1726

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

AutoMashUpper: Automatic Creation of
Multi-Song Music Mashups

Matthew E. P. Davies, Philippe Hamel, Kazuyoshi Yoshii, and Masataka Goto

Abstract—In this paper we present a system, AutoMashUpper,
for making multi-song music mashups. Central to our system is
a measure of “mashability” calculated between phrase sections of
an input song and songs in a music collection. We define masha-
bility in terms of harmonic and rhythmic similarity and a measure
of spectral balance. The principal novelty in our approach centres
on the determination of how elements of songs can be made fit to-
gether using key transposition and tempo modification, rather than
based on their unaltered properties. In this way, the properties
of two songs used to model their mashability can be altered with
respect to transformations performed to maximize their percep-
tual compatibility. AutoMashUpper has a user interface to allow
users to control the parameterization of the mashability estima-
tion. It allows users to define ranges for key shifts and tempo as
well as adding, changing or removing elements from the created
mashups. We evaluate AutoMashUpper by its ability to reliably
segment music signals into phrase sections, and also via a listening
test to examine the relationship between estimated mashability and
user enjoyment.

Index Terms—Audio user interfaces, creative MIR, music
remixing, music signal processing.

I. INTRODUCTION

RECENT emerging area of activity within the music in-

formation retrieval (MIR) community is in the field of
creative-MIR [1]. One of the main goals of creative-MIR is to
open new possibilities for music creation, interaction and ma-
nipulation, facilitated by the ability to robustly analyze and in-
terpret music signals. The facet of creative-MIR we explore in
this paper relates to the content-based manipulation of music
signals, specifically, that of automatic music mashups.

Music mashups are a combination of two or more songs,
which, when mixed together, create entertaining musical results
[2]. Mashups offer a way for users to re-engage with existing
and familiar musical content by adding some extra, complemen-
tary musical components. Perhaps the most well-known way to
create mashups is to take an “a cappella” stem (isolated vocal
track) from one song and mix it together with another song,

Manuscript received November 22, 2013; revised April 30, 2014; accepted
July 28, 2014. Date of publication August 12, 2014; date of current version
August 23, 2014. This work was supported by OngaCrest, CREST, JST. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Laurent Daudet.

The authors are with the National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba 305-8568, Japan (e-mail:
automashupper-ml@aist.go.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2014.2347135

while adjusting the tempo so the two are temporally synchro-
nized. Alternatively, mashups can be made by mixing complete
songs together, which is the area of mashup creation we address
in this paper. In this case, a larger number of musical com-
ponents (i.e., vocals and all instrumentation) must fit together
to create a pleasing musical result. On this basis, we consider
this method for mashup creation to be more challenging, but
also one that is more readily applicable to users’ personal music
collections.

For users wishing to listen to or create mashups by hand,
several online resources exist. These include websites for
uploading completed mashups [3], and those with multi-track
recordings for remixing music [4]. The DJ Mix Generator
website [5] contains a database of tempo and key signature
information to allow users to discover songs for “harmonic
mixing”—i.e., mixing songs together in the same tempo and
compatible key signatures.

Regarding software tools for making the mashups and
remixing music, these include both research-based and
commercial systems. While quite limited in number, the
research-based approaches address important technical aspects
of music mixing and mashup creation, including interactive
user interfaces [6], computational feasibility of time-stretching
multiple songs in parallel [7] and the need for accurate tempo
synchronization for user appreciation [8].

With regard to commercial systems, the Harmonic Mixing
Tool [9] uses content based analysis to analyze a user’s collec-
tion to allow a “harmonic fade” when mixing between songs.
The Echonest Remix API has been used to create web services
for remixing and manipulating music signals, including the Infi-
nite Jukebox [10], Autocanonizer [11] and Wub Machine [12].
Perhaps the most similar system to the work presented in this
paper, is Mixed in Key Mashup [13]. Central to this system is
a measure of harmonic compatibility (using a similar model to
[5]) which ranks songs according to how well they will sound
mixed together, such that: “4 value of 100 means the mashup
will be harmonic. A value of 0 means it will be dissonant.”
[13]. While this system automates the measurement of harmonic
compatibility and beat-matching for temporal synchronization,
users must construct the mashups themselves aligning songs by
hand. In addition, the harmonic compatibility is a global prop-
erty, which does not consider where within a harmonically com-
patible song the best match might occur. Furthermore, there are
no parameters for users to customize the matching nor any ap-
parent model of rhythm compatibility beyond beat-matching.

In this paper, we consider mashup creation from a multi-song
perspective, where our proposed system, AutoMashUpper, al-
lows users to create mashups by mixing different songs at dis-
tinct regions of an input song. To this end, we first segment

2329-9290 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

the input song into phrase sections and then within each phrase
section we estimate the “mashability” across a set of candi-
date songs. Our mashability measure considers three proper-
ties: 1) harmonic compatibility, ii) thythmic compatibility and
iii) spectral balance. Novel to our approach is that mashability
is calculated locally between songs, meaning the best matches
across the duration of songs can be found. In addition we con-
sider harmonic compatibility over a range of key shifts to ex-
pand the ways in which songs can be mashed together.

Having calculated the mashability per phrase section for a
song, we create a ranked list from the set of candidate songs. We
select the song with the highest mashability for each section, and
then use time-stretching to temporally align the components of
the mashup, pitch shifting for any required key transposition and
amplitude scaling to match the loudness of the input section. To
allow users to modify how mashability is calculated and to ma-
nipulate the mashup once it has been created, AutoMashUpper
has an interactive user interface.

The main contributions beyond those in our previous work
[14] include: 1) a fast implementation for the calculation of har-
monic similarity, ii) the addition of rhythmic and loudness based
components for mashability estimation, iii) an objective evalua-
tion of the phrase-level segmentation, and iv) a subjective eval-
uation of mashability.

The remainder of this paper is structured as follows. In
Section II we provide a system-level overview of the under-
lying music analysis techniques for beat tracking, downbeat
estimation and phrase segmentation. In Section III we ad-
dress the measurement of mashability. In Section IV we
demonstrate the user interface and several usage scenarios
for AutoMashUpper. In Section V we present both objective
and subjective evaluation of our mashup system. The paper
concludes with discussion in Section VI and conclusions in
Section VII.

II. MUSIC SIGNAL ANALYSIS

The main goal of the music analysis stage is to determine the
temporal framework around which a multi-song mashup can be
created. To this end, we need to identify beat locations for later
temporal synchronization and a set of section boundaries to par-
tition the input song for multi-song mashup creation. We can
consider these pre-processing aspects of the analysis as mod-
ular components for which any existing structural segmentation
algorithm (e.g., [15]) and beat tracker (e.g., [16]) could be used.
However, with the aim of presenting an overview of the entire
AutoMashUpper system we now summarize the methods we
use for this purpose. Specific to our proposed method, we es-
timate downbeats in addition to beat locations towards finding
a phrase-level segmentation of the input. In this paper, we con-
sider phrase sections to correspond to harmonically consistent
regions of the input signal which begin on downbeats and whose
duration is a complete number of bars (typically, 2, 4, or 8). Fur-
thermore, we make the general assumption that the songs to be
used in the mashups have approximately constant tempo and a
fixed 4/4 time signature.

To generate the harmonic signal representations for phrase-
level segmentation and the subsequent estimation of masha-
bility, we use the NNLS Chroma plugin [17] within Sonic Anno-

1727

tator [18]. Given an input audio signall, we extract three outputs
from the NNLS Chroma Vamp plugin: the global tuning, ¢, of
the input, an 84-bin (7 octave), tuned semitone spectrogram, X,
and a 12-dimensional chromagram (the distribution of energy
across the chromatic pitch classes in a musical octave), C. All
outputs are extracted using the default parameters.

A. Rhythm Analysis

1) Input Features: To act as input for the extraction of beat
and downbeats, and subsequently used in the modelling of
rhythmic patterns, we extract two onset detection functions
[19] from the input audio signal. We use the approach of
Robertson et al. [20] who employ Fitzgerald’s harmonic/per-
cussive separation technique [21] to generate a kick and snare
drum emphasis onset detection functions, Kpp, and Spp
respectively. Each onset detection function has a temporal
resolution of 11.6 ms.

2) Beat Tracking: To extract the beat locations, we use a sim-
plified version of the approach in [22], to which we pass a single
input feature: the sum of the kick drum onset detection function
and the snare drum onset detection function extracted above.
Since we assume the tempo is likely to be approximately con-
stant, we extract a global estimate of the beat period. We pass
this to the dynamic programming phase as proposed by Ellis
[16] to determine the beat locations, .

3) Downbeat Tracking: To find the downbeat locations we
extend the approach of Davies and Plumbley [23] inspired by
[24]. The core of their approach was to measure the spectral
difference between band-limited beat-synchronous spectral
frames, and to determine downbeat as the beat transitions
which consistently led to highest spectral change under the as-
sumption of a constant number of beats per bar. We modify this
method in two ways, first by median averaging the semitone
spectrogram, X, into beat-synchronous frames, X ., and using
this to measure spectral difference. Then, to this beat spectral
difference function, we incorporate additional information
from the kick and snare onset detection functions, extracted in
Section II-A1. We use the hypothesis from [24] that kick drum
events are more likely, and snare events less likely, to occur at
downbeat locations and hence add the amplitude of the Kpp
at each beat, and subtract the amplitude of the Spr from the
beat spectral difference function. In this way, we generate a
downbeat detection function which incorporates both harmonic
change and basic rhythmic information from which determine
the downbeats, I', as in [23].

B. Phrase Level Segmentation

Our motivation for a phrase-level segmentation is to partition
the input song so that we can subsequently estimate mashability
independently per section and then incorporate multiple songs
into the eventual mashup. In our experience, we have found
that pleasing results can be obtained when the transition be-
tween different songs in the mashup occurs on precise temporal
boundaries between sections. On this basis, we make use of both
previously extracted beat and downbeat times towards creating

I'While the input audio signal for AutoMashUpper can be either mono or
stereo, for the music analysis stage stereo signals mixed down to mono. How-
ever, for creating the final mashups, stereo versions are used.

1728

a downbeat-synchronous representation for finding phrase sec-
tion boundaries.

First, we retrieve the beat-synchronous version of the 84 bin
semitone spectrogram, X.,, extracted in Section II-A3. Then, to
extract phrase section boundaries, we follow the self-similarity
and novelty function based approach of Foote [25] for structural
segmentation. As shown in [26], structural segmentation perfor-
mance can be improved by time-lag embedding, where temporal
frames are stacked together. To this end, we group sets of four
consecutive beat frames (starting at each downbeat and without
overlap) to create a (84 x 4 = 336 bin) downbeat-synchronous
stacked semitone spectrogram, Xp. We calculate a self-simi-
larity matrix, DD, between all pairwise combinations of down-
beat-synchronous frames of Xt using cosine distance:

){1"71‘, . er,j

D(i,j) =1
| Xl [X 5]

)
where Xt ; and X ; correspond to the ¢th and jth frames of
the downbeat synchronous semitone spectrogram.

Having generated the self-similarity matrix, we then slide
a Gaussian checkerboard kernel [25] (of size 16 downbeats)
along the main diagonal to generate the novelty function which
emphasizes section boundaries. We peak-pick [19] the novelty
function to obtain an initial set of section boundary candidates.
Following Sargent ef al. [27], who impose regularity of sec-
tion length into their structural segmentation method, we post-
process the initial boundary locations according to an iterative
method which we now summarize. We define a cost function
relating to phrase section duration intervals which rewards du-
rations of 2, 4, 8 and 16 downbeats and punishes others we
consider less likely (e.g., 7, 9, 15, 17 downbeats). We then cal-
culate a regularity score for each phrase boundary position in-
dependently shifted forward one downbeat, kept in its current
position, and shifted back one downbeat. The phrase boundary
shift which maximizes the increase in global regularity score
is implemented, and the process is iteratively repeated until no
further increase in the global regularity score can be obtained.
Once this iterative process has completed, the downbeat phrase
boundaries are mapped back to beat locations ready for the es-
timation of mashability. A graphical example of this procedure
is shown in Fig. 1.

III. MASHABILITY

Given a phrase section, p, of input song, 7, and a set of can-
didate songs, n, in a music collection, the estimation of masha-
bility, M, addresses two main points: i) the temporal location
of the best matching point for each candidate song and ii) the
way in which this best matching section must be transformed to
match the input. We propose that songs which are well matched
for mashup purposes will have the following properties:

1) Harmonic compatibility: central to the success of the
mashup is that the two sections of the song complement
one another in terms of harmonic structure. Our harmonic
motivation follows directly from existing commercial
tools for “harmonic mixing” [5], [9] and mashup creation
[13] which place strong emphasis on finding songs in
matching or related key signatures. For AutoMashUpper
we do not consider key signature directly, but instead look
for a measure of similarity between beat-synchronous

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

(@)
150
£ 2
o <
% 'Qé 100.
= %
5 © 50
200 400 600 50 100 150
beats downbeats
(b) (d
336 S T
£
252 = 0.1
£ 162 =
E : .§0 0.05
o 84 E &
g
& o < 0 - N -
50 100 150 0 50 100 150
downbeats downbeats

Fig. 1. Phrase-level segmentation overview. (a) a beat synchronous tuned
semitone spectrogram. (b) a downbeat-synchronous spectrogram, where groups
of four beat frames are stacked into bars. (c) a self-similarity matrix generated
from the downbeat-synchronous semitone spectrogram. (d) a novelty function
whose peaks highlight likely phrase boundaries. The vertical dotted lines show
the detected phrase boundaries.

chromagrams under a range of possible key transposi-
tions.

2) Rhythmic compatibility: beyond the critical aspect of beat-
matching for mixing songs together [8], we also consider
the issue of rhythmic structure. Our aim here is to cap-
ture thythmic information at a finer level than the beats
towards the identification of rhythmically compatible re-
gions of songs. In particular, we seek to avoid matching
songs with conflicting rhythmic structures, e.g. straight feel
vs swing feel.

3) Spectral Balance: as shown in [28 pp.53—54], equalization
plays a key role when mixing songs together, allowing for
different regions of songs to be layered on top of one an-
other in the mix. Towards this goal of creating a balanced
mix between songs, we incorporate a measurement of spec-
tral balance between songs, favouring those with a comple-
mentary distribution of energy across low, middle and high
bands.

The specific details of each component are described in the
following sub-sections. However prior to this, we first consider
the effect of global tempo. As shown in [§], when mixing music,
it can be preferable to take tempo octave relationships into ac-
count. For example, if we consider a song at 70 bpm (beats per
minute) and another at 140 bpm, it would be possible to use
time-stretching to slow down the faster song by a factor of two
to give it a tempo of 70 bpm and hence exactly matching the
slower song. However due to the tempo octave relationship, we
could simply mix the faster song with the slower song directly
without the need for any time-stretching. While this is somewhat
trivial for music with an exact 1:2 tempo ratio, if we consider
the same original song at 70 bpm, and another at 130 bpm, by

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

similar logic we should argue for increasing the tempo of the
faster track to 140 bpm, rather than attempting to slow it down
to 70 bpm, since this will represent the smaller time-scaling
factor (and would hence minimize any artefacts introduced from
time-stretching). Within the context of our mashup system, we
can make all songs whose tempo is closer to another tempo oc-
tave of the input appear to be at the same tempo by sub-sampling
the beat locations by a factor of two to halve the tempo, or inter-
polating by two to double it. In addition to changing the beats
in this way we apply the same transformation to each of the
beat synchronous features and representations which are used
for mashability estimation and are described below.

A. Harmonic Matching

The first component of mashability we consider relates to the
harmonic similarity calculated between beat-synchronous chro-
magrams. As in Section II-A3 we obtain a beat-synchronous
chromagram, C,, by median averaging across beat windows.
Next, we isolate the current phrase section, C; ,, for input
song, ¢, and phrase section p, with K beat frames (omitting
the sub-script «y for clarity). For a given candidate song, , in
the music collection, with beat synchronous chromagram C,,
we wish to identify the temporal location (i.e. starting beat)
where harmonic similarity is maximized. However, in addition
to looking at the current properties of the two songs, we also
consider how the songs could match allowing for key-transpo-
sition (later implemented by pitch-shifting). In this way we can
increase the possibility of finding good harmonic matches by
considering the matching task in a kind of transform domain.

In our previous work [14], we implemented this approach by
brute force, measuring the cosine similarity across a range of
rotational shifts, g, of the input phrase chromagram,

Oi,p,q) Cn,k’

Holq, k) = 7=
1Cip.all [|Cn.kl

2

where C,, . represents the region of the chromagram starting at
beat £ whose duration is the same as ; ;,. In practice we found
this calculation to be computationally intensive, and computa-
tion time increased drastically in proportion to the number of
songs over which the matching was undertaken and the range
of rotational key shifts applied to C; ,. Towards a more effi-
cient solution, we recast the harmonic matching from 2-D fil-
tering (image processing) perspective. We now treat C; ,, as a
chroma patch (or two-dimensional filter) to cross-correlate with
C,,. In order for the chroma patch to cover the range of key
shifts, we stack an exact copy of C,, creating a (24 x K,) ma-
trix for K,, beats in C,,. Using this 2-D filtering operation (via
MATLAB’s multi-theaded conv2() function) means that we can
search across all beat increments and harmonic shifts very effi-
ciently.

To illustrate the difference in computation time between the
brute-force search method in [14] and the 2-D convolution ap-
proach, we measure the computation time (averaged over 100
iterations) for chroma patches of size 8 to 64 beats applied to
songs of up to 1000 beats. As shown in Fig. 2 we see that under
all conditions, the 2-D convolution approach is substantially
faster with computation time measured in milliseconds rather
than seconds. Furthermore, the 2-D convolution method is faster
for smaller patch sizes, regardless of the number of beats in the

1729
(b)
_ 2 N
208 g 4
= 0.6 =
204l 2 N N
2024, 2 Rttt
R
g &0 o0 290, R 1000
patch size 20 500song size patch size 20 500song size
(beats) (beats) (beats) (beats)

Fig.2. Comparison of computation time for the brute force “for loop” approach
from [14] with the proposed 2-D convolution method. (a) brute force “for loop”
(b) proposed conv2 approach.

song. If we consider a full range of 12 key transpositions and
approximately 400 beats in a song, this equates to close to 5000
possible solutions per phrase section of the input song. When
searching over a small sized collection of 500 songs, this would
give over 2 million possible matches per phrase section. Refer-
ring again to Fig. 2, we can see that the brute force approach is
too slow to be considered practical.

To obtain a cosine similarity matrix (with values in the range
[0, 1]), H,. (g, k) as in (2) we must normalize the result of the
2-D convolution using the denominator from (2) and select the
appropriate rows corresponding to the range of key shifts, e.g.
g € —6,...,4+6 semitones. Given H, (g, k) the final step is
to extract the maximum harmonic similarity per beat My ,,(k),
and to record the corresponding key shift Q,,(%) necessary to
realize this similarity value,

My (k) = max(H,(q,k))

q

3
and

Qn(k) = —argmax(H,(q, k)),

q

“

where the transposition is negative since we later pitch-shift
the region of the candidate song to match the input, which is
the reverse harmonic matching process. A graphical example
is shown in Fig. 3, where we can see that best matching sec-
tion of the candidate song chroma occurs at a +2 semitone shift
away from the input phrase section, which would subsequently
require pitch shifting by —2 semitones to create the harmonic
match. From the plot of My ,,(k) in Fig. 3(e), we can see that
harmonic similarity varies across the duration of the song, where
the region between 250 and 300 beats appears not to hold any
good match to the input phrase across all possible key shifts.

B. Rhythmic Matching

For the rhythmic matching stage we follow the same prin-
ciple as the harmonic matching. Here we generate a rhythmic
representation for the input song and all candidate songs in the
user’s collection and measure the similarity between them. Our
main source of rhythmic information is the kick and snare onset
detection functions (Kpr and Spr) used in the estimation of
beat times in Section II-A. In this way, we use an implicit rep-
resentation of rhythm, rather than attempt to classify rhythmic
patterns according labelled classes as in [29].

To capture rhythmic information which is independent of
tempo we generate a beat-synchronous rhythmic representation

1730

50 100 150 200 250 300 350 400
2D-correlation across time (beats)
pitch class and beat

(b)

10 20
time (beats)

key
shift

50 100 150 200 250 300 350 400
time (beats)

(f:)

05 B \\ 4
maximum harmonic similarity

50 100 150 200 250 300 350 400
time (beats)

Fig. 3. Harmonic matching overview. (a) Stacked candidate song chroma-
gram, (b) chromagram for a 32-beat phrase section the input song, (c) the
corresponding best matching chroma patch (after a 42 semitone pitch shift)
extracted as the global maximum of (d) the harmonic similarity matrix, and
(e) the overall maximum harmonic similarity per beat shift, My ,, (k).

by sampling these two onset detection functions at sub-beat
locations. To provide sufficient granularity to distinguish be-
tween rhythmic patterns in “straight” and “swing” feel, we
sub-divide each beat into 12 equal positions, and record the
amplitude of each onset detection function at these temporal
locations. Then, per beat, we stack snare information on top
of the kick information to provide a 24-dimensional rhythmic
representation per beat, R; ,, of size (24 x K) for K beat
locations in phrase section p on input song z, and likewise
calculate the same representation, R,,, for all songs, 7, in the
user’s collection.

To determine the rhythmic matching component of the
mashability, Mg (), we calculate the cosine similarity of the
rhythmic patch, R; ,,, for phrase-section p of the input song ¢,
with R,, across all beat shifts, %, for each song n in the user’s
collection. We follow the same fast matching approach for
matching that we used for harmonic information, however in
this case we need only search across the beat dimension,

Ri:p : Rn,k

Ripll B i)

In this way, the rhythmic similarity measure, Mg ,, (%), will be
close to unity for very similar rhythmic patterns, and nearer
to zero for dissimilar patterns. An example of the rhythmic
matching procedure is shown in Fig. 4.

J\/IRJL(k) (5)

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

(@)
snare detection function ' '
kick detection function
8 16 24

time (beats)

(b) The kick and snare onset
detection functions are
quantised at 12 equal
positions per beat and
then stacked into a
24-dimensional rhythmic
representation

10 20 30
time (beats)

(©)

24

snare
13
kick

1 i
1D-correlation 100

400
across beats time (beats)
(d)
0.6 -
050 I
100 200 300 400

time (beats)

Fig. 4. Rhythmic matching overview. (a) Kick, K pr and snare, Spr, onset
detection functions, (b) quantized rhythmic representation for input phrase sec-
tion, (c) the beat synchronous rhythmic representation for the candidate song,
and (d) the rhythmic similarity per beat shift, M . (k).

C. Spectral Balance

To address the third of the mashability components we use
the Replay Gain method [30] and previously extracted beat lo-
cations per song, to derive a coarse beat-synchronous spectral
representation, L, which contains the beat-synchronous percep-
tual loudness in three spectral bands: a low band (up to 220 Hz),
amid-band (220-1760 Hz), and a high-band (frequencies above
1760 Hz). In our approach for assessing spectral balance be-
tween L; ,, (the spectral representation of phrase section, p) and
L,, for song n we look for a simple measure of spectral flatness
by summing the coarse spectral representations and taking the
mean across the beat dimension,

.
1 r
B =5 > Lip+ Lok (6)

P p=1

We then normalize), to sum to unity, and find the standard
deviation of the resulting spectral profile,

My (k) =1 — std(O%). 7)
In practice, My ,,(k) will be close to unity when the spectral

profile is flat and nearer to zero when it is uneven. A graphical
example is shown in Fig. 5.

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

(a)

A beat-synchronous spectral
profile is created with
perceptual loudness calculated
across three sub-bands

low: 0-220 Hz

mid: 220-1760 Hz

high: >1760 Hz

high
mid

low

10 20 30

time (beats)
(b)
high
mid

low

1D-correlation 100 200 300 400
across beats time (beats)
¢
1.0 y (\) : ‘
e el
08 Jl S
0.7 r
0.6 -
0.5 - : - ‘
100 200 300 400

time (beats)

Fig.5. Spectral balance overview. (a) beat synchronous spectral representation
for input phrase section, (b) the beat synchronous spectral representation for the
candidate song, and (c) the spectral balance per beat shift, ALy, .. (k).

D. Mashability Estimation

We derive the overall beat-wise mashability, M,,(k), per
song, 1, as a weighted combination of the harmonic similarity,
rhythmic similarity and spectral balance. The values for the
weights, w = {wg,wr,wr} can be set in the user interface,
as described in Section IV, but in our informal testing, we
found acceptable results with the following values, wy = 1,
wgr = 0.2 and wr = 0.2, wherein we give greatest emphasis
to the harmonic matching parameter. We obtain a weighted
mashability per beat increment, &, in song n, as follows:

Mn(k‘) = 'LUHMHm,(k‘) + ’LURMR’n(k) + ’UIL.Z\/IL_’”(]C). (8)

In addition to these three local features we incorporate one fur-
ther component to reward songs whose tempo, 7}, is within a
user specified range, 1, (default value 0.3) around the input song
tempo, 7}, such that

M, (k) + «,
.= {3

where « = 0.2 was found to give acceptable results.

For each phrase section, p, of the input song, ¢, we now have
a continuous vector M, (k) which indicates the mashability for
every beat increment, &, in every song 7, along with the cor-
responding required key shift (,,(k) from (4). To determine,
which song, where in that song, and sow to transform it, we first
find the maximum mashability per song,

if|1 — (Ti/T)]| <m

otherwisce

(€))

Mpax(n) = m}'?x(]\ln(k)) (10)
and record the corresponding beat,
kmax{(n) = arg max(M, (k)) (11)
k

1731

Mashability as a weighted combination of matching features

1L1F

1} Spectral

balance _,
09F ~

A

time (beats)

Fig. 6. Mashability per beat shift in a candidate song. Due to the high emphasis
given to the harmonic matching component, mashability bears a strong resem-
blance to this feature. However, the emphasis of the mashability can be changed
by user modification of the weights.

which can be used to recover the corresponding key shift,

qmax(n) = Qn(kmax)- (12)

For all songs, n, we now have a corresponding mashability
value, and by sorting M,;,,x(n) in descending order, we can rank
the mashability per phrase section of the input.

A graphical example of the mashability for a given song is
shown in Fig. 6. Here we can see the strong correlation with
the harmonic matching function due to the high weighting we
give this in comparison to the other features. It is interesting
to note that the separate features which contribute to masha-
bility have different properties. The rhythmic similarity rapidly
varies as the rhythmic patterns change from being beat aligned
to mis-aligned, whereas the spectral balance evolves much more
slowly across the duration of the song. The peaks in the har-
monic similarity function correspond to time points in which
chord changes are aligned and occur around every eight beats.

E. Mashup Creation

The creation of the mashup is split into three steps: i) temporal
alignment (or “beat-matching”) using time-stretching, ii) har-
monic alignment and tuning adjustment using pitch-shifting,
and iii) loudness adjustment to create a balanced mix. For time-
stretching and pitch-shifting we make use of the open-source li-
brary Rubberband [31], whereas for loudness compensation we
use the Replay Gain method [30].

The beat-matching stage takes two inputs, the sequence of
beat times in each phrase section, p, of the input song, ¢, and
beat times from the best matching section from the song in the
music collection. The input beat times act as a target sequence
of anchor points for which Rubberband calculates a dynamic
time-stretching factor such that the best matching section is tem-
porally aligned to the input.

The harmonic alignment between the two sections, imple-
mented via pitch-shifting in Rubberband, requires two pieces
of information. First, the required number of semitones and
second, a tuning correction. They can be combined to give a
pitch correction factor, f = ¢,,/; x 2(dmax (n)/12) , where ¢,, and
t; are the tunings (in Hz) of the best matching song and input

1732

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

users can modify
the range of key
shifts, tempi, and
mashability
parameters

»,..A\NTUM»]M;\v\w,ﬂ]‘w\f “‘MMWTW ‘l\-i"h,(r"L1\.}\,‘\jnw'\-\'ﬂ'\l’v\-w ._r-‘/vwa,,l-"'\//"l
[o

[019. 209 Groove Therapy
020. 2:10 Mind Games

the selected
songs list is
sorted by
mashability
in each section

here the full
collection, or a
specified subset
of analysed songs
will be displayed

red bars show which songs
are being used in the mashup.
clicking a bar will skip
playback to that section

controls for
creating and
manipulating
mashups

add to mashup
delete from mashup

cD D 3

Fig. 7. Screenshot of the AutoMashUpper user interface. Additional descriptions of the functionality are overlaid.

respectively as estimated by NNLS [17], and ¢y, (%) is the re-
quired semitone shift. If gmax(n) = 0 and the ratio of the tun-
ings is small (i.e., within 0.5% of one another) then we bypass
this processing stage.

After pitch-shifting and time-stretching we scale the ampli-
tude of the best matching section to match that of the input.
For this we estimate the perceptual loudness of both sections
using Replay Gain [30] and scale the amplitude of the best
matching section so the two are equal. We employ each of these
methods on section-by-section basis in the input song and create
a composite audio file containing the mashup accompaniment,
which can be subsequently mixed down to create the completed
mashup.

The computational demands of the complete mashup creation
process depend on several factors. For mashability estimation
this includes the number of phrase sections and their size, the
number of beats per candidate song, as well as the total number
of candidate songs. The computational cost for time-stretching
and pitch-shifting increases in proportion with the number of
sections, and hence overall length, of the input song. As a guide,
we have found the complete mashup process to take less than
30 s for a 4 minute input song with 10—15 candidate songs for
our prototype version of AutoMashUpper running in MATLAB.

IV. AUTOMASHUPPER

A. User Interface

To allow users to interact with the mashup creation
process, we have created a user interface for our system,
AutoMashUpper, of which a screenshot is shown in Fig. 7.

The left hand side of the interface is used for displaying the
audio waveform of the input and its section boundaries, the
songs used in the mashup, as well as system level functionality
and playback controls. Both the waveform display and mashup
visualizer are interactive and clicking either one during play-
back will jump to the start of the clicked section. At the bottom
of the left hand side, we include a new feature, a balance control
to enable users to adjust the mix between the input and mashup
in real time.

On the right hand side of the interface is a list box which
is used to display the set of pre-analyzed songs which can be
included in mashups, either by individual selection with the
mouse, choosing ten random songs (with the “pick 10” button)
or selecting all. Above this list box is an option to load a different
song library. We use this as a method for selecting a folder with
pre-grouped songs, e.g., all from the same artist or of a partic-
ular musical style.

In the centre panel we have the interactive controls for masha-
bility estimation. Each of these sliders can be modified to create
mashups with different emphasis, and to encourage users to ex-
periment with mashup creation. Below these controls is another
list box, which shows the subset of songs selected from the main
library listbox, and then beneath this are the tools available to
first create the mashup and then subsequent manipulation of the
result. This manipulation includes deleting, changing, or adding
songs to the created mashup.

B. Modes of Operation

The standard usage we expect for AutoMashUpper is for a
user to load a song of their choice, select a set of songs from
which to make the mashup, and then modify it according to their
taste afterwards. Through experimentation with the system, we
have found several alternative ways to use AutoMashUpper to
make interesting musical results.

* Album/Artist mode: we manually select songs for the
mashup from a single album or artist. Our testing has
shown this mode can give subtle results due to high
similarity in vocal timbre and overall music production.
Furthermore by processing all songs in an album in this
way, it is possible to create an entire remix/mashup album,
which can offer listeners a new way to re-engage with
familiar material.

* Style mode: in a similar way to the Album/Artist mode,
we can exclusively use songs from a given musical style
as source material for the mashup. For example, taking a
J-Pop song and creating a mashup using only Drum and
Bass music or vice-versa.

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

* Forced-mashup mode: while the quality of the mashups
created by AutoMashUpper is somewhat dependent on
the large search space created in the estimation of masha-
bility, we can alternatively use AutoMashUpper in a much
more restricted search mode, where we give just one song
to be used in the mashup along with the input. Here,
AutoMashUpper must “force” a match between the sig-
nals, and offers the potential for unexpected results when
combining very different pieces of music, for example a
modern piece of electronic dance music and a 1960s jazz
ballad.

e Musician mode: here, we take the conventional method
of using an a cappella vocal stem in a mashup, but instead
of vocals, we use a recording of an isolated musical in-
strument. To this end, we have obtained interesting results
using recordings of solo slap bass playing, and creating au-
tomatic slap bass accompaniment mashups. This approach
is not limited to bass guitar, and we can envisage Au-
toMashUpper being used by musicians who could record
some unaccompanied playing on a musical instrument and
then use it as material for a mashup. This would allow them
to hear their playing used in a new way, and give them the
opportunity to “re-learn” the new arrangement. Alterna-
tively, the inclusion of a mashed-up bass part could allow
a composer to complete composition by reuse of existing
material.

Some example videos demonstrating AutoMashUpper using

Creative Commons music content can be accessed at: http://
staff.aist.go.jp/m.goto/AutoMashUpper/.

V. EVALUATION

To evaluate AutoMashUpper, we address two aspects of the
system. First, we demonstrate the efficacy of the phrase-level
segmentation which underpins the multi-song mashup creation
process via a comparison against ground truth annotations. Then
we undertake a listening test to subjectively assess the masha-
bility estimation component of AutoMashUpper.

A. Objective Analysis

1) Test Database: To evaluate the phrase-level segmentation
component of AutoMashUpper we use the copyright-cleared
RWC Music Database [32] which contains beat, downbeat and
structural segmentation annotations [33]. Given our primary
interest in creating mashups from pop music, we restrict the
analysis to the Popular Music Database which contains 100
songs (RWC-MDB-P-2001 No. 1-100). The majority of songs
have a 4/4 time-signature and approximately constant tempo.
Although this dataset may not be considered the most chal-
lenging, it matches the type of content we expect to be used
to create mashups. While the task of structural segmentation
does not exactly match our goal of phrase segmentation, we
consider structural boundaries also to be phrase boundaries and
on this basis, consider this evaluation task to be appropriate for
our purpose.

2) Segmentation Performance: While many evaluation
methods [34] exist for measuring the performance of structural
segmentation algorithms, the majority attempt to address two
factors, the temporal accuracy of the segment boundaries and

1733

(@ (b)

0.7 0.7

F-measure

‘ =SMGA2 0
0o 05 1 15 2 25 3 0O 05 1 15 2 25 3
Tolerance window (s) Tolerance window (s)

Fig. 8. Evaluation of structural segmentation performance on the RWC-POP
database showing F-measure as a function of tolerance window size. (a) Au-
toMashUpper (AMU) compared to the three unique top performing algorithms
in MIREX 2012: SMGAZ2 [36], KSP3 [35] and SBV1 [37]. (b) AMU compared
to different parameterizations. RDB: random downbeat estimates, VAMP: using
the QM-VAMP plugin [18] to estimate beat and downbeats, GTA: ground truth
beat and downbeat annotations and CHR: using a chromagram for the self-sim-
ilarity matrix.

the labels given to these sections. Our interest in this paper is
only in the temporal localization of the segment boundaries,
and with this in mind, we pursue an evaluation strategy which
ignores section labels. In [27], the F-measure was used with
two tolerance windows, a narrow window of 0.5s and a wider
window of 3.0s. Since our goal is for high temporal precision
in boundary detection, we calculate the F-measure as a function
of tolerance window size. We start with a tolerance window
of £0s and increase it by 0.05s up to a maximum tolerance
window size of £3.0s.

We compare the performance of AutoMashUpper against the
three best performing (unique) systems submitted to the 2012
MIREX structural segmentation task, KSP3 [35], SMGA2 [36]
and SBV1 [37]. We did not run these algorithms ourselves, but
instead we made use of the online resource of algorithm out-
puts2. To gain a deeper understanding of our proposed segmen-
tation algorithm we also evaluate four different approaches for
obtaining beat and downbeat information prior to phrase seg-
mentation:

+ RDB: which uses automatically extracted beat locations as
in Section I1-A2, but a random first downbeat from the first
four beat estimates and then every fourth beat after that as
a downbeat.

* VAMP: which uses the QM-VAMP bar and beat tracking
plugin from Sonic Annotator [18] to provide beat and
downbeat locations.

* GTA: here we use the ground truth beat and downbeat an-
notations.

* CHR: we use automatically extracted beat and downbeat
locations but build the self-similarity matrix in Section II-B
using the beat synchronous chromagram, C.,, instead of the
semitone spectrogram, X .

The performance of each segmentation algorithm as a func-

tion of tolerance window is shown in Fig. 8.

The most immediate result of looking at the comparison
against the MIREX methods in Fig. 8(a) is the large difference
in accuracy for very small tolerance windows. Our approach
has an F-measure of 0.35 even for a tolerance window of

2https://github.com/jpauwels/mirex-tools

1734

40.05 s, and for this very small tolerance window, it far out-
performs the current state of the art on this dataset. Comparing
performance of AMU and RDB in Fig. 8(b) we can see that the
use of estimated (rather than random) downbeat locations has
a considerable impact on performance when the goal is to find
precise temporal boundaries. Furthermore, compared to GTA,
we see that segmentation performance for very small tolerance
windows is marginally improved by using the ground truth beat
and downbeat annotations. With all other aspects equal, we can
therefore infer that beat and downbeat estimation by AMU was
accurate and also slightly outperformed the freely available
VAMP implementation.

In terms of the input representation for the self-similarity ma-
trix, we can see that the use of the chromagram, whose per-
formance is given by CHR, is less effective than the semitone
spectrogram, suggesting that some useful structural information
is lost by folding the seven octave semitone spectrogram into
a single octave chromagram. Comparing again to the MIREX
methods in Fig. 8(a), we see that once the size of the tolerance
window exceeds 1.0 s, the remaining algorithms begin to out-
perform AutoMashUpper, with SMGA?2 the most accurate once
a wide tolerance window of 3.0 s is permitted. This lower per-
formance at large tolerance windows may be the result of our
emphasis on detecting shorter phrase sections. For example, the
median detected phrase length across the database for AMU was
10.3 s compared to the SMGA?2 algorithm it was 15.6 s and
14.3 s for the ground truth annotations.

B. Subjective Analysis

1) Listening Experiment: The aim of the listening experi-
ment was to explore the relationship between user enjoyment
of a mashup and mashability, with the hypothesis that user en-
joyment would be positively correlated with mashability. While
it would be theoretically desirable to have listeners listen to
mashups of entire songs, and hence evaluate the complete re-
sult of AutoMashUpper, several issues make this choice imprac-
tical. First, it would be difficult to ask users to make a single
judgement about their overall enjoyment of a mashup with mul-
tiple songs and sections. Second, listening to many different full
songs would make for a long and potentially tiring experiment
for participants. Third, the estimated mashability is empirically
related to the phrase section duration—i.e., the likelihood of very
high harmonic similarity is much greater for a short section of
8 beats than one which is 64 beats containing multiple chord
changes, hence it is not trivial to meaningfully relate mashability
between phrase sections of different lengths. In this sense the ab-
solute value of mashability is only comparable between equal
section lengths. Nevertheless, the relative ordering of masha-
bility within each individual section can be explored. Therefore,
in order to retain as much control as possible over the stimuli,
we restrict ourselves to a set of musical excerpts of isolated, in-
dividual phrase sections of a fixed duration of 32 beats.

To create the dataset used in the listening experiment, we ran-
domly selected 12 musical excerpts of duration 32 beats (using
automatically estimated phrase section boundaries), from a col-
lection of 90 songs. Then, for each excerpt, we calculated and
ranked the mashability to all the other songs in the collection
using the default weighting between the different components,
as described in Section III-D. We then created three mashed-up

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

Mean Enjoyment Ratings
-Hligheslt (] Middle D Lovs}est

Mashup Enjoyment

1 2 3 4 5 6 7 8 9 10 11 12
Excerpt number

Mean

Fig. 9. Mean user enjoyment ratings per listening test excerpt. The black bars
refer to the top ranked mashup, the grey bars are the middle ranked mashup and
the white bars represent the lowest ranked mashups.

versions using: i) the top ranked mashability, ii) the song closest
to the mean mashability, and iii) the lowest ranked mashability,
to give a total of 36 musical stimuli. Our aim is to approximate
a typical usage scenario for AutoMashUpper, where the best re-
sult would be the automatic result given by AutoMashUpper,
and that the lower ranked results would represent weaker rec-
ommendations.

The experiment was run as follows: for each new excerpt the
participants first listened to the un-mashed input by itself, after
which they could listen to the mashup (i.e., the mix of the two
songs), with repeated listening of both sound files permitted.
Participants were then asked to input their rating on a 0—10 scale
to indicate how much enjoyed the result of mashup compared to
the original; in effect how successful they felt the mix of the two
songs was. On this basis we felt it was very important to allow
listeners hear the original as well to avoid enjoyment ratings
based purely on musical taste of the listeners—a factor for which
we could not control.

To allow the participants to familiarize themselves with the
operation of the listening test interface and to set the playback
volume to a comfortable level, each participant undertook a
short training phase prior to completing the main experiment.
In total, a set of 15 participants were recruited to take the lis-
tening test. Since we hope that mashups can be appreciated ir-
respective of musical training, we did not use this as a criterion
for selecting participants, however we did ensure that the par-
ticipants understood what the term “music mashup” meant. To
prevent order effects, the musical stimuli were presented in a
different random order for each participant. Participants were
not paid for taking part in the experiment.

2) Results: On completion of the listening test, participants
were asked their general opinion about the mashups. Many were
very positive, stating that some mashups were highly enjoyable
to listen to and represented interesting musical combinations.
Several participants commented that for certain excerpts they
recognized and enjoyed the original excerpt very much, and then
could not enjoy the resulting mashup as it disrupted a song they
did not want altered. In terms of potential negative aspects of
the mashups, some (but not all) participants stated they did not
enjoy overlapping vocal parts, while others commented on bass
parts being incompatible.

To examine the results of the listening test we now inspect
the mean ratings per excerpt, as displayed in Fig. 9. In all but
one of the cases (Excerpt 2), the top ranked mashup is rated
higher than the middle and lowest ranked mashups. The overall
mean enjoyment ratings across all excerpts for the top, medium

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

1735

(@ (b) ©
10 . 10 10
v Highest s Non-overlap mashups ¢ Vocal overlap mashups
o Middle v - - Best linear fit o P -- Best linear fit
« Lowest v e
8 . . v 8 Pl 8
- -- Best linear fit v . e - o
5 o V¥ 7§ g °o 7
=) v.-" IS a8 g -
? 6 * * O o ’/’V/ E 6 o ’/, O: 6 o O 0 —9/‘_,.
4 P 8 5 o 4o
o ¥ =y g = 0%
-7 = - -
N S U = et = o o
2 r=049 © 2t 2 r=035 o
- r=0.66
0.6 0.8 1 1.2 0.6 0.8 1 1.2 0.6 0.8 1 1.2
Mashability Mashability Mashability

Fig. 10. Scatter plots of estimated mashability vs mean user enjoyment ratings for (a) all the three classes of mashup, (b) mashups without vocal overlap and
(c) mashups with vocal overlap. The best linear fit is shown for each plot along with the Pearson correlation coefficient.

and lowest ranked mashups where 6.7, 4.7 and 4.3 respectively.
Performing a paired t-test on the ratings revealed a highly sig-
nificant difference between the top and middle ranked mashups
(p < .005) and no significant difference between the middle
and lowest ranked mashups (p = .65). This result endorses the
overall effectiveness of the ranking according to our model of
mashability. However, we should also note that even if the rela-
tive order of preference among the participants in the order is as
we expected to be, not all top-ranked mashups were rated high in
terms of enjoyment. For example, the top ranked mashup for Ex-
cerpt 1 was rated 3.6 despite having high mashability. Listening
back to the mashup we can identify prominent overlapping vo-
cals between the two excerpts in addition to an “out of phase”
feeling caused by the unexpected behavior of chord changes not
occurring on downbeats in the candidate song.

In terms of the more general relationship between mashability
and user enjoyment, we can look at the scatter plot in Fig. 10(a).
A Pearson correlation coefficient of » = 0.49, (p < .005),
indicates a statistically significant correlation between masha-
bility and user enjoyment on this dataset. It is important to note
that some mashups were rated high in terms of enjoyment even
though they were ranked low according to mashability. In the
overall context of AutoMashUpper this means lower ranked re-
sults may still be acceptable, and given the subjective nature of
mashup enjoyment, this is a predictable outcome. Perhaps what
is more critical in terms of the success of our system is that the
majority of top ranked results are not deemed unenjoyable by
listeners. In light of these results we cannot, and nor do we seek
to, claim that the top ranked song will definitely be the best ac-
cording to user preference, e.g., compared to other songs with
high mashability, merely that high mashability appears to be a
good indicator of an acceptable result.

However, given the comment by some participants of vocal
overlap being detrimental to mashup enjoyment, we now look
in more detail at the results of the listening test. In Figs. 10(b)
and (c) we can observe the relationship between mashability
and enjoyment ratings for mashups manually separated to have
no vocal overlap and those with vocal overlap respectively. In-
spection of the plots immediately reveals a much stronger cor-
relation for non-vocal overlap mashups compared to those with
vocal overlap. While this could be taken as an indication that

vocal overlap should be avoided in mashups, we can see that in
Fig. 10(c) that several vocal overlap mashups were rated high in
terms of enjoyment. On this basis we believe that attempting to
remove all vocal overlap could eliminate potentially enjoyable
mashups. From a user perpsective, we can hypothesize that two
listener groups may exist, those who dislike vocal overlap and
those for whom it is not a problem. In this way, such a prefer-
ence could be indicated in the user interface.

VI. DISCUSSION

Through our evaluation we have shown that the phrase-seg-
mentation is able to reliably identify structural segmentation
boundaries with precise temporal localization and to a degree
which outperforms current state of the art methods. In terms
of the subjective aspect of the evaluation, we have also shown
that within these phrase sections, higher mashability is gen-
erally related to higher enjoyment by listeners of the end re-
sult. While we recognize that this constitutes an evaluation of
AutoMashUpper at one level below the final result—its ability
to produce automatic multi-song mashups, we believe that tar-
geting the fully automatic result would overlook the important
aspect of user-interaction.

Not only is it possible for users to interact and experiment
with the mashup creation process by specifying mashability pa-
rameters, changing candidate songs and modifying the results,
we allow this functionality in the user interface to explicitly en-
courage them to do so. We believe this interaction is particu-
larly important for users to feel that they have contributed in
making the musical result; that they are active participants rather
than passive observers in the music content creation process.
In future work, we intend to undertake a user study to eval-
uate these interactive aspects of AutoMashUpper, where issues
such as ease of use and subjective enjoyment of complete music
mashups can be addressed.

We consider AutoMashUpper to be a piece of “assistive”
technology, designed to help users to create new musical con-
tent, especially when they might lack musical composition skills
themselves. As noted by Shiga [2] a key musical skill required
in mashup creation is in music listening rather than a direct
ability in composition. Therefore, we can consider the role of
AutoMashUpper to be one of providing a user with a set of good

1736

matches according to our objective mashability model, and then
to allow the user to make their own subjective choices and re-
finements. In this way we hope to determine a useful balance be-
tween the objective aspects (e.g., similar harmonic and rhythmic
structure) and the subjective elements (user preference and song
familiarity) in mashup creation.

An important aspect in appraising the value of Au-
toMashUpper is to be aware of its limitations and to recognize
when and why “mistakes” happen as well as rating their relative
importance. Given the large number of different elements used
in AutoMashUpper, one might assume that in order to obtain
an objectively pleasing musical result it would be necessary for
all elements to be correct, e.g., beat times, downbeats, phrase
boundaries, tuning etc. While this is certainly desirable, we
have found that some elements of the analysis are more critical
to success than others. For example, if the beat times are incor-
rectly estimated, this can create an unpleasant feeling when the
resulting mashup is not fully beat-synchronized, and is related
to the user discomfort analysis for mismatched tempi in [8].
Furthermore, the estimation of tuning, which is central both to
the generation of the harmonic signal representations (semi-
tone-spectrogram and chromagram) and the scaling factor for
pitch-shifting and tuning correction, plays a critical role in the
resulting mashup. That is, even with all other aspects evaluated
accurately, an “out-of-tune” mashup will generally not make for
a pleasant listening experience. Other aspects however, such as
mis-estimation of downbeats or phrase section boundaries may
not be as critical since mashability is calculated across all beat
shifts of candidate songs meaning such errors can be absorbed.

In terms of song properties which can adversely affect the
resulting mashup, we have found these often relate to sung sec-
tions in the music. While setting a wide ‘key shift’ range in the
AutoMashUpper interface increases the amount of possible so-
lutions and therefore raises the chance of finding a good ob-
jective match, this can be problematic for vocal regions. This is
perhaps most notable for increases in pitch for female vocals and
decreases in pitch for male vocals, where the results can sound
unnatural. In this sense, there is a greater chance of a natural
musical result when using instrumental music—at least for those
songs transformed in the mashup process. Similarly, the issue of
vocal overlap was raised by some participants as a factor which
created confusing results. A possible solution would be to incor-
porate a vocal activity detection module [38] into the estimation
of mashability and simply discard any potential mashups with
vocal overlap. However, given the diverse range of ratings for
vocal overlap mashups obtained in the listening experiment (in-
cluding some rated very highly), such a measure could exclude
potentially valid and enjoyable mashups. Therefore we believe
that a more complex model of vocal activity and interaction is
required to properly capture this aspect. Since the chromagram
is not as well-suited a signal representation for identifying vocal
regions as MFCCs or melodic based features, we should explore
additional features for inclusion in a more complete measure of
mashability.

VII. CONCLUSIONS

In this paper we have presented a system for creating auto-
matic and semi-automatic multi-song mashups. Our work has

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

been driven by two main motivations: first, from a creative
perspective, we have sought to demonstrate there are numerous
musical possibilities and potential advantages to using MIR
techniques for mashup creation; and second, from a research
perspective, to highlight the significant potential mashups and
music manipulation hold for future creative-MIR research.
Our main contribution has been to show that by searching
for mashability in a transform-domain which takes potential
changes in key and rhythm into account, we can expand the
range of mashups beyond what is possible with existing ap-
proaches. In terms of the next steps for the AutoMashUpper
system, we plan to expand its use for songs which do not fit
the strict assumptions concerning song properties, €.g. constant
tempo and fixed time-signature. Furthermore we believe there
is wide scope for incorporating other music analysis tech-
niques, including vocal detection and source separation [39].
In future work we will conduct a user study to further explore
the mashup creation possibilities with AutoMashUpper, and to
identify new features and functionality to expand the creative
possibilities for automatic mashup creation.

REFERENCES

[1] X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon, A. Flexer, E.
Gomez, F. Gouyon, P. Herrera, S. Jorda, O. Paytuvi, G. Peeters, J.
Schliiter, H. Vinet, and G. Widmer, Roadmap for Music Information
ReSearch Creative Commons BY-NC-ND 3.0 license, 2013.

[2] J. Shiga, “Copy-and-persist: The logic of mash-up culture,” Critical
Studies in Media Communication, vol. 24, no. 2, pp. 93—114, 2007.

[3] Mashstix [Online]. Available: http://mashstix.com

[4] Mixter [Online]. Available: http://ccmixter.org

[5] DJ Mix Generator [Online]. Available: http://www.djprince.no/site/
DMG.aspx

[6] N. Tokui, “Massh!: A web-based collective music mashup system,” in
Proc. 3rd Int. Conf. Digital Interactive Media Entertainment and Arts,
2008, pp. 526-527.

[7] G. Griffin, Y. E. Kim, and D. Turnbull, “Beat-sync-mash-coder: A
web application for real-time creation of beat-synchronous music
mashups,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process.
(ICASSP), 2010, pp. 437-440.

[8] H. Ishizaki, K. Hoashi, and Y. Takishima, “Full-automatic DJ mixing
with optimal tempo adjustment based on measurement function of user
discomfort,” in Proc. 10th Int. Soc. Music Inf. Retrieval Conf., 2009,
pp. 135-140.

[9] Fraunhofer, IDMT. Harmonic Mixing Tool [Online]. Available:
http://www.idmt.fraunhofer.de/en/Service_Offerings/technolo-
gies/e_h/harmonic_mixing_tool.html

[10] Echonest. The Infinite Jukebox [Online]. Available: http://labs.
echonest.com/Uploader/index.html

[11] Echonest. The Infinite Jukebox. The Autocanonizer [Online]. Avail-
able: http://static.echonest.com/autocanonizer/

[12] The Wub Machine [Online]. Available: http://thewubmachine.com

[13] Mixed in Key. Mashup. [Online]. Available: http://mashup.
mixedinkey.com/HowTo

[14] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto, “AutoMashUpper:
An automatic multi-song mashup system,” in Proc. 14th Int. Soc. Music
Inf. Retrieval Conf-, 2013, pp. 575-580.

[15] J. Paulus, M. Miiller, and A. Klapuri, “Audio-based music structure
analysis,” in Proc. 11th Int. Soc. Music Inf. Retrieval Conf., 2010, pp.
625-636.

[16] D.P.W.Ellis, “Beat tracking by dynamic programming,” J. New Music
Res., vol. 36, no. 1, pp. 51-60, 2007.

[17] M. Mauch and S. Dixon, “Approximate note transcription for the im-
proved identification of difficult chords,” in Proc. 11th Int. Soc. Music
Inf. Retrieval Conf-, 2010, pp. 135-140.

[18] C. Cannam, M. O. Jewell, C. Rhodes, M. Sandler, and M. d’Inverno,
“Linked data and you: Bringing music research software into the se-
mantic web,” J. New Music Res., vol. 39, no. 4, pp. 313-325, 2010.

[19] J.P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B.
Sandler, “A tutorial on onset detection in music signals,” IEEE Trans.
Speech Audio Process., vol. 13, no. 5, pp. 1035-1047, Sep. 2005.

[20] A.Robertson, A. Stark, and M. E. P. Davies, “Percussive beat tracking
using real-time median filtering,” in Proc. 6th Int. Workshop Mach.
Learn. Music (MML 13), 2013, pp. 71-75.

[21] D. Fitzgerald, “Harmonic/Percussive separation using median fil-
tering,” in Proc. 13th Int. Conf. Digital Audio Effects (DAFx-10),
2010, pp. 10-13.

[22] M. E. P. Davies, M. D. Plumbley, and D. Eck, “Towards a musical beat
emphasis function,” in Proc. IEEE Workshop Applicat. Signal Process.
Audio Acoust. (WASPAA °09), 2009, pp. 61-64.

[23] M. E. P. Davies and M. D. Plumbley, “A spectral difference approach
to extracting downbeats in musical audio,” in Proc. 14th Eur. Signal
Process. Conf. (EUSIPCO), 2006.

[24] M. Goto, “An audio-based real-time beat tracking system for music
with or without drum-sounds,” J. New Music Res., vol. 30, no. 2, pp.
159-171, 2001.

[25] J. Foote, “Automatic audio segmentation using a measure of audio
novelty,” in Proc. IEEE Int. Conf. Multimedia and Expo, 2000, pp.
452-455.

[26] R. J. Weiss and J. P. Bello, “Identifying repeated patterns in music
using sparse convolutive non-negative matrix factorization,” in Proc.
11th Int. Soc. Music Inf. Retrieval Conf., 2010, pp. 123-128.

[27] G. Sargent, F. Bimbot, and E. Vincent, “A regularity-constrained
Viterbi algorithm and its application to the structural segmentation of
songs,” in Proc. 12th Int. Soc. Music Inf. Retrieval Conf., 2011, pp.
483-488.

[28] M. J. Butler, Unlocking The Groove: Rhythm, Meter, and Musical De-
sign in Electronic Dance Music. Bloomington, IN, USA: Indiana: In-
diana Univ. Press, 2006.

[29] C. Uhle and C. Dittmar, “Drum pattern based genre classification of
popular music,” in Proc. 25th AES Int. Conf.: Metadata for Audio,
2004, pp. 189-195.

[30] D.Robinson, “Perceptual model for assessment of coded audio,” Ph.D.
dissertation, Dept. of Electron. Syst. Eng. , Univ. of Essex, Essex,
U.K.,2002 [Online]. Available: www.mp3-tech.org/programmer/docs/
Robinson_thesis.pdf

[31] C. Cannam, Rubber band library [Online]. Available: http://break-
fastquay.com/rubberband/

[32] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music data-
base: Popular, classical, and jazz music databases,” in Proc. 3rd Int.
Conf. Music Inf. Retrieval, 2002, pp. 287-288.

[33] M. Goto, “AIST annotation for the RWC music database,” in Proc. 7th
Int. Conf. Music Inf. Retrieval, 2006, pp. 359-360.

[34] H. M. Lukashevich, “Towards quantitative measures of evaluating
song segmentation,” in Proc. 9th Int. Conf. Music Inf. Retrieval, 2008,
pp. 375-380.

[35] F. Kaiser, T. Sikora, and G. Peeters, “Large-scale cover song
recognition using the 2D fourier transform magnitude,” in Music
Inf. Retrieval Eval. eXchange (MIREX), 2012 [Online]. Available:
http://www.music-ir.org/mirex/abstracts/2012/KSP3.pdf

[36] J. Serra, M. Miiller, P. Grosche, and J. L. Arcos, “The importance
of detection boundaries in music structure annotation,” in Music Inf.
Retrieval Eval. eXchange (MIREX), 2012 [Online]. Available: http://
WWwWw.music-ir.org/mirex/abstracts/2012/SMGA2.pdf

[37] G. Sargent, F. Bimbot, and E. Vincent, “A music structure inference
algorithms based on morphological analysis,” in Music Inf. Retrieval
Evaluation eXchange (MIREX), 2012 [Online]. Available: http://www.
music-ir.org/mirex/abstracts/2012/SBV1.pdf

[38] H. Fujihara, M. Goto, J. Ogata, and H. G. Okuno, “LyricSynchronizer:
Automatic synchronization system between musical audio signals
and lyrics,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 6, pp.
1252-1261, Dec. 2011.

[39] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexible framework
for the handling of prior information in audio source separation,” [EEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 4, pp. 1118-1133,
May 2012.

DAVIES et al.: AUTOMASHUPPER: AUTOMATIC CREATION OF MULTI-SONG MUSIC MASHUPS

ol

1737

Matthew E. P. Davies received the B.Eng. degree in
computer systems with electronics from King’s Col-
lege London, U.K., in 2001 and the Ph.D. degree in
electronic engineering from Queen Mary University
of London, U.K., in 2007. From 2007 until 2011, he
was a post-doctoral researcher in the Centre for Dig-
ital Music, QMUL. In 2011 he joined the Sound and
Music Computing Group at INESC TEC in Porto,
Portugal. In 2013, he worked in the Media Interaction
Group, National Institute of Advanced Industrial Sci-
ence and Technology (AIST), Japan, after which he

returned to INESC TEC. His research interests include rhythm analysis in mu-
sical audio, evaluation methodology in MIR, and creative-MIR applications.

.

Philippe Hamel obtained his Ph.D. in computer
science from the Université de Montréal in 2012. He
then continued his research at AIST in Japan as a
post-doctoral researcher. Since 2013, he has been a
software engineer at Google working on improving
music recommendation for Google Play Music. Prior
to his work in computer science, he studied physics
at Université de Montréal where he obtained a M.Sc.
in theoretical physics and a B.Sc. in mathematics
and physics. His main research interests are machine
learning and its application to music information

retrieval. One of his goals is to find ways to obtain better and richer represen-
tations of music audio. His recent work has been focused on artificial neural
networks, deep learning, signal processing and collaborative filtering. He is
interested in music information retrieval problems such as automatic tagging,
music classification, music similarity and music recommendation.

Kazuyoshi Yoshii received the Ph.D. degree in
informatics in 2008 from Kyoto University, Japan.
He is currently a Senior Lecturer at Kyoto Uni-
versity. He has received several awards including
the IPSJ Yamashita SIG Research Award and the
Best-in-Class Award of MIREX 2005. His research
interests include music signal processing and ma-
chine learning. He is a member of the Information
Processing Society of Japan (IPSJ) and Institute
of Electronics, Information and Communication
Engineers (IEICE).

Masataka Goto received the Doctor of Engineering
degree from Waseda University in 1998. He is cur-
rently a Prime Senior Researcher and the Leader of
the Media Interaction Group at the National Institute
of Advanced Industrial Science and Technology
(AIST), Japan. Over the past 22 years, Masataka
Goto has published more than 200 papers in refereed
journals and international conferences and has
received 38 awards, including several best paper
awards, best presentation awards, the Tenth Japan
Academy Medal, the Tenth JSPS PRIZE, and the

Commendation for Science and Technology by the Minister of Education,
Culture, Sports, Science and Technology (Young Scientists’ Prize). He has
served as a committee member of over 90 scientific societies and conferences,
including the General Chair of the 10th and 15th International Society for
Music Information Retrieval Conferences (ISMIR 2009 and 2014). In 2011,
as the Research Director he began a 5-year research project (OngaCREST
Project) on music technologies, a project funded by the Japan Science and
Technology Agency (CREST, JST).

