and the algorithm, allowing for designs
that align with human subjective preferences. While this re-
duces the likelihood of harmful outcomes, further efforts to
establish safeguards and ethical guidelines would enhance the
robustness of such systems in the future.
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