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AutoGuitarTab: Computer-Aided Composition of
Rhythm and Lead Guitar Parts in the Tablature Space

Matt McVicar, Satoru Fukayama, and Masataka Goto

Abstract—We present AutoGuitarTab, a system for generating
realistic guitar tablature given an input symbolic chord and key
sequence. Our system consists of two modules: AutoRhythm-
Guitar and AutoLeadGuitar. The first of these generates rhythm
guitar tablatures which outline the input chord sequence in a
particular style (using Markov chains to ensure playability) and
performs a structural analysis to produce a structurally consistent
composition. AutoLeadGuitar generates lead guitar parts in
distinct musical phrases, guiding the pitch classes towards chord
tones and steering the evolution of the rhythmic and melodic in-
tensity according to user preference. Experimentally, we uncover
musician-specific trends in guitar playing style, and demonstrate
our system’s ability to produce playable, realistic and style-specific
tablature using a combination of algorithmic, user-surveyed and
expert evaluation techniques.

Index Terms—Algorithmic composition, computer-aided com-
position (CAC), symbolic music processing.

I. INTRODUCTION

T HE generation of music using automated or semi-auto-
matedmeans has an extensive and rich history yet remains

an active area of research [1]. The advent of affordable digital
computing has facilitated a rapid increase in research into algo-
rithmic composition systems, driven by scientific curiosity [2],
analysis and replication of style [3], and the potential pedagog-
ical benefits these systems offer [4].
A particularly interesting area of algorithmic music genera-

tion is Computer-Aided Composition (CAC), in which the com-
positional task is shared between computer and human. In this
paper we propose that the field of CAC is sufficiently mature
that investigation into more specialized models, such as those
geared towards particular instruments, is now timely.
The guitar represents an interesting case study in this regard,

since the design of the instrument limits (by maximum hand
span) the playability of certain pieces. Furthermore, the pitch
ranges of guitar strings significantly overlap, meaning that
there is no unique way to play a given note. The situation for
polyphonic scores naturally is significantly more complex,
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Fig. 1. High-level overview of AutoGuitarTab. AutoLeadGuitar processes
are shown in green, AutoRhythmGuitar processes in blue. See Section I-C for
details.

since each constituent note can be played in a number of dif-
ferent positions. This ambiguity has led to the development of
tablature notation (or simply tab, plural tabs), which specifies
the exact position (string and fret number1) to play each note
(see Fig. 2).

1frets are logarithmically-spaced ridges on the guitar neck which result in
distinct semitone-spaced notes.
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Fig. 2. Traditional notation (upper stave) and guitar tablature (lower stave)
showing the troublesome one-to-many relationship between traditional notation
and the guitar fretboard.

In the context of music generation, the non-bijective map
from score to tab implies that compositions generated through
existing algorithmic means may produce music which is ex-
tremely challenging or impossible to play on the guitar, lim-
iting their use for teaching purposes and personal study. To over-
come this problem, in this paper we introduce the composition
of music directly in guitar tablature, and place probabilistic con-
straints on the sequences of notes which our system produces in
order to maintain playability.

A. Motivation

Our primary motivation for studying guitar-specific CAC is
that output from our system might be used in a compositional
context, in which a composer wishes to write a guitar part for
a new or existing song but lacks sufficient familiarity with the
instrument to do so.Worth noting at this point is that the guitar is
a versatile instrument pervasive in many forms of popular music
[5], meaning the scope of this work is not particularly limited
by our choice of instrument.
Further motivation for this work is more pedagogical in na-

ture: our system could be used to teach amateur guitarists the
possible creative approaches to playing rhythm or lead guitar
over a given chord or key sequence (see I-B). Finally, from
an academic perspective we are interested to see to what ex-
tent guitar compositions are player-specific, and if guitarists can
be identified by their playing style. Analysis of style and form
therefore constitutes an important final impetus of the current
study.

B. Challenges and Proposed Solutions

There are several challenges which must be overcome in the
development of an automatic composition system. Some of
these are fairly universal in nature, whilst others more specific
to algorithmic music creation for the guitar. We outline some
of these challenges and our proposed solutions below.
Markov-chain-based approaches to algorithmic composition

[6] (on which the majority of our approach is based) are pop-
ular within the field of CAC owing to their low complexity and
highly intuitive nature. However, it is well-known that these
techniques fail to model long-term behavior beyond the degree
of the model (see II-A). We counter this in our work by em-
bedding structural information in our rhythm guitar composi-
tions, composing guitar solos in distinct musical phrases, and al-
lowing users of our system to specify intensity curves outlining
the desired evolution of the rhythmic and melodic energy of the
composition.
Capturing the notion of style in guitar playing is another chal-

lenge we face in this work. The layout of the instrument (in par-
ticular the position options for each note) we believe plays an
important role in this regard. For example, a specific chord can

be outlined in a large number of ways by a musician using dif-
ferent combinations of rhythms and chord tones. However, on
the guitar there are also different ways of fingering basic chord
shapes with the same pitches, allowing practitioners of the in-
strument to explore different hand positions and chord shapes
for a set chord.
Indeed, certain hand positions for chords are beneficial for

playing arpeggios, adding additional melodic notes, or simply
for the different timbre they produce [7]. The same can be said
for lead guitar playing, with certain scale shapes facilitating the
use of particular guitar-specific ornaments such as string bends,
legato phrases or slides. For examples of this aspect of style in
existing pieces, see Fig. 3.
We therefore consider position choice, along with basic

rhythm and pitch selection, to be an element of a guitarist’s
style (both for rhythm and lead playing). We also consider use
of muted notes (percussive sounds produced by relaxing the
fretting hand and strumming across the strings), string bends
(notes which are plucked and subsequently pulled away from
their original position resulting in a smooth increase in pitch
due to an increase in string tension), hammer-ons (notes which
are forcefully brought onto the fretboard at frets higher than
existing notes on the same strings), pull-offs (analogous to
hammer-ons), and slides (glissando across frets) to consti-
tute part of what makes a player unique. Note that existing
algorithmic compositional models which generate music in tra-
ditional notation are unable to exploit these attractive aspects of
the guitar, since knowledge of fingering positions is necessary
for determining the applicability of these techniques.

C. System Overview

A graphical outline of our system is presented in Fig. 1. In the
training phase, we collect existing digital tablatures annotated
with chords and keys, from which pitch-invariant models for
rhythm and lead guitar are generated via transposition. Rhythm
guitar measures are stored for further processing; lead guitar
models for phrasing and rhythm are trained from data.
In generation, we begin by conducting an automatic structural

segmentation of the input chord sequence. This segmentation
is used to cluster rhythm guitar rhythms into distinct groups.
These rhythm clusters, along with the input chord sequence,
pitch model for rhythm guitar, and the structural segmentation
are then fed into the AutoRhythmGuitar module. A digital tab-
lature in MusicXML format is written as output.
For lead guitar, a key sequence input is required. Optional

intensity contours for rhythm and pitch are used in conjunction
with a rhythm, pitch and phrasingmodel to produce a lead guitar
digital tablature.
MusicXML is used as the output format in this work owing

to its flexibility (guitar finger positions as well as bends and
other guitar-specific ornaments can be written and read in
MusicXML) and portability (files can easily be imported into
many existing software packages for visualization and audio
synthesis).

D. Contributions and Paper Structure

This paper is an extension of two of our previous publications
on automatic generation of rhythm [8] and lead [9] guitar parts.
The main contributions of the current work are: a new algorithm
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Fig. 3. The approaches five popular rhythm guitarists have taken to playing over an A major chord. Guitarists and excerpts, from left to right: Eric Clapton,
“Wonderful Tonight” (Clapton); Jimi Hendrix, “Stone Free” (Hendrix); Jimmy Page, “Immigrant Song” (Page/Plant); Keith Richards, “The Last Time” (Jagger/
Richards); Slash, “Sweet Child O’ Mine” (Rose/Slash/Stradlin/McKagen/Adler). Notation: slurs indicate hammer-ons/pull-offs, ‘X’ indicates muted notes.

for the detection of segment boundaries based on genetic algo-
rithms, the introduction of polyphony and intensity curves in
AutoLeadGuitar, and a thorough evaluation of our system using
algorithmic tests, user studies and expert consultation.
The remainder of this paper is organized as follows. In

Section II, we discuss the existing literature relevant to the
current study. Section III describes our structural segmen-
tation algorithm. An overview of the two main modules of
our system, AutoRhythmGuitar and AutoLeadGuitar, are out-
lined in Section IV and V. Our algorithms are evaluated in
Section VI, before we conclude in Section VII.

II. RELEVANT WORK

A. Computer-Aided Composition
The field of computer-aided composition is a broad and ac-

tive research topic, making a complete literature review of the
subject beyond the scope of this paper (an excellent overview
can be found in [1]). As such, the current subsection focuses on
the literature most relevant to approach we take in this work:
Markov-chain-based generation of harmony.
Markov initially investigated sequences of time dependent

variables in the context of text analysis in 1913 [1], but it was
not until the mid-twentieth century that Markov chains’ applica-
tion to algorithmic composition was considered by Olson [10].
In this investigative work, Olson built first and second-order
Markovmodels of pitch and rhythm from a set of eleven existing
pieces, transposing all songs to a common key. The first system
to use Markov chains for composition was developed by Hiller
and Isaacson [2], whose Illiac Suite used transition probabili-
ties to assign intervals for each of the constituent instruments. In
slightly later work with Baker [11], transition probabilities for
pitch, note duration, dynamics, number of non-rest notes, and
playing style were learnt from an existing work. Three works
by Xenakis in 1959 [12] also make use of Markovian analysis,
used to control systems of sinusoidal sounds, violins, and an en-
tire string orchestra.
In the subsequent decades, Markov chains were explored

by many researchers, including Zaripov and Russell [13],
Conklin and Witten [14], and Ponsford et al. [15]–an excellent
overview of the use of Markov chains in the latter half of the
twentieth century can also be found in [16]. More recently,
Pachet [17] has been investigating the use of Markov chains for
generation of musical melodies, leading to the development of
a number of systems for use by both trained [3] and untrained
[18] musicians. A common criticism of Markovian models is
that they fail to model long-term behavior beyond the order of

the model [19] and can lead to plagiarism by simply replicating
high-probability state sequences, especially with high order
models. Pachet and his collaborators acknowledge and counter
this by placing constraints on the maximum permissible order
of sequence which are repeated verbatim [20].

B. Algorithmic Fingering and Arrangement

Following the terminology from Hori et al. [21], we describe
the process of producing the most comfortably playable tabla-
ture from a score as computing a guitar fingering. To do so for
complex pieces is non-trivial even for skilled guitarists, andmay
not even be possible. In these cases, minimally altering a piece
to ensure it is playable on the guitar is described as determining
an arrangement of the piece.
Manually producing fingerings and arrangements are suffi-

ciently irksome tasks that some researchers have investigated
methods of automating these procedures. Sayegh [22] intro-
duced an optimal path paradigm to minimize fingering move-
ment, extended by Radicioni et al. [23] to optimize phrase-level,
rather than global, fingering movement. A data-driven approach
to solving the fingering problem was introduced by Radisavl-
jevic and Driessen [24], whose algorithm learns weight costs of
a particular style from fully-labelled tabs. Tuohy and Potter [25]
have investigated genetic algorithms for navigating the large
search space of possible fingerings for a given piece.
Hori and collaborators [21] attempted automatic fingering

and arrangement using input-output Hidden Markov Models,
whilst others have attempted to determine playing position
directly from audio [26]–[28], sometimes constrained by a
player’s proficiency [29], or by using video cues as an addi-
tional input [30].

III. STRUCTURAL SEGMENTATION

Rhythm guitar compositions feature a large amount of repeti-
tion, with specific parts repeated in different realizations of the
same structural part (verse, chorus etc.)[8]. To produce realistic
rhythm guitar parts, the first stage of our processing pipeline
is therefore a structural segmentation of the chord sequence a
user inputs to our system. We employ a novelty-based approach
based on the work by Foote [31].

A. Self-Similarity Matrix and Novelty Curve Computation
The input to our algorithm is a text file of lines–one for

each measure in the song. Each line represents the chords in a
measure, with up to one chord symbol per sixteenth note (one
chord symbol per beat or even measure can be used to reduce
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typographical burden for the user). Let be this input chord
file:

with the chord symbols for a measure selected from a chord
alphabet . The first stage of processing in our method is to
compute an self-similarity matrix , with
affinity between two measures defined by normalized Hamming
similarity:

where is an indicator function which returns 1 if and only
if the input statement is true. Any pair of measures in nonequal
time signatures were set to have similarity 0. An binary
checkerboard matrix (see [31]) is then passed through the
diagonal of , calculating the novelty at measure as:

The resulting novelty curve was subsequently normalized to
[0,1] by dividing by maximum value.

B. Segment Boundary Detection

Next, we detect segment boundaries from the novelty curve.
Each measure boundary can either be a boundary or not,
meaning there are possible segment boundary solutions.
We use a Genetic Algorithm (GA) to explore this large solution
space, with a fitness function which assigns high scores to
solutions which attain high novelty scores but are also sparse.
Genetic algorithms have been explored in the past for structural
segmentation [32], although our approach differs in that our
approach is applicable to any scenario where a novelty curve
is specified, including the symbolic chord and audio domains
(this will be demonstrated in Section VI).
The initial population was set to 1,000 individuals with

boundaries in random positions in expectation every 8 down-
beats (by setting the probability of a boundary at each point
to be ). Let the sum of the novelty function be , and a
particular individual in the population denoted by .
The fitness of an individual given the novelty curve is then
defined by:

The first of these terms specifies howmuch of the total novelty is
picked up by and will be maximal when every downbeat is se-
lected as a boundary. The second term in contrast rewards sparse
solutions and is maximal for solutions with no boundaries. As
an additional constraint to avoid solutions with unrealistically
short segments, any population members with a segment less
than 4 downbeats in length were assigned a fitness of 0.

Fig. 4. Example of our symbolic structural segmentation algorithm for
“Stairway to Heaven” (Page/Plant). Top: downbeat-synchronous chord se-
quence Self-Similarity Matrix (SSM), with darker shades indicating higher
similarity. Second subfigure: novelty curve derived by passing an
checkerboard matrix through the diagonal of the SSM. Final two subfigures: the
resulting predicted segmentation and ground truth segmentation. Throughout,
sections with the same segment label have identical color.

The population was then evolved over 100 generations with
single point crossover at a random position, and mutation con-
sisting of bit swaps with probability of for each measure.
Individuals for subsequent generations were chosen from the
population using fitness proportionate selection, with the final
boundaries chosen as the segmentation with highest fitness at
generation 100.

C. Segment Label Assignment
Every segment was initially assigned a unique label. Seg-

ment pairs which were either the same length or integer mul-
tiple lengths of each other were then considered for merging
(assigning the same label).
Let the number of segments identified by the GA described

above be . The similarity between each pair of segments was
stored in an upper triangular matrix , with sim-
ilarity of two segment pairs defined by Hamming similarity
(concatenating together copies of the shorter segment to make
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Fig. 5. Rhythm clusters derived using the techniques discussed in Section IV, with clusters and trained on existing digital tablatures by ‘Slash’ (Saul
Hudson). Each of the discovered clusters is shown in a separate subplot, with members of each cluster (example rhythms) collated in rows. Rhythm cluster 1 shows
rhythms with many onsets, rhythm cluster 2 mainly has onsets on the main metrical positions (16th notes 0, 4, 8, 12), cluster 3 has many rests and muted notes,
whilst cluster 4 consists mainly of held notes.

each segment of equal length if necessary). Segment pairs which
were not integer multiple lengths of each other were assigned a
similarity of 0.
We then inspected , the largest element of , finding it

at row and column . We assign segments and the same
label if exceeds a threshold . is then set to
0 and we iterate until .
An example of our algorithm for the chords to “Stairway to

Heaven” (Page/Plant) is shown in Fig. 4, where in this example
and throughout the remainder of this paper we set the parame-
ters (recall: size of cherboard matrix), . Here, our
algorithm has inserted an erroneous boundary at measure 8 and
missed two boundaries near the end of the song (due, we discov-
ered, to constant chord sequence but changing instrumentation),
but is otherwise correct. Most segment labels are correctly iden-
tified. A quantitative analysis of this algorithm is presented in
Section VI-B.

IV. AUTORHYTHMGUITAR

Our rhythm guitar generation module consists of two inde-
pendent musical aspects: rhythm and pitch. The composition of
these attributes is guided by the structural analysis conducted
in Section III and is outlined in the following subsection. The
reader is referred to our original publication on rhythm guitar
generation [8] for a more thorough overview of this module.

A. AutoRhythmGuitar Rhythm Assignment

In addition to note onsets, rests (periods of silence) and
sustained notes, guitarists are able to produce percussive muted
notes by relaxing their fretting hand across the strings and
strumming. Believing these muted notes to be important in
expressive rhythm guitar playing, our rhythm model for rhythm
guitar consists of the following rhythmic note states: {note
onset, held note, rest, muted note}.
As in our previous work, our algorithm proceeds by clus-

tering the training rhythms into clusters, where is the

number of unique segment labels identified by our segmenta-
tion algorithm. The motivation for this clustering is to produce
one rhythmic style for each segment type in the target song–see
Fig. 5 for an example of the kinds of rhythm clusters we discov-
ered. Each segment label is then assigned a cluster of rhythms,
which are pulled from a ‘bag-of-rhythms’ model from the
appropriate cluster in generation. Rhythms are repeated across
segments with the same label for intra-segment consistency.

B. AutoRhythmGuitar Pitch Assignment

Our next task is to assign pitches to the note onsets deter-
mined in IV-A. We achieve this by constructing a bigram model
in the tablature space. Each state in our rhythm guitar pitch
model consists of a list of (string, fret, bend) triples, with bends
measured in integer number of semitones.We found rhythm gui-
tarists rarely bent notes (only 55 of 8,430 states had at least one
bent string), but included bends for consistency with AutoLead-
Guitar’s pitch model (see V-C). An illustrative example of our
state space for rhythm guitar pitch can be seen by inspecting the
first eighth note in Fig. 3. In our model, this would be described
as:

Adopting the convention that strings are numbered from 1
(highest-pitch) to 6 (lowest-pitch). We took a biased random
walk over the state space for a chord to assign pitches from
the model, exploiting the fact that any consecutive pair of states
which occur in our training data are likely to be playable.
States were also transposed up and down the guitar neck to

increase generalization potential of our model. The maximum
transposed fret was chosen such that on no string did any state
exceed the 11th fret, whilst the minimum fret was set such that
the lowest note was an open string2. States which contained
combinations of open and fretted strings were not transposed

2an ‘open’ string is one which has no fretted finger positions.
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as it was not clear if transposing them would result in playable
hand positions.
As noted in our previous study, sampling initial states for a

chord often resulted in unrealistic and unplayable jumps around
the fretboard. To counter this, we interpolated between an initial
distribution for each chord and a state similarity metric, inspired
by the work of Hori et al. [21]. We opted for a simpler state
similarity in the current work, defining the similarity between
two states by number of frets between the positions of the first
finger.
Specifically, let the minimum (non-open string) frets in two

states be and . The similarity between and
was then calculated via:

(1)

where the normalisation is performed bymaximum possible dis-
tance (12 frets). We then set the probability distribution of the
first state for a new chord by interpolating between the initial
distribution for and the similarity between the previous
state and all states in the state space for :

with interpolation weight . By setting close to unity,
we anticipate that our model will output a sequence of states
which are close to each other on the fingerboard, whilst values
of closer to zero will more faithfully represent the initial state
distributions for each chord. We present an analysis of the pa-
rameter , including a method for estimating its value given
labelled data, in Section VI-C.

V. AUTOLEADGUITAR

This section outlines our method for generating lead guitar
parts. We begin by discussing the importance of phrasing in
guitar solos and how this is modelled in AutoLeadGuitar. A
more thorough description of AutoLeadGuitar can be found in
our previous work [9].

A. AutoLeadGuitar Phrase Generation
We believe effective phrasing to be one of the key concepts in

generating realistic lead guitar compositions. It has been shown
that the composition of music in distinct phrases facilitates per-
ception and analysis by the human auditory system [33], and is
essential in conveying expressiveness in music [34].
Many improvisational instrument groups (such as those in

the wind or brass family) are easily able to construct musical
phrases by periodically pausing for breath. This is not the case
for stringed instruments, making tasteful phrasing of improvised
solos particularly challenging for guitarists. With this in mind
the first stage of our lead guitar generation is the generation of
phrase boundaries, which will later be populated with rhythms
(Section V-B) and pitches (Section V-C).
Given a set of measures over which to play, we first choose

a position within the first measure to begin playing, as well as
a phrase duration in musical time. This forms the start and end
of the first phrase. A phrase onset is then selected for the next
phrase, chosen from whatever remains of the current measure
and the next full measure. This process is then repeated until all
solo measures are exhausted.

Phrase starts and durations were modelled probabilistically
from data, necessitating the annotation of solo phrase starts and
ends for the training data by the authors, which were rounded to
the nearest sixteenth note for the purposes of the current anal-
ysis. Phrase start probabilities for each sixteenth note were esti-
mated from histogram counts (with bin width equal to one six-
teenth note), whilst phrase durations were modelled using a neg-
ative binomial distribution–the discrete analogue of the gamma
distribution, commonly used to model wait times [35].
There exists no closed form for determining the maximum

likelihood solutions to determining the number of trials and
stop probability of the negative binomial distribution analyti-
cally, prompting us to determine these parameters numerically.
Analytical and musicological analyses of the parameters and
are conducted in Section VI.

B. AutoLeadGuitar Rhythm Assignment

Lead guitar rhythms were assigned by constructing a note
onset bigram model, which specified the probability of an onset
at each point within a phrase.
To generate rhythms for each phrase, we simply set the first

onset to be the start of the phrase and took a random walk over
the rhythm model until the phrase was exhausted, extending the
final note to end at the start of the following phrase (as de-
scribed in Section V-A–see Chapter 3 of [1] for a description
of Markov-based rhythm generation). The final note of the final
phrase was sustained to the end of final measure of the solo. We
also added vibrato to the final note of each phrase to help easily
identify phrase boundaries in our output.

C. AutoLeadGuitar Pitch Assignment

Pitch states for AutoLeadGuitar consisted of a list of (string,
fret, bend) triples as per Section IV-B–note that we have in-
creased the sophistication of this aspect of our system from our
previous work to now include polyphony.We noticed that bends
were far more common in lead guitar playing, with 2,884 of
6,179 states containing at least one bent string. All training data
was transposed to a common key, and also transposed up and
down the guitar neck up to a maximum fret of 24. When gen-
erating pitches, states were assigned by a random walk over the
state space for a key.
Our previous work revealed that guiding the random walk

process towards chord tones resulted in a significant increase in
listener satisfaction [9]. Guiding the random walk process was
implemented in this first study by interpolating between the state
probabilities for a chord, and a uniform distribution which was
zero everywhere except for states which were a chord tone.
To extend this idea to a polyphonic state space, we set the

target distribution function to be the number of strings whose
pitch was a chord tone, normalized by number of active strings
in the state. For example, a state which contains a C and D note
when the underlying chord is a Cmajor was assigned a weight of
0.5. The weight was subsequently normalized over all candidate
states to form a probability distribution.
As before, the interpolation weights were chosen to be

if a state occurred as the the final onset in a phrase and
otherwise, where we suspect in most cases.

Methods for learning and from labelled data are presented
in Section VI.
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Fig. 6. Rhythmic and melodic intensity of the solo to “All Along the Watch-
tower” (Dylan, produced by Hendrix). Rhythmic intensity is shown in blue,
melodic intensity in gray.

D. Controlling Intensity

In Section III, we conducted a structural analysis before gen-
erating rhythm guitar content, facilitating the repetition of tab
content across multiple instances of the same segment label. Our
intuition is that the long-term evolution of lead guitar parts re-
lies much less on repetition of identical content across phrases
and is instead guided by an evolution of ‘intensity’ throughout
a song.
This intensity, we propose, can be controlled by the note

duration and pitch height of the composition. For an example
in an existing work see Fig. 6, where we have plotted the
rhythmic and melodic intensity through the solo for “All Along
the Watchtower” (Dylan, produced and performed by Hendrix).
We defined rhythmic intensity simply as the inverse of note
duration, and melodic intensity as MIDI note number. Both of
these features were smoothed with a moving average of 9 notes
and range-normalized.
Fig. 6 shows that the intensity of a guitar solo can vary

throughout a composition. In this lead guitar part, we see that
there can exist periods of negative correlation (near the start
of the composition) and positive correlation (nearer the end)
within a solo, suggesting to us that rhythmic and melodic
intensity should be modelled separately.
In a step towards modelling intensity, users of AutoGuitarTab

are able to optionally specify rhythmic and melodic intensity
contours which guide the evolution of the tablatures generated
by AutoLeadGuitar–the details of how these functions modify
our system’s output is outlined in the remainder of the current
subsection.
Rhythmic Intensity: Let the bigram lead rhythm transition

matrix formed Section V-B be denoted .
Guiding the rhythmic intensity of the lead part given an inten-
sity contour can easily be realized by making the matrix a
function of intensity.
Given the previous note onset index and cur-

rent intensity , we interpolate between the th row of
and a function which biases towards either sixteenth notes (at

points of high intensity) or eighth notes (at points of low inten-
sity). In particular, when (high intensity), we interpolate
towards a delta function peaked one sixteenth note away from
the previous onset, with interpolation weight equal to . When

, we interpolate towards a function which has a single
peak one eighth note away from the previous onset, now with
interpolation weight ( ). Note that the model is unaltered
when (neither high nor low intensity).

Melodic Intensity: Melodic intensity was controlled by
choice of first note in each phrase. The reason for this is that
pitch choice within phrases is already the result of an interpola-
tion scheme between the state distribution and chord tones (see
Section V-C). Furthermore, we are optimistic that specifying
the first note in a phrase is sufficient for being able to control
the overall pitch intensity of a phrase (this will be investigated
in VI-D).
We therefore ranked the MIDI numbers of states for each key

(using the highest pitch in cases of polyphonic states) resulting
in a list of sorted states . Given the current intensity

we then set the first state of the solo to be .
Both rhythmic and melodic intensities were set to be constant

within phrases to ensure consistency within motifs. Particular
intensity functions we
explore in this paper include a linear increase in intensity and
a positive parabola, featuring high intensity at the start and end
of a lead guitar part with a calmer section towards the middle
(other more complex intensity models are naturally possible).
The efficacy of our system to model intensity will be evaluated
in Section VI-C.

VI. EVALUATION

Evaluating the performance of algorithmic composition sys-
tems is known to be challenging, owing to the subjective na-
ture of music quality [36]. There are however a collection of
techniques which can be used to qualitatively or quantitatively
assess such systems. Three particular examples of evaluation
strategies we explore in this paper are algorithmic evaluation,
non-expert user studies, and detailed expert studies. Each of
these techniques have benefits and drawbacks, and are in par-
ticular ranked by increasing qualitative efficacy but decreasing
quantitative efficacy and scalability.
In this paper we take a balanced approach, using algorithmic

means to assess our model’s parameters, conducting a listening
test with non-expert3 individuals, and asking a professional gui-
tarist to assess playability and modelling of style.
In the first of these, we train models from our data and

inspect the parameter values and distributions obtained. This
methodology has the advantage of being easily scalable and
may give us musicological insight into aspects of style learned
by our system. However, this analysis gives us no idea of
to what extent our system successfully produces ‘realistic’
music. To research this problem we conduct a medium-scale
listening experiment with musical but non-expert listeners in
Section VI-E, asking a number of participants to identify which
of a pair of audio clips was human-generated and which was
composed algorithmically.
Note however that these non-guitarists are unlikely to be

able to read guitar tablature, or be familiar enough with pop-
ular music guitarists to identify nuances in stylistic playing.
Finally then, to understand to what extent our system produces
playable tablature and captures the style of guitarists, we asked
a professional guitarist to play and record some of the output to
our system, and also to try and identify the target guitarist in a
number of stylistic experiments.

3‘non-expert’ in this paper means an individual with no guitar training
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TABLE I
GUITARISTS, THEIR ASSOCIATED ARTISTS AND THE SONGS USED TO TRAIN AUTORHYTHMGUITAR AND AUTOLEADGUITAR

The remainder of the current Section is organized as follows.
In Section VI-A we outline the data we used to train our models.
Section VI-B is then concerned with evaluation of our struc-
tural segmentation algorithm (for which there are well-estab-
lished performance strategies). A parameter space analysis is
then conduced in VI-C, before the investigation into intensity
(VI-D), non-expert survey (VI-E) and expert analysis of playa-
bility and style (VI-F).

A. Data Collection
Digital guitar tabs in GuitarPro format were collected from

the user-generated content site gprotab.net4. Five popular
guitarists (Eric Clapton, Jimi Hendrix, Jimmy Page, Keith
Richards, Slash) were chosen for analysis, with ten songs
chosen as training data. We chose these guitarists as examples
of iconic guitarists which we believe cover a range of styles
which could be interesting from a pedagogical perspective.
Note that, being data-driven, our system can easily be trained
with new data if desired by the user.
When more than one tab was available for a song, the most

accurate or complete tab was chosen (the first author was suffi-
ciently familiar with the songs in the study that he was able to
identify the most accurate version of each song and also verify
the quality of this user-generated content).
We discovered that Keith Richards very rarely played lead

guitar parts, and that some songs did not feature any lead guitar
parts at all. Additional songs for each of the four remaining
guitarists were therefore obtained in order to ensure a balanced
dataset of ten rhythm and lead parts for each artist–the complete
training set is shown in Table I. These tabs were subsequently
converted to MusicXML to facilitate automated analysis, and
annotated with downbeat-synchronized chord, key, structural
segmentation labels for use in training and evaluation.
Note that our data source contains tens of thousands of Gui-

tarPro file tablatures, although we have chosen to work with a
select few in this study. The reason for this is that annotating
some parts of the training data (in particular detailed chords and
solo phrase boundaries) even on this small set required many
hours’ work. We therefore decided to work with a set of around

4http://www.guitar-pro.com/en/index.php, http://www.gprotab.net/

50 tracks where we could ensure high-quality data and anno-
tations. Despite this, we found that by creating pitch-invariant
models we actually had many data/training points. For example,
we found that our model contained:
• 4,425 rhythm guitar rhythm measures (809 of which were
unique)

• 940 unique major chord states, 6,254 state-to-state transi-
tions (both after transposition)

• 210 unique lead guitar phrases, consisting of 6,128 indi-
vidual notes

• 2,726 unique lead guitar melodic states, 17,957 state-to-
state transitions (after transposition)

Naturally, using more data from our source would lead to
more powerful compositional models. However, we feel that we
have gathered and annotated enough data in the current study
to make models of reasonable quality. One option we plan to
explore in the future is automatic or semi-automatic means of
annotating more data which may allow us to exploit a larger
number of digital tabs, at the cost of data quality.

B. Structural Segmentation
We evaluated our structural segmentation algorithm on two

datasets. First, we evaluated in the symbolic domain on the data
from Table I, using ground truth chord sequences annotated at
the beat level. This experiment will assess how well our seg-
mentation algorithm performs in the most realistic use case,
when a user inputs a chord sequence as per Fig. 1. True chords
and beat structure are used under the assumption that users cor-
rectly input them into our system. Next, we evaluated on a stan-
dard dataset in the audio domain, estimating chords and down-
beat positions using automated methods. Although this is not
directly applicable to usage in our system, it will give an indi-
cation of how well our algorithm performs with imperfect chord
sequences and downbeats estimated from audio.
Structural segmentation performance in both cases was eval-

uated with the Boundary Detection and Frame Pair Clustering
metrics [37]. Precision, recall and were computed
for each of these metrics. Since in the symbolic domain there are
no explicit onset points, we required an exact match on struc-
tural boundaries for a ‘hit’. The results of these experiments,
broken down by artist, can be seen in the top portion of Table II.
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Fig. 7. Fretting hand movements for five guitarists (normalized by maximum fretting hand movement of 12 frets), trained from existing performances.

TABLE II
STRUCTURAL SEGMENTATION ALGORITHM PERFORMANCE. ABBREVIATIONS:

: PRECISION, :RECALL, :

Inspecting Table II, we see that our algorithm achieves a good
balance between precision and recall of boundaries (mean preci-
sion 0.56, mean recall 0.63). In Frame Pair Clustering however,
we achieved higher precision than recall (mean precision 0.69
compared to mean recall 0.49), suggesting that our algorithm
was too cautious in assigning two segments the same label. In-
terestingly, performance varied across artists, suggesting cer-
tain harmonic structures are easier or more challenging for our
system to detect than others. Inspecting individual songs, we
discovered our algorithm performed most impressively when
the chord sequence accurately reflected the song structure (as
expected). Specific examples of when this assumption failed
included blues songs (whose repetitive chord sequence failed
to reveal any novelty) and the instrumental sections of songs
(which our algorithm was unable to distinguish from sections
with the same underlying chord sequence).
Next, we evaluated on a standard audio dataset to assess if

our symbolic structural segmentation algorithm could be ex-
tended to work with audio input and to compare to existing
methods. To facilitate this, we extracted downbeats and chords
from audio for the RWCpopmusic dataset (RWC-MDB-P-2001
Nos. 1-100, hereafter referred to as ‘RWCpop’) [38], using the
web service Songle [39]. Chords were then downbeat-synchro-
nized and converted to the format required by AutoRhythm-
Guitar and fed into our structural segmentation algorithm. Eval-
uation was performed using the library [40] with a

window for Boundary Detection and can be seen in the
seventh line of Table II (labelled ‘RWCpop’). We also include
the two best-performing algorithms (ranked by boundary and
Frame Pair Clustering) from the 2014 MIREX evaluation for
direct comparison (final row of Table II, labelled ‘MIREX’).
Comparing these results to those above, we see lower mag-

nitude Boundary Detection for both our system

(‘RWCpop’) and the cutting-edge (‘MIREX’). This is to be ex-
pected as under these experimental conditions the feature ex-
traction is conducted on audio, which contains information not
explicitly relevant to the harmony (drum signals etc). In Frame
Pair Clustering we achieved an of 0.42 compared
to the cutting-edge of. This can be explained we believe by our
choice of fitness function in the genetic algorithm we outlined in
III-B, which takes into account novelty and position of bound-
aries but not segment labels.

C. Parameter Space Analysis

Rhythm Guitar Fretting Hand Movement: The parameter
introduced in IV-B represents how strongly a rhythm guitarist
wishes to minimize fretting hand movement when changing
chords. We approximate by gathering fretting hand move-
ment from existing data when chords change and sampling from
the resulting distribution. Specifically, each time a new chord
was presented, we calculated the distance a guitarist moved as
a proportion of the maximum movement (12 frets). These dis-
tances were then binned into a histogramwith leftmost bin edges
at . These counts were subsequently normal-
ized and are shown (per guitarist) in Fig. 7.
From this Figure, it is clear that fretting hand movement be-

tween chords is an artist-specific trait. Specifically, although all
guitarists’ movements are peaked towards minimal mobility,
the degree to which they move their fretting hand differs. For
example, Keith Richards appears to be the most economical
player, moving a normalized distance of less than 0.1 (corre-
sponding to 1 fret) in over half of all chord changes, whilst Jimi
Hendrix exhibits a fatter-tailed distribution.
It is apparent from Fig. 7 that a single value of is not appro-

priate for modelling fretting hand movement. Therefore, each
time a chord change is encountered we sample an alpha value
from the centres of the bins defined above. We tested the signif-
icance of the differences between values of for pairs of gui-
tarists and found at least one pair which was significantly dif-
ferent ( ) for each guitarist. For , the same test yielded
tail probabilities , indicating higher significance.With
more guitarists in future work we are interested to see if the dif-
ference between and are significant, although the limited
sample size of 4 lead guitarists limits the power of this test in
the current scenario.
Lead Guitar Phrase Parameters: Fig. 8 shows the phrase

onset and duration parameters derived from our data for each
lead guitarist. The former is represented by a histogram over
each sixteenth note, the latter by maximum likelihood estima-
tion of a negative binomial distribution. Again, it is clear from
these plots that guitarists exhibit individuality with respect
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Fig. 8. Maximum likelihood estimates for lead guitar phrase parameters for each training artist. Top row: phrase start duration, in sixteenth note resolution. Lower
row: phrase durations modelled by negative binomial distributions. Bars in the plots in the second row show individual data points (phrase durations), dark curves
indicate the maximum likelihood estimate parameters of the negative binomial distribution for each artist (parameters also shown in legend).

Fig. 9. End of phrase and mid-phrase chord tone preferences for the lead
guitarists estimated from our dataset.

to this aspect of their playing. All guitarists generally favour
phrases to start on eighth notes, but for example Jimi Hendrix
begins solo phrases on the first sixteenth note in approximately
1 in every 4 phrases. Eric Clapton on the other hand most often
starts phrases on beat 2.
Regarding phrase duration, the peak for all guitarists is a little

under 1 measure, but the exact shape of the distribution is gui-
tarist-specific. Phrase durations for Jimmy Page are particularly
interesting as they seem to have high variance–many phrases
are less than 1 measure long but also a significant number are
longer than 3 measures.
Lead Guitar Chord Tone Preference: In the AutoLeadGuitar

system, the parameters and represent preferences for lead
guitar parts selecting a chord tone during phrases ( ) and at the
end of phrases ( ). We estimated these parameters by simply
counting the number of times a lead guitarist selected a state
which had at least one chord tone (discriminating between mid-
phrase and end-phrase notes). The normalized counts for each
guitarist can be seen in Fig. 9.
Most striking to us from Fig. 9 was the similarity in and
for Eric Clapton and Jimi Hendrix. These values suggest that

neither of these players use chord tones more frequently on the
final notes of their phrases, counter to our intuition. Jimi Hen-
drix also generally plays chord tones less frequently than other

guitarists. Jimmy Page and Slash do however tend to end their
lead phrases on chord tones ( ). The other guitarists in
our dataset ended phrases on chord tones more often than in the
middle of phrases as we expected.

D. Intensity
Recall that we allow users of our system to optionally input

intensity curves describing the desired evolution of the rhythmic
and melodic intensity of the generated solos. To assess the effect
these curves had on the output to our system, we therefore gen-
erated 10 guitar solos for a fixed song (‘Stairway to Heaven’,
Page/Plant) with no intensity curve specified, and 10 with a
linear increase in rhythmic intensity and parabolic function of
melodic intensity. We then calculated the intensities of the re-
sulting solos and plotted them in Fig. 10.
From this Figure, we see no clear patterns in the top two sub-

figures. However, the bottom subfigures show that by setting in-
tensity contours (linear increase in rhythmic intensity, parabolic
function of melodic intensity) we were indeed able to steer the
global properties of the solo towards user preference. We find
it especially interesting that the melodic intensity can be con-
trolled so effectively simply by specifying the start note of each
phrase–this tells us that guitarists tend to play each phrase in a
particular pitch range. Videos demonstrating our ability to con-
trol intensity are available on our YouTube page.5.

E. Non-Expert Listener Tests
ATuring test was conducted with amateur musicians working

in the field of music information retrieval to assess the ability
of our system to generate realistic guitar parts. Six participants
were presented with two pairs of audio clips per artist and Au-
toGuitarTab module, one of which came from the training data
and the other from our system.
Audio was synthesized using GuitarPro with a multi-instru-

ment backing track (to givemusical context) with all guitar parts
other than the part of interest removed. Clip length, start and

5https://youtube.com/channel/UCdQYTz0-qiHq4UCuQVnJp4g
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Fig. 10. Melodic and Rhythmic intensities of 20 guitar solos generated by
AutoLeadGuitar. In the top two subfigures no intensity curve was specified,
whilst in the bottom a linear increase in rhythmic increase in intensity and par-
abolic function of melodic intensity was desired.

TABLE III
TURING TEST PERFORMANCE ACROSS AUTO GUITAR TAB MODULES
AND TRAINING ARTISTS. DATA INDICATE THE NUMBER OF TIMES THE
HUMAN-GENERATED COMPOSITION WAS CORRECTLY IDENTIFIED

end time and guitar tone were standardized across clip pairs and
presentation order was also randomized. Results for this exper-
iment can be seen in Table III.
The second column of Table III shows that our listeners were

able to correctly identify the human rhythm guitarist in just 40
of 60 cases. We find this result encouraging, given the difficulty
of the task. We tested the hypothesis that the distribution of cor-
rect answers came from a binomial distribution with probability
of success equal to 0.5 (i.e. that the listeners were guessing ran-
domly) and found the resulting -value to be 0.043. This sug-
gests that our algorithm has composed music which is to some
extent indistinguishable from human-generated compositions.
For lead guitar parts (third column of Table III) 34/48 guitar

solos were correctly identified as human-generated, resulting in
a -value of 0.015. We attribute the relative difficulty of the
Turing tests compared to rhythm guitar playing to the impro-
vised nature of guitar solos and their use of medium-term repe-
tition such as repeated 3 or 4 note motifs.

F. Expert Analysis of Style
In our final two analyses, we asked an expert (professional

guitarist with more than 10 years teaching experience) to assess

TABLE IV
CONFUSION MATRICES FOR EXPERT IDENTIFICATION OF STYLE

the output of our system. First, we generated rhythm and lead
guitar parts in the style of each guitarist and asked him to try
and identify the source artist, using tablature alone (i.e., no cues
from guitar tone, backing track etc.). Results for these experi-
ments can be seen in Table IV.
From Table IV, we see that 12 of 25 tablatures generated by

AutoRhythmGuitar were correctly classified by our expert. The
probability of witnessing an event at least this extreme under the
null hypothesis (the expert was assigning guitarists randomly)
was calculated to be less than , indicating with high con-
fidence that we should reject the null hypothesis and that Au-
toRhythmGuitar is able to model style. We found it particu-
larly interesting that rhythm guitar parts generated in the style
of Jimi Hendrix were all correctly identified by our expert. A
demonstration video showing the different styles were are able
to model is available online6.
As per Section VI-E, we noticed that results for Lead guitar

were less impressive. Specifically, only 2 of 16 AutoLeadGuitar
parts were correctly identified by our expert. The conclusion
we may draw from this is that either lead guitar playing is not
style-dependent, or our model has failed to capture whichever
elements of lead guitar playing constitute style.
We were interested to see which features our expert used

to classify rhythm guitar examples, especially for the Hendrix
tracks, which were identified without error. When prompted, he
responded that he found certain artists easy to identify:

“The rhythm tracks were pretty interesting, I found that
some jumped out instantly as certain guitarists”

Specifically, he commented that Hendrix “… rarely takes a
simple chord and strum approach” and that “often he’s a bit
more rhythmically complex than most the other players” and
used these to identify this artist in our tests. In lead playing,
he commented that actually, symbolic music data might not be
sufficient for identifying players:

“I think with solos it often isn’t just melodic content that
is the noticeable difference but literally how Clapton plays
his vibrato or how Page plays his bend and repeat phrases
as how I’d identify this”

This difference between the spectrographic and calligraphic
aspects of style has been noted in the literature [43], and is be-
yond the scope our symbolic music generation model.

6https://www.youtube.com/watch?v=JYL3QLqqclU
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Fig. 11. Output from AutoGuitarTab. Top stave: AutoRhythmGuitar output for
‘Wild Horses’ (Jagger/Richards) in the style of Jimi Hendrix. Bottom stave:
AutoLeadGuitar output for ‘Stairway to Heaven’ (Page/Plant) in the style of
Eric Clapton. Phrase ends in the bottom figure are indicated with vibrato.

G. Playability and Individual Composition Analysis

Finally, recall that one of the main motivations for our system
generating tablature was to maintain playability. This aspect of
our systemwas tested by asking our expert to play two tablatures
generated by our system–one for rhythm guitar (in the style of
Hendrix), the other for lead (in the style of Slash). We also asked
our expert for his detailed opinion on the style and playability
of these songs. Videos showing the generated content with his
recording overlaid are available online7.
For rhythm guitar, our expert commented that the piece was

lacking some of the properties he was expecting from a Hen-
drix composition. In particular he said it was lacking arpgeg-
giated chords, pentatonic phrasing during rhythm sections and
walking basslines. He did however mention that some of the
chord voicings were very accurate:

“Some of the ways that the chords were voiced did seem
on target, with the thumb over the neck approach on some
of the chords.”

For overall structure, he felt that there was too much rep-
etition (“It was also a fairly straight forward and repetitive
rhythm, which you don’t really expect from Hendrix”). This in-
terestingly indicates that our assumption of repetition of rhythm
guitar content throughout the piece is not appropriate for this
player. He also found the piece to be playable: “From a playing
point of view there wasn’t a lot of issues once I’d got to used to
the thumb over the neck approach”, although naturally he found
some of the bars more challenging than others (bar number 64 in
particular). Style was modelled better in the lead guitar part ac-
cording to our expert:

“This seemed to have more of the technical and melodic
stylings that I’d expect from a Slash piece. The unison
bends were exactly what I’d expect and the repetitive bends
with a syncopated rhythm.”

However, our experts’ detailed knowledge of Slash’s playing
style revealed that some of the positions would be challenging
given Slash’s instrument of choice: (“The placement for some
of the notes were odd (e.g. the intro on a D string) This would

7https://www.youtube.com/watch?v=n9_e8n9h_RU

be awkward on a Les Paul and would sound better on possibly
a B or G string”). He also noted the lack of a coherent intensity
through the piece (we did not specify an intensity contour in this
composition):

“It also fizzles out at the end, the crescendo really feels
like its in bars 138-9”

This we feel is excellent evidence that modelling of intensity
is necessary for generating realistic guitar solos. Finally we note
that overview videos are available on our YouTube page, and
show brief example output from our system in Fig. 11.

VII. CONCLUSIONS
In this paper, we introduced a statistical method for guitar

composition and improvisation. Our model composes playable,
structurally-consistent rhythm guitar parts and solos in distinct
phrases which highlight chord tones and were guided in inten-
sity by user input. Altering the training data of our model al-
lowed us to generate artist-specific models.
Our main contributions in this work were advancements in

the evaluation of AutoRhythmGuitar and AutoLeadGuitar, but
also a new structural segmentation algorithm which is appli-
cable to both symbolic and audio data, and the introduction of
intensity curves which effectively steer the global rhythmic and
melodic properties of lead guitar parts.
In future work, we would like to improve our GA for

Boundary Detection to include segment label information
(including more musically-inspired fitness functions), incor-
porate repeated melodic motifs into our generation system,
and investigate the relative importance of score, microtimings
and guitar tone (choice of instrument, amplifier etc.) on artist
identification performance in listening experiments.
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