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Abstract—This paper introduces a new framework for singer
diarization, which is a technique to reveal who sings when in songs
with multiple singers. Although various techniques have been de-
veloped to analyze and extract features of singing voices in musical
audio signals, most of them assume that a song is sung by a single
singer, and singer diarization for multiple singers has not been well
studied in the field of singing information processing. To deal with
multiple speakers in speech analysis, speaker diarization has been
explored to handle overlapped speech voices, but cannot handle
singing voices well because of acoustic differences between singing
and speech voices. This paper therefore proposes a new diarization
framework specialized in singing voices. To achieve high accuracy
in overlap detection, this paper proposes a novel acoustic feature
named Cosacorr score, which is helpful in estimating whether a song
is sung by more than one singer. After extracting singing voices from
polyphonic music by using a singing voice separation technique,
the framework adopts an existing ArcFace technique to extract
discriminative singer representations from short segments of the
separated singing voices. The framework is evaluated by using a
new private dataset of unison singing voices, which is constructed
using commercially available compact discs (CDs). The experimen-
tal results show that the proposed framework outperformed the
baseline method for speaker diarization in terms of diarization
error rate (DER).

Index Terms—Music information processing, music information
retrieval, singer diarization, unison singing.

1. INTRODUCTION

INGING is one of the most important elements of music [1],

[2] since many people listen to music with a focus on
singing [3]. Given its importance, various research activities
related to singing have been pursued and attracting attention not
only from a scientific viewpoint, but also from the standpoint
of commercial applications [4]. Singing information process-
ing [1], [2], [5] is defined as music information processing for
singing voices, and covers diverse topics ranging from basic
research on the features unique to singing to applied research
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Fig. 1. Conceptual image of singer diarization. An input song is labeled
according to singers at each audio frame.

such as that on singing synthesis [6], lyrics transcription and syn-
chronization, vocal timbre analysis, singing skill evaluation, and
music information retrieval (MIR) based on singing voices [1].
In the research field of singing information processing, various
techniques have been developed to analyze and extract features
of singing voices in musical audio signals, such as fundamental
frequency (Fy), amplitude, phoneme timing, timbre, expression,
and skill. Most of such techniques assume that a song is sung
by a single singer.

However, there exist a large number of songs sung by multiple
singers. In fact, duets, in which two singers alternatively sing, are
common in popular music. In various types of Japanese popular
music such as idol songs sung by idol groups and anime songs
featured in animation films, a song is often sung alternatively
by more than two singers. Such a song can be divided into
several temporal sections corresponding to different singers. We
call such a divided music structure song division, and also call
a technique to estimate who sings when in songs with song
division singer diarization. Fig. 1 shows a conceptual image of
singer diarization. Since the technique reveals how many singers
are singing and when they are singing, singer diarization is a
fundamental technique for the analysis of songs sung by multiple
singers.

Singer diarization is derived from speaker diarization, which
is a technique to reveal who speaks when in conversational
speech. In the field of speech analysis, speaker diarization has
been studied since the late 1990 s and can be applied to automatic
annotation of a wide range of conversational speech such as tele-
phone conversations, broadcast news, debates, and meetings [7].
On the other hand, automatic singer diarization has been un-
derexplored in the field of singing information processing. The
purpose of this study is to achieve singer diarization to extract
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TABLE I
COMPARISON OF THE STATISTICS OF THE ACOUSTIC FEATURES BETWEEN
SPEECH AND SINGING VOICES. AS A SPEECH DATASET, THE SPEECH DATA OF
JAPANESE PHONETICALLY BALANCED SENTENCES UTTERED BY THE SPEAKER
FTK IN THE ATR JAPANESE SPEECH DATASET [14] WAS USED. AS A SINGING
VOICE DATASET, TOHOKU KIRITAN’S SINGING-VOICE DATABASE [15] WAS

USED
Category | log Fy [logHz]  Phoneme duration [ms]
Speech 5.44 +0.24 82 + 37
Singing voices 5.87£0.31 167 + 204

=+ denotes the standard deviation.

song-division information from songs sung by multiple singers
so that the extracted information could be utilized in applications
such as analysis and visualization of music structure, extraction
of a particular singer’s voice, and music information retrieval
based on singer diarization.

In the literature, a related task is target-singer tracking
(TST) [8]. It estimates whether a target singer is singing or not at
each audio frame under the assumption that its singer is known
and the acoustic model of the singer can be trained in advance.
On the other hand, singer diarization does not have such an
assumption and estimates who sings when as shown in Fig. 1.

In the field of ethnomusicology, Thlithi et al. [9] studied a
technique for singer diarization of music signals recorded in
sub-Saharian countries. Since it simply used a traditional speaker
diarization method, its performance was limited and there were
three issues from our viewpoints. Firstly, the technique was
not able to handle overlapped singing voices. Although some
studies [10]-[12] proposed methods that can perform recogni-
tion of overlapped segments in speaker diarization, handling
overlapped singing using such techniques could cause a different
type of difficulty. This is because the temporal overlap structures
are significantly different between singing voice and speech.
Secondly, the sounds of background instruments degraded the
performance of singer diarization. To address this issue, reduc-
tion of background music or sound source separation should
be employed. Lastly, acoustic differences between singing and
speech voices could deteriorate the diarization performance,
though this issue was not discussed in [9].

According to our analysis in comparing speech and singing
voices, the range of Fj is wider and the duration of phonemes is
longer in singing voices than that in speech voices as shown in
Table I. A comparative study [13] indicates that spectral features
can be affected by those differences, which makes it difficult to
acquire singer information from short segments. Moreover, the
distribution of the number of simultaneous speakers and singers
is also different. Fig. 2 shows an example of such distributions.
Compared to conversational speech, singing tends to have more
simultaneous singers singing at the same time. Furthermore,
singing voices tend to be more synchronized than speech voices;
multiple singers sometimes sing in almost the same rhythm
and even at the same pitch (i.e., unison singing). Therefore,
because of these factors, singer diarization has a different type
of difficulty from speaker diarization.

This paper proposes a new practical framework for singer
diarization by addressing the above three technical issues. To
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Fig.2. Histograms of relative lengths of audio signals according to the number
of simultaneously uttering speakers (singers).

reduce diarization errors caused by simultaneous singers, unison
singing is particularly difficult. The paper focuses on overlap
detection that identifies overlapped segments in which multiple
singers sing in unison — i.e., sing at almost the same pitch in
the same rhythm, following the same musical notes. To achieve
high accuracy in such overlap detection, this paper proposes
Cosacorr score, a novel acoustic feature based on autocorre-
lation. A higher Cosacorr score indicates that a song is more
likely to be sung by more than one singer. Our framework also
employs an existing singing voice separation technique to extract
singing voices from polyphonic music including background
instrumental sounds. The framework then adopts ArcFace[17],
an architecture that provides embeddings for face recognition, to
extract discriminative singer representations from the separated
singing voices. In the experiments, we construct a new private
dataset of unison singing voices of Japanese idol songs using
commercially available CDs and evaluate the performance using
real music samples.

The rest of this paper is organized as follows. Section II
describes some advanced speaker diarization techniques that
can handle overlapped speech as related works. Section III
describes speaker diarization methods on which the proposed
method is based. Section IV shows a detailed description of
the proposed method for singer diarization. Section V and VI
describe experiments to evaluate the proposed method. Section
VII discusses the method, and Section VIII concludes the paper.

II. RELATED WORKS

In the speaker diarization field, several studies have intro-
duced methods that can effectively handle overlapped speech.
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Fig. 3. Overview diagram of the clustering-based method for speaker diariza-
tion. The method consists of 3 steps: VAD, speaker segmentation, and speaker
clustering.

End-to-end neural diarization (EEND) is a method to perform
speaker diarization directly by neural networks [11]. In the study,
permutation-invariant training (PIT) loss function is adopted to
deal with the permutation problem in end-to-end diarization.
To improve the performance of EEND, self-attentive EEND
(SA-EEND), which incorporates self-attention with EEND, has
been proposed [18]. EEND has a problem that the maximum
number of speakers is predetermined by the architecture of
the model. To enhance EEND to speaker diarization with the
unknown number of singers, an architecture named encoder-
decoder based attractor calculation (EDA) has been adopted to
EEND [19].

Some studies detect overlapped segments at first, and perform
clustering-based diarization for single-speaker segments [20],
[21]. The proposed method in this paper adopts a similar ap-
proach to the studies.

Diarization methods based on source separation have also
been introduced [22]. The study performs speech separation
in advance to ensure that each separated source contains only
one speaker at most. Such an approach can also be regarded
as a method to detect overlap in advance. However, in singer
diarization, singing voice separation is more challenging than
speech separation. This is because singing voices are often
synchronized and harmonized. Moreover, singing voices have
almost the same pitch when singers sing in unison. Therefore,
this paper does not adopt this approach.

III. BASELINE METHODS FOR SPEAKER DIARIZATION

This section describes key baseline methods for speaker di-
arization which underlies the proposed method in this paper.
These methods mainly aim at conversational speech such as
broadcast news shows and dinner parties.

A. Clustering-Based Speaker Diarization

The most fundamental method for speaker diarization is a
clustering-based one [7], [23]. The method consists of three
steps: voice activity detection (VAD), segmentation, and cluster-
ing. Fig. 3 shows a diagram of the method. The method assumes
that at most one speaker speaks at the same time, and does not
take overlapped speech into account.

VAD is a process to detect whether each segment is speech or
non-speech. VAD is an indispensable process for high-quality
diarization because non-speech segments can degrade the per-
formance of the acoustic models used in the latter processes.
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Moreover, VAD errors directly deteriorate evaluation metrics.
VAD based on support vector machines (SVMs) and linear
discriminant analysis (LDA) classifies each frame using acous-
tic features and discriminative models [24]-[26]. Instead of
frame-by-frame analysis, time-series modeling is also adopted.
Similarly to automatic speech recognition, VAD methods based
on hidden Markov models (HMMs) are proposed [27]. Recurrent
neural networks (RNNs) and long-short term memory (LSTM)
networks are also incorporated for time-series modeling of
speech occurrences [28], [29].

In terms of singing voice detection, several approaches are
proposed to improve VAD in mixed signals. As an approach
to improve acoustic features, for example, fluctograms, which
represent vocal fluctuations without extracting pitch, and vocal
variances, which detect slow changes of the shape of the vocal
tract, are adopted as well as spectral flatness and spectral contrac-
tion [30]. Harmonic-percussive sound separation is also adopted
as preprocessing of singing voice detection [31]. By adding
restriction to parameters in convolutional neural networks, a
VAD method that is not affected by loudness is proposed [32].

Speaker segmentation is a step to detect speaker turns. In this
step, speech is separated into segments so that each segment is
spoken by a single speaker. Speaker segmentation is performed
by repeating the operation of splitting a segment at the most
reasonable position. The most traditional segmentation method
is based on the Bayesian information criterion (BIC) [33]. To de-
termine where to split the segment and whether to stop splitting,
a hypothesis with the least BIC value is selected.

In the clustering step, acquired segments are grouped into
some clusters by speakers. The step is the most principal process
on speaker diarization. Mainly two clustering approaches are
adopted: bottom-up one and top-down one. Bottom-up clus-
tering, or agglomerative hierarchical clustering (AHC), starts
from an under-clustered state and reduces the number of clusters
gradually. As an initial state, the approach often assumes that
all segments belong to different speakers. On the other hand,
top-down clustering supposes that all segments are clustered
into one speaker at first, and then iteratively splits the clus-
ters. The clustering is performed based on a criterion such as
BIC or Kullback-Leibler (KL) divergence [33], [34]. Spectral
clustering is also adopted as a clustering method in speaker
diarization [35]. By utilizing normalized maximum eigengap
(NME) values, a method that can effectively perform spectral
clustering and estimate the number of speakers without tuning
parameters is proposed [36].

Speaker representation, which is an embedding of speaker
information, is also utilized for speaker clustering. I-vector [37]
is one of the common representations for speaker recognition
and is employed in speaker diarization [38], [39]. As a distance
metric for i-vectors, scores based on probabilistic linear dis-
criminant analysis (PLDA) are adopted. Alternate segmentation
and clustering methods are also introduced by utilizing speaker
representations that can be acquired from extremely short audio
signals [40]. Since the methods can extract speaker representa-
tions from fixed-length short segments, the methods only need
to perform uniform segmentation and do not require precise
segmentation based on the speaker turns.
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B. Speaker Diarization Based on Target-Speaker VAD

Since the traditional clustering-based method assumes that
each segment is uttered by at most one speaker, the method
cannot recognize overlapped speech. This paper refers to a
speaker diarization method based on target-speaker voice activ-
ity detection (TS-VAD) [12], and the proposed method is based
on the concept of this TS-VAD-based diarization. The method
uses TS-VAD, which can directly perform speaker diarization of
audio signals including overlapped segments. The method aims
at speaker diarization in dinner-party scenarios where 4 speakers
speak with each other. This method consists of the following
steps.

1) Initial diarization: Diarization is performed for the entire
speech. Each segment is supposed to be uttered by a single
speaker at most in this step, and thus any diarization
method can be incorporated. The method executes di-
arization by clustering fixed-length segments according to
speaker representations. The method adopts x-vectors [41]
as speaker representations.

2) Extraction of speaker-specific representations: Based on
the results of initial diarization, an i-vector [37] is calcu-
lated for each speaker.

3) TS-VAD: In this step, voice activity at each frame is
estimated for each speaker. Since this is equivalent to
VAD about a specific speaker, this step is named target-
speaker VAD. The TS-VAD model frs vap estimates
each speaker’s activity based on acoustic features and the
speaker’s representation as follows:

[31,[1:T] » 82,[1:T75 S3,[1:T)> 547[1:T]]
)]

where y; denotes the speaker representation of the ¢-th
speaker, x[1.7] is a sequence of acoustic features, and
54,17 denotes a sequence of VAD scores about the i-th
speaker. The maximum number of speakers must be de-
termined in advance. In this case, the maximum number
of speakers is set to four.

4) Postprocessing: To suppress improper results, some filter-
ing is applied to the results of diarization. In the frame-
work, four types of postprocessing are adopted: median
filtering, elimination of short segments, score threshold-
ing, and Viterbi decoding.

Since the speaker-specific representations are extracted from
the entire speech, the representations are affected by overlapped
segments, and the performance of TS-VAD can be degraded. To
improve the overall performance, the method iteratively updates
the speaker representations by repeating steps 2) and 3). The
results of TS-VAD are gradually optimized by recalculating i-
vectors based on those of the previous iteration.

In TS-VAD, the number of recognized speakers needs to be
predetermined in the original paper that proposes TS-VAD. In
this study, the number of speakers was fixed to 4. The authors
of [42] enhanced TS-VAD to the unknown number of speak-
ers by inputting random representations when the number of
speakers is less than that of predetermined, or ignoring the least
frequent speaker when the number of speakers is more than that
of predetermined.

= frs-vap (-’E[1:T]7 Y1, yg,yg,y4) )
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Fig. 4. Overview diagram of the proposed framework. The acoustic features
are extracted from both mixed and separated signals.

IV. PROPOSED FRAMEWORK FOR SINGER DIARIZATION
A. Overview of the Framework

This paper introduces a diarization framework tuned for singer
diarization. In contrast to the TS-VAD-based approach, the pro-
posed framework handles overlapped segments before the main
diarization process and adopts a singing voice separation tech-
nique to reduce background music. Fig. 4 shows the overview
of the framework. The remainder of this section describes the
modules of the framework.

B. Preprocessing

Singing voices are extracted from mixed signals by a singing
voice separation technique based on blind source separation
(BSS). This step corresponds to (a) in Fig. 4. This paper adopts
Spleeter [43], which is an open-source BSS library for music
signals. The pretrained model of Spleeter utilizes 12-layer U-
Net [44] for estimation of soft masks of spectrograms. Since the
separation is not ideal, the separated signals are unnatural and
distorted. Therefore, the overall performance is degraded if only
the separated signals are used. In the proposed method, acoustic
features extracted from both mixed and separated signals are
jointly used in the subsequent processes.

C. Voice Activity and Overlap Detection

Traditional frameworks for speaker diarization often perform
diarization with the assumption that all the segments are uttered
by at most a single speaker and then handle overlapped seg-
ments by postprocessing. However, total durations of overlapped
segments in multiple-singer songs are generally longer than
those in conversational speech, and thus the acquired singer
representations based on the results of the prior diarization can
be degraded because of long overlapped segments. Hence, the
traditional diarization method may not be able to achieve as high
accuracy in the case of singer diarization as in the case of speaker
diarization. To suppress the effects of long overlapped segments,



SUDA et al.: SINGER DIARIZATION FOR POLYPHONIC MUSIC WITH UNISON SINGING

1535

0
2HA

25 30 35 40 45

Time [ms]
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(b) Vocal signals where two singers sing. The summation of the 8th-order Cosacorr scores is 0.3048.

Fig. 5.

the proposed framework adopts an approach that performs over-
lap detection before the main diarization process. Some studies
have already adopted similar approaches to improve the quality
of speaker representations [20]-[22].

In this step, according to the number of singers, each frame is
classified into three classes: no singers, one singer, and multiple
singers. Therefore, this step is named voice activity and overlap
detection. This step corresponds to (b) in Fig. 4. This classifi-
cation is performed using bidirectional LSTM (BiLSTM) net-
works. In this paper, acoustic features that are used as the input
to the networks consist of mel-frequency cepstral coefficients
(MFCC), power, and Cosacorr scores, which are introduced in
this paper.

The Cosacorr scores proposed in this paper are cosine distance
scores of autocorrelation. When multiple singers sing at the same
time, the fundamental frequencies are slightly different from
each other even if they sing in unison. Because of the differ-
ence, autocorrelation of acoustic signals shows a non-periodic
(quasi-periodic) trajectory. Fig. 5 shows examples of autocor-
relation functions of acoustic signals of singing voices. Fig. 6
shows a conceptual visualization of the calculation process. A
Cosacorr score measures the difference between the shapes of
the first and the other periods. The feature can evaluate the
non-periodicity and quantify the multiplicity of singers. Let
X = [x1,29,...,2y] be an autocorrelation sequence of the
acoustic signals. First, local maxima x,, , Zp,, . .., Tp, in X are
detected using a peak detection algorithm. Because of the nature
of the autocorrelation function, the position of the first peak p;
is always 1 (i.e., x1 is the highest). As shown in Fig. 6, the 1st
Cosacorr score represents the difference between the 1st period
and the 2nd period in the autocorrelation of singing voices. The
n-th Cosacorr score represents the difference between the 1st
period and the n + 1-th period. In calculating such differences,
the length of the 1st period and the n + 1-th period can be
slightly different from each other; thus, the n 4 1-th period
needs to be resampled to match with the length of the 1st period.
That is, to evaluate the difference, the n + 1-th period of the
autocorrelation may need to be expanded or contracted so that

Examples of autocorrelation functions of vocal signals. Both images show signals of the same song at the same time.

Vv

p=1p» ps D1 P Do
autocorrelation function
<> —> 1st Cosacorr score
cosine
distance
1st period  2nd period
> —> 2nd Cosacorr score
cosine
distance
1st period 3rd period

Fig. 6. Visualization of the calculation process of Cosacorr scores. The n-
th Cosacorr score is obtained by calculating cosine distance between 1st and
(n 4+ 1)-th period of autocorrelation function.

the number of samples in the n + 1-th period matches that in the
first period. In detail, the n-th Cosacorr score is calculated by

p2—1

P 2
Cosacorr,, = ;L;rl i=1 TilYni o
1 1
' \/sz %\/ 2521 yn i
Pm1—1
Fon = 7} )

The sequence y,,.1,Yn,2,---,Yn,p,—1 1S generated by linearly
resampling the n + 1-thperiod zp, .\, @p, 14155 Tp,. 5180
that it can be used to calculate cosine distance with the 1st period
21,%2,...,%p,—1. That is, by performing linear interpolation
several times, the n + 1-th period is expanded or contracted,
and a sequence with ps — 1 samples is generated. "“ is ascale
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factor for weighting scores by power. A higher Cosacorr score
indicates that the segment is more likely to be sung by multiple
singers. In this paper, a sequence of scores obtained from n
periods is called n-th-order Cosacorr scores. For example, the
3rd-order Cosacorr scores are a sequence of Cosacorr; (the
1st Cosacorr score), Cosacorrs (the 2nd Cosacorr score), and
Cosacorrs (the 3 rd Cosacorr score).

If the peak detection algorithm fails or the detected periods are
not appropriate, the Cosacorr score could not be appropriately
calculated and is set to zero. Although the Cosacorr score is
designed to be calculated from singing voices after singing voice
separation, this paper dares to calculate the Cosacorr score from
singing voices with accompaniments (i.e., music signals before
singing voice separation) in addition to the original Cosacorr
score from the separated singing voices without accompani-
ments. This is because both types of scores could be helpful
as acoustic features in the overlap detection.

D. Extraction of Singer Representations

In this step, singer representations are extracted from fixed-
length segments. In traditional frameworks, i-vectors [37] and
x-vectors [41] are often adopted as speaker representations.
However, singing voices have a wider range of F{y and longer
phoneme duration than speech. Therefore, it can be difficult to
learn discriminative representations from singing voices of short
duration using the traditional techniques. To extract more dis-
criminative singer representations, this paper adopts ArcFace-
based singer representation.

ArcFace, or Additive Angular Margin Loss, is a network
architecture that can obtain highly discriminative embed-
dings [17]. The architecture is originated in deep face recogni-
tion. Conventional techniques have utilized bottleneck features
of classifiers that are trained based on softmax loss. However,
these methods do not acquire proper embeddings for clustering,
where intra-class features are aggregated and inter-class fea-
tures are diverse. Some approaches achieve more discriminant
embeddings by adding margin penalties to softmax loss [45],
[46]. ArcFace is one of those techniques that replaces softmax
loss for

N
1 es(cos(ﬂyi +m))
L=-5 log s(cos m n oen 4
N ; e (cos(8y, +m)) + Ej:l,j;éyi escosb;

where N and n denote batch size and the number of classes,
respectively, m is a margin penalty, y; denotes a class index
where the i-th feature z; belongs, and s is a scaling parameter.
0; is defined by

T
Wj €T,

T (&)
Wil |l

0; = arccos
where W; is the j-th column of a weight matrix of the last
fully connected layer of the neural networks. Compared to
conventional approaches, ArcFace is easy to implement and
achieves effective performance on face recognition. Because of
the advantages, the proposed framework utilizes ArcFace as an
extractor for singer representation.
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Fig. 7. HMM for postprocessing of singer clustering. N denotes the number
of singers, and b is a hyperparameter where O < b < 1. Each state except initial
and final states corresponds to each singer.

E. Clustering of Single-Singer Segments

This step performs clustering of single-singer segments based
on the extracted singer representations. This step is equivalent
to segmentation and clustering steps in the clustering-based
diarization, which is described in Section III-A. This step cor-
responds to (c) in Fig. 4. This paper adopts a spectral clustering
algorithm based on NME analysis that can automatically tune
parameters of the algorithm [36].

This clustering process does not consider sequential informa-
tion. Therefore, the results can include frequent singer turns and
too short segments. To eliminate such improper results, Viterbi
decoding is applied for postprocessing. The framework utilizes
an HMM where each state corresponds to each singer. Fig. 7
shows a conceptual image of the HMM.

At the end of the step, a singer representation is calculated for
each singer.

F. Target-Singer VAD

This step reveals whether each singer sings at each segment
where multiple singers sing. This step is shown as (d) in Fig. 4,
and corresponds to the TS-VAD step in the TS-VAD-based
baseline method. Instead of TS-VAD, this paper constructs
networks in the same way as Personal VAD [47]. In contrast
to TS-VAD, target-singer VAD estimates each singer’s singing
state separately. For each target singer, all segments are classified
into three classes: 1) no singers are singing, 2) the target singer
is singing, 3) someone else than the target singer is singing. The
target singer can be identified in the case of the second class.

Fig. 8 depicts the architecture of target-singer VAD. The
target-singer VAD model is based on acoustic features, target
singer’s representation, and cosine similarity between the target
singer’s representation and the representation at that segment.
The architecture adopted in this paper is referred to as score and
embedding conditional training (SET) defined in [47].

Although all segments including no-singer, single-singer, and
multiple-singer segments are thus classified into the three classes
by this architecture, only the identified target singer of each
multiple-singer segment is used as the final VAD results. Since
each no-singer segment cannot have any singer and the singer of
each single-singer segment has already been known before the
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target-singer VAD, the classified results for those segments do
not need to be used.

V. EFFECTIVENESS OF COSACORR SCORE

This section describes preliminary experiments to check the
effectiveness of Cosacorr scores. In this toy experiment with a
small dataset, the systems recognized whether given audio sig-
nals were sung by one or two singers. In addition to the Cosacorr-
based system, i-vector-based one was also constructed. In this
experiment, i-vectors were utilized for overlap detection in
the same way as speaker recognition [37]. That is, two-class
classification was performed based on i-vectors.

A. Experimental Setups

As the small dataset, twelve songs were prepared. The songs
were taken from commercially available CDs that contain an
unusual set of singing voices of Japanese idol songs. In these
CDs, each song is repeatedly covered by a different singer. Given
five singers, for example, the first audio track is a recording of
the song m; sung by the first singer si, the second track is a
recording of the same song m; sung by the second singer ss,
the third track is a recording of the same song m; sung by the
third singer sz, and so on. It thus results in five different CD
tracks corresponding to the five singers. The number of singers
varies from four to twelve, depending on the song. Since those
singers sing along the same accompaniment (backing track),
their singing voices are temporally synchronized. The backing
tracks (karaoke tracks) of all the songs are also provided in those
CDs. We, therefore, took advantage of this special set of CDs.
The total number of recordings (audio tracks) used in this dataset
is 125, and the number of unique singers is 18. The duration
of the songs is about 2 minutes and the sampling frequency is
44100 Hz. The detailed information about the dataset is available
at https://www.gavo.t.u-tokyo.ac.jp/ %7ehitoshi/diarization/.

Each recording taken from the CD track thus contains audio
signals of a single singer with accompaniments and does not have
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simultaneous singers. Since this paper focuses on unison singing
voices, we randomly mixed two recordings by two different
singers for each of the songs in order to generate the same
number of unison recordings (i.e., 125 unison recordings). We
extracted (separated) solo singing voices (125 solo recordings)
from polyphonic music recordings by subtracting the corre-
sponding backing track by using an existing tool Utagoe-Rip',
and then randomly mixed them to obtain unison recordings.
Since all recordings are in stereo, they were converted to monau-
ral signals by calculating the mean over channels.

Ten out of the twelve songs were used for training, and
the remaining two songs, song A and song B, were used for
evaluation. The songs A and B were sung by 12 and 4 singers,
respectively, and 12 solo recordings for the song A and 4 solo
recordings for the song B were obtained. The same number of
unison recordings (12 unison recordings for the song A and 4
unison recordings for the song B) were also prepared and used
for evaluation. To prepare two different conditions, the singers
of the song A were included in the training set, and the singers
of the song B were not. That is, the song A is in the closed-singer
condition, and the song B is in the open-singer condition.

The frame period was 10 ms. From each frame, the summation
of the 8th-order Cosacorr scores was calculated. As a feature,
the mean and variance of the summation of the consecutive 100
frames were used. Consequently, 2-dimensional features (mean
and variance) were extracted from 1 s (100 frames) of audio
signals.

To extract i-vectors, MSR Identity Toolbox [48] was used. As
acoustic features, 16th-order MFCC and their A and A2 features
were extracted. The universal background model (UBM) was
a Gaussian mixture model (GMM) with 2048 mixtures. The
number of dimensions of i-vectors was fixed to 100. In the same
way as the system based on Cosacorr scores, recognition was
performed using each 1-second audio signal.

A fusion system is also evaluated in this experiment. In the
system, i-vectors were used as features in addition to the mean
and variance of Cosacorr scores. That is, the input features were
102-dimensional.

As classification models, SVMs with the Gaussian kernel
were adopted. SVMs were trained with 5-fold cross-validation.

B. Results

Table II shows the results. The system based on Cosacorr
scores achieved overlap detection at more than 70% on average.
The results suggest that the proposed feature helps detection of
unison signals. The results also indicate that Cosacorr scores
were effective even in the open-singer condition. In this experi-
ment, i-vectors were also helpful in overlap detection and effec-
tive in both closed-singer and open-singer conditions. Moreover,
the fusion system using both Cosacorr scores and i-vectors
outperforms the other independent systems. These preliminary
results indicate that not only MFCC-based i-vector features
but also Cosacorr scores can be effectively exploited in unison
detection.

![Online]. Available: https://www.vector.co.jp/soft/win95/art/se 127635 html
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TABLE II
ACCURACY OF OVERLAP DETECTION. THE LABELS SOLO AND UNISON
DENOTE THE CORRECT CLASS

System Song Solo Unison  Average
Cosacor score A (closed-singer) 78.4% = 63.5% 70.9%
B (open-singer) 66.6%  87.9% 77.3%

i-vector A (closed-singer) 81.8%  82.9% 82.4%

B (open-singer) 81.9%  85.1% 83.5%

Fusion A (closed-singer)  82.6% 82.9% 82.8%

B (open-singer) 81.7%  95.3% 88.5%

VI. EVALUATION OF DIARIZATION SYSTEM

This section describes experiments for evaluation of the pro-
posed singer diarization system. In this experiment, real audio
samples recorded in CDs were utilized for evaluation.

A. Data Preparation

To evaluate the proposed singer diarization method, a new
larger dataset was prepared using the same set of unusual CDs
described in Section V-A. All songs are sung by female singers
in the dataset, and each song is sung by each of multiple
singers at almost the same pitch in the same rhythm. Since
those singing voices are thus synchronized, they can be mixed
to generate unison singings for training purposes. In addition,
for the evaluation purpose, we used other CDs to prepare a set
of songs sung by multiple singers. The detailed information
about the datasets is available at https://www.gavo.t.u-tokyo.
ac.jp/%7ehitoshi/diarization/.

1) Training Set: To prepare a training set and a development
set, fifty-three songs were prepared. Each song was sung by
about 9 singers. The total number of recordings (audio tracks)
used in this dataset was 500. The total duration of the dataset was
about 32 hours, and the total duration of the voiced segments in
the dataset was about 24 hours. The number of unique singers
was 22.

We first extracted (separated) solo singing voices (500 record-
ings) from polyphonic music recordings by subtracting the
corresponding backing tracks” as described in Section V-A. In
randomly mixing those solo singing voices, unlike the small
dataset, we here generated 526 multiple-singer recordings with
song division, such as those shown in Fig. 1. That is, each
recording of a song contains sections with a solo singing voice,
sections with two unison singing voices, and sections with three
unison singing voices by changing a way of mixing and con-
catenating singing voices along the song. All the 526 recordings
were generated so that the number of contained singers is 3.

2 Although backing tracks of 16 songs are provided in CDs, backing tracks
of 37 songs are not. When backing tracks are not available, we estimated them
by leveraging multiple recordings. Given a song, its multiple recordings with
different singers include the same backing track. We first compute the amplitude
spectrogram of each recording of the same song. Then, since the pitch and timing
of their singing voices deviate from each other, we assume that the smallest
amplitude of each time-frequency bin in all the spectrograms could correspond
to the backing track. We thus estimate the amplitude spectrogram of the backing
track and perform phase reconstruction to estimate audio signals of the backing
track.
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figure, the singer 1 corresponds to the reference singer A, and the singer 2
corresponds to the reference singer B. In this case, there is no singer to which
the singer 3 corresponds.

Fifty-one out of the fifty-three songs were used for the training
set. The remaining two songs were used for the development set
in which the number of multiple-singer recordings was 19.

2) Training Set for Voice Activity and Overlap Detection: To
train the voice activity and overlap detection system, twenty-five
multiple-singer songs with song division were directly taken
from different regular CDs and were used without modifica-
tion. The duration of each song was about 5 minutes, and
the total duration of the dataset was about 113 minutes. They
were manually labeled (annotated) according to the number of
singers. The songs were divided into three groups: training set,
closed-singer development set, and open-singer development
set. The numbers of songs were 19, 2, and 4, respectively.
The singers in the training set included all the singers in the
closed-singer development set, but did not include any singers
in the open-singer development set.

3) Evaluation Set: For the evaluation purpose, we further
prepared twenty-five multiple-singer songs with song division.
Those songs were directly taken from different CDs and were
used without modification. The duration of each song was about
5 minutes, and the total duration of the dataset was about 112
minutes. The number of singers varied from two to six, depend-
ing on the song. Fig. 9 shows the distribution of the number of
singers. All 57 singers in this evaluation set were not included
in both of the training sets described in the previous sections.

All the songs were manually labeled with the ground truth
annotation as shown in the blue bars (Ref) in Fig. 13. In
general, each song contains sections with a solo singing voice
and sections with multiple unison singing voices. Although two
out of the twenty-five songs contain additional sections with
multiple non-unison singing voices (with different pitches) for
about 32 seconds in total, they did not affect the evaluation of
the performance since they are so short.
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Fig.11.  Diagrams of two evaluated systems in the experiment (cf. the proposed
system shown in Fig. 4).

B. Experimental Setups

Spleeter [43] was used to extract singing voices from poly-
phonic music. Since the pretrained model 2stems-16 kHz
was used, the separated signals are band-limited by 16000 Hz.
Note that acoustic features such as MFCC and Cosacorr scores
were extracted from both of the separated singing voices and the
original recordings (mixed signals).

For the voice activity and overlap detection, BILSTM net-
works were utilized. Table III shows the architecture of the
network. The input features were 24th-order MFCC with Oth co-
efficients, power, and the 8th-order Cosacorr scores. The frame
period was 100 ms, and the input features were jointed over 21
frames. The total number of dimensions of input features was
(25414 8) x 2 x 21 = 1428. The network performed classi-
fication into three classes: no singer, one singer, and multiple
singers. The network was trained using the Adam optimizer,
and the learning rate was 0.001. The batch size was 19, and the
number of epochs was 200. In the experiments, the development
set was used as a validation set.
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Fig. 12.  Visualization of singer representations by ¢-SNE. The colors denote
the singers of the samples.

TABLE III
NETWORK ARCHITECTURE FOR THE VOICE ACTIVITY AND OVERLAP
DETECTION AND THE TARGET-SINGER VAD

Layer type Output size
Input 1428 or 849
Batch normalization
BiLSTM 1024
Fully connected 1024
Batch normalization
Fully connected 1024
Batch normalization
BiLSTM 1024
Fully connected 1024
Batch normalization
Fully connected 1024
Batch normalization
Fully connected 1024
Batch normalization
Fully connected 1024
Batch normalization
Fully connected 3
Softmax 3

For the target-singer VAD, BiLSTM networks were adopted.
Fig. 8 shows the architecture of target-singer VAD, and Table III
shows the architecture of the network. The input features were
24th-order MFCC with Oth coefficients, power, the 8th-order
Cosacorr scores, cosine similarity between the representation of
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Fig. 13.  Diarization results of a song. Blue bars (Ref) denote the ground truth, and red bars (Hyp) denote the estimated results. In the figure, the pairs used in the

calculation of DER are shown as “Match”. Both results were obtained in the condition where the number of singers was given.

TABLE IV
NETWORK ARCHITECTURE FOR THE EXTRACTOR OF SINGER REPRESENTATIONS

Layer type Output size
Input 4050
Fully connected 2048
Fully connected 2048
Batch normalization
Fully connected 2048
Batch normalization
Fully connected 2048
Fully connected 100
Normalization 100
Margin addition (when training) 100
Softmax 100

the target singer and one at the segment, and the representation of
the target singer. The frame period was 100 ms, and the acoustic
features were jointed over 11 frames. The total number of dimen-
sions of input features was (25 + 1+ 8) x 2 x 11+ 1+ 100 =
849. The network was trained using the Adam optimizer, and the
learning rate was 0.001. The batch size was 8, and the number
of epochs was 20. In the experiments, the development set was
used as a validation set.

The network for extracting singer representations was based
on ArcFace [17]. Table IV shows the architecture of the network.
The features were jointed over 25 frames with 20 ms frame
period, that is, the length of the input features was 500 ms.
As acoustic features, 79th-order MFCC with Oth coefficients
and power were used. The total number of dimensions of input
features was (80 4 1) x 2 x 25 = 4050. The singer representa-
tions were 100-dimensional. The margin of ArcFace was fixed

to 0.5. The network was trained using the Adam optimizer, and
the learning rate was 0.0001. The batch size was 32768, and the
parameters at the 1572nd epoch were utilized. One percent of
the training set was used as a validation set.

As a clustering method, auto tuning spectral clustering [36]
was adopted, and open-source implementation® was utilized.
A parameter tuning method based on normalized maximum
eigengap, which is named NME-SC in [36], was utilized. After
clustering, postprocessing with HMM was performed. HMM is
constructed as shown in Fig. 7, and the hyperparameter b was
set to 0.9999, which is fixed based on the development set. The
emission probability matrices were also fixed as hyperparame-
ters based on the development set.

As an objective metric for evaluating diarization results, di-
arization error rate (DER) [49] was adopted. DER is defined by
the ratio of the length of three types of errors to the total length
of the reference utterances. The three types of errors are

1) Singer error: The labeled singer is wrong.

2) False alarm: The number of estimated singers is more than

the true number of singers.

3) Miss: The number of estimated singers is less than the true

number of singers.

Fig. 10 shows a conceptual image of the three types of errors.
DER can be formulated as

ZSSZI s (max (Ns(ref)vNS(hyp)> - Ns(correct))

DER = S ) , (6)
Zs:l TsNs
3[Online]. Available: https:/github.com/tango4j/ Auto-Tuning-Spectral-
Clustering
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TABLE V
RESULTS OF VOICE ACTIVITY AND OVERLAP DETECTION. ACCURACY
DENOTES THE CLASSIFICATION ACCURACY FOR DEVELOPMENT SET. THE
RESULTS OF BASELINE ARE CALCULATED BASED ON THE RESULTS
OF DIARIZATION

Accuracy
Model Tnput features Closed-singer ~ Open-singer
LSTM MFCC, power 81.1% 68.4%
LSTM MFCC, power, Cosacorr score 88.1% 76.6%
BiLSTM MFCC, power 86.6% 75.1%
BILSTM  MFCC, power, Cosacorr score 89.9% 79.7 %
Baseline 52.5% 60.4%

where S denotes the number of segments, 75 is the length of

the s-th segment, V. S(ref) and NV, S(hyp) are the number of singers in

reference and estimated label at the s-th segment, and N, (correct)

denotes the number of matched singers. Since diarization itself
does not perform singer recognition, the technique does not
estimate which inferred singer corresponds to a singer in the
ground truth. Therefore, to calculate DER, one-to-one mapping
is first performed, and then DER is calculated. Because of the
definition, DER may exceed 100%. In these experiments, collar
tolerance was not used.

C. Evaluation of Voice Activity and Overlap Detection

To evaluate the performance of voice activity and overlap
detection, some systems were compared. For comparison, an
LSTM-based model was constructed by replacing BiLSTM lay-
ers with LSTM layers. In addition, the performance of a baseline
method was evaluated. The baseline method is a modified ver-
sion of the speaker diarization method based on TS-VAD so that
it can be applied to singer diarization. In the baseline method,
source separation is performed, and TS-VAD is replaced with
target-singer VAD. Fig. 11(b) shows a diagram of the baseline
method. In the baseline method, the overlap detection is not per-
formed, and the diarization results are constructed using target-
singer VAD for all voiced segments. To calculate the results of
the baseline method, the full diarization process was conducted,
and then the accuracy in voice activity and overlap detection was
calculated. Table V shows the results. By introducing BiLSTM
and Cosacorr scores, the total performance achieved 89.9% in
the closed-singer set and 79.7% in the open-singer set. The
results indicate that Cosacorr scores were effective in voice
activity and overlap detection. The results also show that the
BiLSTM-based systems outperformed LSTM-based ones. This
can be because stronger time-series modeling was effective.
In singer diarization, there is no need to perform real-time
analysis, and the later information can be utilized. Therefore, the
BiLSTM-based model was adopted in the latter experiments.

D. Quality of Singer Representations

In addition to the ArcFace-based system, an x-vector-based
system was implemented for comparison. In the x-vector-based
system, consecutive 51 frames with 10 ms frame period were
used as input.

Firstly, acquired singer representations were visualized.
Fig. 12 shows the results. Singer representations acquired by the
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TABLE VI
AVERAGE DER FOR SINGLE-SINGER SEGMENTS OF DEVELOPMENT SET WITH
DIFFERENT EXTRACTOR OF SINGER REPRESENTATIONS

Number of singers

Extractor Given  Not given
ArcFace  36.7% 48.7 %
x-vector 44.8% 59.3%

ArcFace-based system formed clusters according to the singers
while the representations were dispersed in x-vector-based one.

Secondly, diarization performance was evaluated. In this
experiment, diarization was performed for the single-singer
segments in the development set. Table VI shows the results.
No matter whether the number of singers was given or not,
the ArcFace-based system outperforms the x-vector-based one.
Since the singer representations obtained with the ArcFace-
based system were more discriminative than that of the x-
vector-based system, the performance of the clustering-based
diarization has been improved.

E. Overall Performance Evaluation

To evaluate the performance of the proposed system, three di-
arization systems were compared: the clustering-based system,
the baseline system, and the proposed system. Fig. 4 shows a
diagram of the proposed system, and Fig. 11 shows diagrams of
the other two systems. The first method performed diarization by
only clustering and was not able to handle overlapped singing.
In the baseline method, calculation of singer-specific represen-
tations and target-singer VAD were iteratively performed three
times. The major difference between the baseline system and the
proposed system is whether the overlap detection is performed
before the clustering step. Both methods adopted ArcFace-based
singer representations. The systems were evaluated in two differ-
ent conditions. The number of singers was given at the clustering
step in the first condition and not given in the second condition.

Table VII shows the results of the overall performance in DER.
The results show that the proposed system outperformed the
other baseline methods. By performing overlap detection before
the main diarization step, the performance was improved in both
conditions. On the other hand, the results of the clustering-based
method show significantly higher DER than the other systems.
The clustering-based approach did not handle overlapped seg-
ments, and thus a lot of misses raised DER.

The information about the number of singers notably affects
the overall performance of singer diarization. The results are
reasonable because the errors in the number of singers caused
misses or false alarms.

FE. Impact of the Quality of the Modules on the Overall
Performance

To evaluate the impact of the quality of the modules on
the overall diarization performance, the proposed system is
evaluated in two additional conditions. In the first condition (a),
the results of the clustering-based diarization of single-singer
segments are given based on the ground truth. On the basis
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TABLE VII
AVERAGE OVERALL DER FOR DEVELOPMENT AND EVALUATION SET. DIARIZATION WAS PERFORMED IN TWO DIFFERENT CONDITIONS; THE NUMBER OF SINGERS
'WAS GIVEN IN THE FIRST CONDITION AND WAS NOT GIVEN IN THE SECOND CONDITION

(a) The number of singers was given

Development set
Method ‘ DER

Evaluation set
miss DER

singer error  false alarm singer error  false alarm miss
Clustering-based | 149.0% 12.6% 1.2%  1352% | 191.2% 31.7% 27%  156.7%
Baseline 77.7% 3.1% 15.9% 58.6% 72.9% 8.0% 20.3% 44.6%
Proposed 55.9% 7.9% 4.0% 44.0% 52.9% 10.6% 26.5% 15.8%
(b) The number of singers was not given

Method Development set Evaluation set
DER  singer error  false alarm miss DER  singer error  false alarm miss
Clustering-based | 153.5% 17.2% 1.2%  1352% | 191.9% 32.3% 2.7%  156.9%
Baseline 92.0% 4.6% 22.5% 64.9% | 129.5% 12.1% 25.1% 92.3%
Proposed 69.3% 10.2% 3.3% 55.8% 79.3% 13.2% 24.8% 41.2%

TABLE VIII

COMPARISON OF THE PROPOSED SYSTEM IN THREE CONDITIONS IN DER. THE TOTAL NUMBER OF SINGERS IS GIVEN BASED ON THE GROUND TRUTH

Condition Voice activity and overlap detection

Clustering-based diarization

Development set  Evaluation set

Condition (a)
Condition (b)
Condition (c)

ground truth
ground truth
inferred

ground truth 24.4% 14.3%
inferred 30.2% 38.1%
inferred 55.9% 52.9%

of the oracle clustering results, singer-specific representations
were calculated, and then target-singer VAD was performed. The
results of voice activity and overlap detection are also generated
from the ground truth. In the second condition (b), only the
results of voice activity and overlap detection are given from
the ground truth. On the basis of the oracle results of voice
activity and overlap detection, the clustering-based diarization
of single-singer segments is performed. These two conditions
are compared with the third condition (c¢), which is equivalent to
the proposed method in Table VII(a) and does not use the ground
truth. The total number of singers was given in this experiment.

By comparing these three conditions (a), (b), and (c), the
impact of the quality of voice activity and overlap detection
and clustering-based diarization of single-singer segments can
be evaluated. Since all voiced segments are taken into account
in the calculation of DER, the denominator in the definition of
DER (6) is identical under all three conditions.

Table VIII shows the results. The results show that the quality
of the clustering-based diarization as well as that of voice activity
and overlap detection have a large impact on the DER.

VII. DISCUSSIONS

The experimental results show that the proposed framework
outperformed the baseline system. Fig. 13 shows an example of
the results of diarization of a song. In the result of the baseline
method, a lot of false alarms in the single-singer segments raised
overall DER. As shown in Table V, the accuracy in overlap
detection was lower in the baseline method, and the result indi-
cates that misses and false alarms degraded the final DER. On
the other hand, the proposed framework suppressed these errors
by utilizing the results of overlap detection. Therefore, results
indicate the effectiveness of this strategy. The experimental
results showed the effectiveness of Cosacorr scores in overlap

detection, and thus Cosacorr scores were helpful to lower the
final DER.

The proposed method was effective also in overlapped seg-
ments. Table IX shows the confusion matrices in the estimated
number of singers. In overlapped segments, the results show
that the proposed system estimates the singing state of each
singer with fewer errors in the number of singers. In addition,
the results in Table VII show that the amount of misses is small in
the results acquired by the proposed method. This performance
difference can be caused by the difference in the quality of the
singer representations. The proposed system adopts an approach
that performs overlap detection at first and extracts singer repre-
sentations only from single-singer segments. The improvement
in the quality of singer representations seems to lead to the
improvement of singer diarization in overlapped segments.

The performance of the proposed method is still limited. One
reason is the lack of accuracy in the clustering-based diarization
of single-singer segments. Since the proposed system acquires
singer-specific representations based on the results of this di-
arization, the performance greatly affects the final DER. As
shown in Table VIII in Section VI-F, when the ground truth
was used as the result of the clustering step (condition (a)), the
DER was much lower than the other conditions (b) and (c).
The improvement of the clustering-based diarization is thus the
key point to reduce the DER. Another reason is the lack of
quality in the voice activity and overlap detection. As shown
in Table VIII, when the ground truth was used as the result of
its detection (conditions (a) and (b)), the DER was much lower
than the condition (c). This is because errors in this detection
deteriorate the results of clustering-based diarization, resulting
in worse singer-specific representations. While the accuracy in
the voice activity and overlap detection achieves about 80% as
shown in Table V in Section VI-C, further study on this step is
needed to improve the total diarization performance.
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TABLE IX
CONFUSION MATRICES ABOUT PREDICTED NUMBER OF SINGERS. THE UNITS
ARE IN SECONDS

(a) Baseline system (Accuracy=49.0%)

0 54 |27 | 11 6 12

—_

645 | 551 | 549 | 254 | 166 | 198

z
(5]
o0
£2| 51 [ 150|126 [ 21 | 40 | 10
S
=}
53] 41 | 45 | 277 (238 | 22 | 8
E
=
S4] 19 | 58 | 36 | 167 | 228
2
!
S| 87 | 41 | 164 | 75 | 105 | 447
6| 6 4 |61 |29

0 1 2 3 4 5 6
Predicted number of singers

(b) Proposed system (Accuracy=68.5%)

0 61 15 | 11 | 23 | 12

182 191 | 103 | 166 | 156 | 7

[S)

33 | 84 | 188 | 9 71 11 2

35 | 62 | 190 | 304 | 11 | 21 8

~

30 | 17 | 28 | 73 | 360

True number of singers
)

[

103 | 55 | 152 | 50 | 92 | 467

61 12 2 2 8 34 | 42

0 1 2 3 4 5 6
Predicted number of singers

VIII. CONCLUSION

To analyze and extract features related to multiple simultane-
ous singing voices, this paper has discussed singer diarization,
which is a technique to estimate who sings when from the
songs with multiple unison singers. Since traditional speaker
diarization methods are not suitable for singer diarization, this
paper has proposed a new diarization framework. The frame-
work is based on target-singer VAD, which recognizes whether
the target singer is singing or not at each segment. While the
traditional speaker diarization methods often handle overlapped
segments by postprocessing, our framework performs the over-
lap detection before the main diarization process. This paper
has also introduced Cosacorr score, a new acoustic feature to
improve the performance of the overlap detection. The frame-
work achieves singer diarization for polyphonic sound mixtures
by exploiting the Spleeter singing voice separation technique.
Moreover, this paper has utilized ArcFace to acquire highly
discriminative singer representations. The results of the singer
diarization experiments have shown that the proposed frame-
work outperformed the baseline one that does not explicitly
perform the overlap detection. The results have also shown that
Cosacorr scores are effective for overlap detection.

Although the main contribution of this paper is to tackle this
underexplored singer diarization task, there is still much room
for improvement in the diarization error rate (DER). Future
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work will include such improvement on the spectral clustering
algorithm as well as the singer representations. Especially for
singer representations, a more discriminative extractor can
be constructed by using large speech corpora for pretraining
the extractor. Another study is needed to determine whether
speech corpora can be effectively utilized for training a singer
representation extractor. There is also room for improvement
in target-singer VAD. While target-singer VAD estimates the
singing state of each singer individually, the accuracy can be
improved by simultaneously estimating the singing state of
all singers similarly to TS-VAD. Various applications based
on singer diarization, such as a music listening interface that
enables users to easily access singing voices of particular singers
or unison singing voices, could also be developed in the future.
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