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Computational Models of Similarity
for Drum Samples

Elias Pampalk, Perfecto Herrera, and Masataka Goto

Abstract—In this paper, we optimize and evaluate computational
models of similarity for sounds from the same instrument class.
We investigate four instrument classes: bass drums, snare drums,
high-pitched toms, and low-pitched toms. We evaluate two simi-
larity models: one is defined in the ISO/IEC MPEG-7 standard,
and the other is based on auditory images. For the second model,
we study the impact of various parameters. We use data from lis-
tening tests, and instrument class labels to evaluate the models. Our
results show that the model based on auditory images yields a very
high average correlation with human similarity ratings and clearly
outperforms the MPEG-7 recommendation. The average correla-
tions range from 0.89–0.96 depending on the instrument class. Fur-
thermore, our results indicate that instrument class data can be
used as alternative to data from listening tests to evaluate sound
similarity models.

Index Terms—Content-based similarity, drum sounds, percus-
sive music instruments.

I. INTRODUCTION

DRUM samples are used to create drum loops, which play
an important role in several styles of music. Large com-

mercial drum sample libraries can contain thousands of sam-
ples. Computational models of similarity enable new user inter-
faces which allow music producers to find and retrieve samples
more easily. For example, such an interface could automati-
cally organize drum samples hierarchically and visualize them
on a two-dimensional map such that similar samples are located
close to each other [1]. An alternative application is to retrieve
a set of similar samples given a query sample.

In contrast to most of the previous work, we are not focusing
on classifying the samples according to instruments or com-
paring different instrument classes. Instead, we want to compute
the similarities of samples from the same instrument class. We
investigate four instrument classes: bass drums, snare drums,
high-pitched toms, and low-pitched toms. We limit our scope
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to dry drum sounds.1 Two samples from the same class differ,
for example, with respect to how hard the instrument was hit,
the diameter of the drum, the manufacturer, or the recording
environment.

We evaluate two distinct similarity models. The first model
is closely related to work on timbre spaces and is part of the
MPEG-7 standard.2 The second model is based on aligned au-
ditory images. To evaluate the models, we use data from two
sources. First, we use human similarity ratings gathered in lis-
tening tests. For each of the four instrument classes, we con-
ducted a listening test where subjects were asked to rate the sim-
ilarity of pairs of sounds. Second, we use the instrument class
labels of a collection with 311 drum samples. Our results show
that the model based on auditory images fits the data with a sig-
nificantly lower error than the MPEG-7 model. Furthermore, our
results show that instrument class data can be used (at least in
early development stages) to replace data gathered in listening
tests.

The remainder of this paper is structured as follows. In
Section II, we review related work. In Section III, we describe
the computational models of similarity. In Section IV, we
describe the data we use for the evaluations and analyze it. In
Section V, we present the evaluation of the models. Finally, in
Section VI, we summarize our findings and point out directions
for future work.

II. RELATED WORK

There is a vast amount of work on the similarity of sounds
from music instruments. In this section, we briefly review work
on timbre spaces, auditory images, instrument classification,
content description and MPEG-7, and finally, the larger context
and applications.

A. Timbre Spaces

Timbre is the quality that distinguishes sounds with the
same pitch, loudness, and duration.3 The perception of timbre
is multidimensional, subjective, and context dependent. Work
on timbre spaces assumes that there is a low-dimensional
space (often three-dimensional) in which similarities can be
explained. Each of these dimensions is associated with mea-
surable physical properties of the audio signals which can be
extracted automatically.

1Dry sounds are sounds to which no additional effects such as reverberation
have been added.

2ISO/IEC 15938 Information technology—Multimedia content description
interface—Part 4: Audio (2002)

3American Standards Association (1960). American Standard Acoustical Ter-
minology. New York. Definition 12.9, Timbre, p. 45.
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The dimensions are found and linked to physical properties
by analyzing human listeners’ similarity ratings. These ratings
are gathered in listening tests where subjects are asked to rate
the pairwise timbre similarity of sounds. One approach to an-
alyze these pairwise similarities is to visualize the space they
define using multidimensional scaling (MDS).4 The first study
using MDS to analyze the dimensions of timbre was published
by Grey [3]. Grey developed a model with three dimensions,
where the most prominent one is related to the distribution of
the spectral energy. This research direction was continued in a
number of studies (see, e.g., [4]–[7]).

B. Auditory Images

Auditory images have the dimensions: time, frequency, and
loudness. For the frequency and loudness dimensions, a non-
linear perceptual scale is used. The similarity of sounds is com-
puted by comparing their auditory images. Work related to au-
ditory images includes [8]–[15]. The approach we use is mostly
based on [1] and [8].

Closely related to work on auditory images is work on
measuring the perceptual audio quality (e.g., [16]–[18]), where
the objective is to measure very small differences between two
sound excerpts (for example, to evaluate lossy encoders).

In general, there is a vast amount of related work regarding the
perception of loudness. For an engineer’s perspective, see, e.g.,
[19]. For an approach which models the auditory system down
to the level of the mechanical response of the hair cells and the
electrical response of auditory nerve fibers, see, e.g., [20].

C. Instrument Classification

The goal of instrument classification is to identify the in-
strument class of a given sound. The sounds can either be iso-
lated (without any background noise) or extracted from a piece
of music (and thus include other instruments and voices in the
background). When a nearest neighbor classifier is used to clas-
sify the sounds, the relationship to similarity models is most ob-
vious. However, even if more complex classifiers are used, there
is a lot of overlap with our work. First, features which help clas-
sify instruments, such as the spectral centroid or the attack time,
are very likely to also be useful when computing similarities.
Second, as we show in Subsection V-B instrument, class data
can be used to evaluate similarity models.

An extensive overview of related work on automatic classi-
fication of pitched musical instrument sounds can be found in
[21] and, for unpitched sounds, in [22]. In this subsection, we
only mention some examples with a particular focus on the fea-
tures used.

One of the first publications on audio classification was [23],
where class models of sounds (mostly “sound effects”) were
built using loudness, pitch, and spectral descriptors such as the
centroid or the bandwidth, in addition to their variation along
time. The list of features was extended in [24] to deal with
the classification of orchestral sounds. Work on distinguishing
between oboe and sax sounds using only cepstral coefficients

4MDS is a technique to project a high-dimensional space to a lower dimen-
sional space while preserving (as far as possible) the distances between the data
[2].

(without temporal information) was presented in [25]. The re-
sults show that the proposed system performs about as well as
trained human listeners. The results published in [26] show that
there are several sets of features which can be used to achieve
performances similar to those of humans.

One of the first approaches focusing on percussion sounds
is [27]. The results showed that very simple features (in par-
ticular the zero-crossing rate) are very useful to discriminate
instruments. Further work on drum sounds includes [28], where
classification accuracies are reported of around 90% for nine
different instrument categories: bass drum, snare drum, tom
(low, medium, high), hihat (open, closed), and cymbal (ride,
clash). Furthermore, the results showed that it is possible to
reduce the original feature set of size 50 to about 20 without
performance loss. The most powerful features found were: zero
crossing rate, and spectral shape descriptors (kurtosis, skew-
ness, centroid, low-order Mel frequency cepstral coefficients),
and relative energy in low-frequency bands. A larger study
was conducted in [29] with 208 different features, 30 different
unpitched percussive sound categories, and different classifiers.
In addition, MDS was used to visualize the feature space and
understand errors of the classification system.

Recently, research has focused on describing or classifying
sounds produced by a single instrument. Work focusing on the
clarinet and studying temporal variations using self-organizing
maps (SOMS) was presented in [30]. Work focusing on the
shakuhachi was presented in [31], oboe sounds in [32], and
drum sounds and different playing modes in [33]. Overall, Mel
frequency cepstral coefficients (MFCCs) have been the most
prevalent and effective features for addressing problems of mu-
sical sound classification.

D. Content Description and MPEG-7

In the context of the MPEG-7 standard there have been a
number of publications on automatically extracting semantic
descriptors from audio signals. Of particular interest for this
work is the work presented in [34]. We have implemented this
MPEG-7 model for the distance of percussive sounds and com-
pared it to a model based on auditory images.

E. Larger Context and Applications

On a larger scale, related work includes, for example, identi-
fying instruments within polyphonic audio (e.g., [35] and [36]).
Another example is the work presented in [37], where drum
sounds are identified within a piece of music using templates
similar to auditory images. Once the sounds are identified,
rhythm patterns can be extracted, or various effects can be
applied (e.g., [38]). Other related topics include, for example,
mapping semantic meanings to features extracted from the
audio signal (e.g., [39]). More direct applications include,
for example, the hierarchical organization of drum sample
libraries [1]. Such organizations can help producers creating
and tweaking drum loops find the samples they are searching
for more easily.

III. COMPUTATIONAL MODELS

We compare two distinct models. The first model is part of the
MPEG-7 standard which is closely related to work on timbre
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spaces as discussed in Subsection II-A. The second model is
based on auditory images. For both models we only used the
left channel (mono) of each sample (sampled at 44.1 kHz) as
input.

A. Timbre Space (MPEG-7 Standard)

The MPEG-7 standard defines a method to compute the sim-
ilarity of percussive sounds (including drum sounds) which is
based on work presented in [34]. The three dimensions that are
measured for each sound are log-attack time (LAT), temporal
centroid (TC), and spectral centroid (SC). Generally, a drum hit
very hard has a shorter attack time. The temporal centroid de-
pends on factors such as the resonance (or dampening) and re-
verberation. The spectral centroid is related to the brightness.
The following paragraphs describe how they are defined ac-
cording to the MPEG-7 standard.

Let be an approximation of the signal’s power function
over time, where is the index of the time frame, is the total
number of frames, and is the sampling rate (in Hertz). is
computed as the local mean square value of the signal amplitude
within a 25-ms running window.

The log-attack time is defined as

LAT (1)

where is the point in time at which the signal power exceeds
2% of the maximum value, and is the point at which the signal
power level reaches peak level (both measured in seconds).

The temporal centroid is defined as

TC (2)

The spectral centroid is calculated from the power spectrum
of the whole sample and is defined as

SC (3)

where is the th power spectrum coefficient, is the
frequency of , and is the total number of coefficients.

Given two samples A and B, their distance is computed as

(4)

where LAT LAT and so forth. In the MPEG-7
standard the following examples are given for the coefficients:

. However, these specific values
for the coefficients are provided for informative purposes only.
The standard explicitly states that these coefficients may not be
appropriate for arbitrary data sets. In the experiments described
later we use a grid search to optimize these coefficients.

B. Auditory Images

Auditory images have the dimensions time (columns), fre-
quency (rows), and loudness (values). Each image can be in-
terpreted as a very high-dimensional vector (e.g., by concate-
nating the rows). These vectors can directly be compared to each

other by computing the Euclidean distance (or the Minkowski
distance of any order). However, this approach is suboptimal
if the sounds are not temporally aligned (as seen in Fig. 1). In
our work, we use a simple brute force approach where we try
all possible alignments within certain limits and select the one
which fits best [1]. An alternative approach, for example, is to
use an approach based on matching trajectories computed using
a self-organizing map [10].

The following subsections describe how we compute the au-
ditory images. These computations are influenced by nine pa-
rameters which we optimize in the next section.

1) Sample Length: In a first step, we consider using only
a certain amount of the beginning of the signal. In particular,
we consider using only the first 250 ms, 1000 ms, or the whole
signal. Using only 250 ms puts an emphasis on the onset. While
the long tail might be hardly audible, it can still have a signifi-
cant impact on the distance computation. As we discuss later the
improvements using only the first 250 ms for the bass drum (BD)
sounds indicate that there is a potential for techniques which put
more weight on the perceptually relevant parts of the sample.
This confirms the findings presented in [13], where the correla-
tion of the subjects’ ratings and the auditory image based model
increased from about 0.68 to 0.88, mainly due to an increased
focus on the onset.

2) Power Spectrum: Given the audio signal, the power spec-
trum is computed with a STFT using a Hann window function.
The window size and the overlap between windows are two crit-
ical parameters. In our experiments, we evaluate the window
size parameter for values in the range of 256 samples (6 ms) to
16 384 samples (372 ms). The overlap is defined in terms of the
relative hop size of the moving window. We evaluate the range
from 1 (no overlap) to 1/8 (87.5% overlap).

3) Outer and Middle Ear Response: A model for the outer
and middle ear frequency response can be applied optionally.
In particular, we evaluate if application of the filter suggested
by Terhardt [40] improves the similarity model. The response
of the filter is defined as,

(5)

The main characteristics of this filter is that it reduces the im-
pact of very high and very low frequencies. On the other hand,
frequencies around 3–4 kHz are emphasized.

4) Frequency Scale: The human perception of frequency is
not linear. Among the various models that have been proposed
(see, e.g., [41]), we focus only on three. The simplest model
we use is logarithmic scaling (with dual basis). Second, we use
the Mel scale which is also used to compute MFCCs. Third,
we use the Bark scale, which despite having a very different
background has very similar characteristics to the Mel scale.

The Mel scale [42] is defined as

(6)

The Bark scale (see, e.g., [43]) is defined as

(7)
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The main characteristic of the Bark scale is that the width of
the critical-bands is about 100 Hz up to 500 Hz, and beyond
500 Hz the width increases nearly exponentially. The Mel scale
has very similar characteristics. The main difference between
the two scales is that the Mel scale was developed by mea-
suring when a tone is perceived to have a pitch twice as high
(or low) as a reference tone. The Bark scale was developed by
measuring the differences in frequencies when spectral masking
occurs (see the next subsection).

The frequency scale defines the center frequencies and widths
of the frequency bands we use. For all three scales, we use trian-
gular filters to compute the energy of each frequency band. The
triangles overlap such that the upper frequency of one triangle is
the peak frequency of the next triangle and the lower frequency
of the one after the next. Such triangular filters are generally also
used to compute MFCCs. The implementation we used for the
Mel scale is available online [44].

The frequency for the triangle with the lowest center fre-
quency is fixed at 10 Hz, the frequency for the triangle with
the highest center frequency is fixed at 13 500 Hz. (The center
frequencies of all other bands vary depending on the number
of frequency bands used.) The two parameters we evaluate are
the frequency scale and the number of frequency bands (in the
range of 6 to 72).

5) Spectral Masking: Spectral masking is the occlusion of a
sound by a louder and simultaneous sound with a similar fre-
quency. Applying the spectral masking model is optional. We
compute the masking effects according to Schroeder et al. [45]
who suggest a spreading function optimized for intermediate
speech levels. Alternatively, more complex models could be
used [46].

The spreading function suggested by Schroeder et al. has
lower and upper skirts with slopes of 25 dB and 10 dB per
critical-band (according to the Bark scale). For the Mel and log-
arithmic frequency scales, we compute the critical-band equiv-
alent using the center frequencies of the respective frequency
bands.

The main characteristic of the masking function is that lower
frequencies have a stronger masking influence on higher fre-
quencies than vice versa. The contribution of critical-band

to is computed by

(8)

where . In general, applying the spreading func-
tion can be interpreted as asymmetric smoothing of the fre-
quency resolution. The effect of this smoothing depends on the
number of frequency bands used. In particular, applying the
spectral masking model will show hardly any effects if only few
bands are used (because increases). Furthermore, not only
the number of frequency bands but also the number of discrete
cosine transform (DCT) coefficients used (described later on)
are closely related to spectral masking.

6) Loudness: Loudness is the third dimension of the auditory
images. The perception is not linear with respect to the energy in
the audio signals. A popular approximation is to apply a decibel

(dB) scaling to the energy. In addition, we evaluate a loudness
model suggested in [47]. Given the sound pressure level in dB,
the loudness in sone is computed as

if dB (9)

7) DCT Compression: A DCT can be applied to obtain a
compressed representation of each time frame of the auditory
image (a vector of loudness values with as many dimensions
as frequency bands). Computing the DCT is a standard step for
MFCCs.

The DCT transformation describes the original frame as a
linear combination of orthogonal sinusoids. High-frequency si-
nusoids are omitted to obtain a compressed representation. In
addition to computational advantages, this compression can also
be interpreted as a form of spectral masking. In particular, omit-
ting high-frequency components leads to stronger smoothing
along the frequency scale.

8) Interpretation as Images: Up to this point, we have ob-
tained a representation for each sound in the dimensions: fre-
quency, time, and loudness. The scale and resolution of each
dimension depends on parameters. For example, Mel scaled fre-
quency and loudness in dB are the standard approach when
computing MFCCs. The resolution on the frequency scale de-
pends on the number of frequency bands, the resolution on the
(linear) time scale depends on the STFT hop size. We refer to
this representation as an auditory image (see Fig. 1 for exam-
ples). Time is mapped to the horizontal dimension, and fre-
quency to the vertical dimension. The loudness dimension is
mapped to the “color.” Given a specific set of parameters, the
images always have the same height. However, their width de-
pends on the length of the audio signal.

9) Alignment and Distance Computation: A simple approach
to compare two images is the following. If they are not the same
length, then the shorter one can be appended with zero columns
at the end (which correspond to silence). Each image can be
interpreted as vector by concatenating the rows. These vectors
can be compared using any distance metric applicable to vector
spaces such as the Euclidean distance or the Minkowski distance
of any order.

As can be seen in Fig. 1, the samples are not always tempo-
rally aligned. However, the alignment has a large impact on the
computed distance using the simple approach described above.
Thus, it is necessary to align the images before computing the
distance.

We apply the following approach to align two images A and
B. We shift A (on the time axis) against B (within reasonable
limits). This is done by inserting or appending silence. For every
possible shift we compute the distance between the shifted ver-
sion of A and B. We define to be the minimum distance
from all temporal alignments.

The step size of the temporal shifts is defined by the temporal
resolution. We shift the images in the range from 0 to 100 ms.
Simple heuristics can be applied to minimize the number of nec-
essary computations such as aligning the images using only the
sum over all frequency bands, or aligning all samples with a pro-
totypical sample.
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Fig. 1. Auditory images of the stimuli used for the listening test. All samples within a column are from the same instrument class. Black corresponds to high
loudness levels, white to silence. Frequency is on the y-axis (in the range of 0–22 kHz). Time is on the x-axis in the range of 0–500 ms. The images were computed
(see Section III) using a short-time Fourier transform (STFT) window size of 23 ms and 25% hop size, 24 frequency bands (Bark), loudness in sone, and applying
the spectral masking model as well as the outer/middle ear model. The samples marked with P are the manually selected prototypical sounds, those marked with S
are the sounds very similar to the respective prototype (e.g., S1 is very similar to P1). The samples marked with D are moderately similar to the respective protoypes.

IV. GROUND TRUTH

To evaluate the models presented in Section V, we use simi-
larity ratings gathered in listening tests and instrument class la-
bels assigned to each sample.

A. Listening Test

For each instrument class, we conducted a listening test where
the subjects were asked to rate the similarity of sound pairs. In
the following, we describe the participants, the stimuli we used,
how we selected the questions we asked, and the implementa-
tion of the test (and user interface). At the end of this subsection,
we analyze the data.

1) Participants: The 144 (voluntary) participants were
mostly colleagues working either at MTG5 or OFAI.6 In ad-
dition, students from the ESMUC7 higher music conservatory
in Catalonia, and friends were asked to participate. Before
the actual listening test, we asked each subject a number of
questions regarding previous knowledge which could have
an influence on the ratings. Table I summarizes the answers.
Several participants took part in more than one test.

2) Stimuli: We selected the stimuli from two commercial
drum sample CDs. Most of these samples are very dry, i.e., no
additional effects such as reverberation were added to them. We
removed those which had effects added to them. Almost all of
them are sampled at 44.1 kHz. In a first step, we selected the

5Music Technology Group (MTG), Universitat Pompeu Fabra
6Austrian Research Institute for Artificial Intelligence (OFAI)
7L’Escola Superior de Música de Catalunya (ESMUC)

TABLE I
NUMBER OF PARTICIPANTS PER CATEGORY*

following number of samples from each instrument class: 76
bass drums (BD), 123 snare drums (SN), 64 high-pitched toms
(TH), and 48 low-piched toms (TL). The variances within the
same instrument class are due to different diameters (e.g., 20 in
and 22 in for bass drums), tuning (high, low), how and where the
drums are hit (hard, soft, centered, etc.), the recording environ-
ments (small or large ambiance), and different manufacturers
(e.g., Noble & Cooley, Yamaha, Premier).

For each of the four instrument classes, we manually selected
a small number of prototypical sounds. We selected four (two
from each sample CD) for BD, SN, TH, and three (two from the
same sample CD) for TL. The reason for selecting one less for
TL was that we found less variation in the samples. For each of
these prototypical sounds, we selected a very similar sample and
one moderately similar sample. Given a prototype , we refer
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TABLE II
LENGTH OF THE STIMULI IN MILLISECONDS

to the very similar sample as , and we refer to the moderately
similar sample as .8

In total, we manually selected 12 samples for BD, SN, TH ,
and nine for TL. The purpose of this subjective selection by the
authors is to ensure that the questions (which we ask the par-
ticipants in the listening test) cover a large range of distances,
while minimizing the total number of necessary questions. Al-
ternatively, a larger number of samples could have been selected
randomly.

Table II lists the file length statistics of the selected samples.
Fig. 1 shows auditory images of the samples. The reason why
the samples are so long, and why they do not have the onsets
at the same position, is that on one sample CD several samples
were given as one long track. We automatically extracted the
samples using a very low threshold for the energy. The different
onsets in the range of milliseconds do not effect the perception
of similarity. However, they do force us to consider alignment
techniques described in Subsection III-B9.

3) Questions: We asked the subjects to rate the similarity of
the following sample pairs:

A) To measure large differences, we asked the participants to
rate the similarity of all pairwise combinations of proto-
typical samples .

B) To measure large to medium differences, we asked for the
similarity of each prototype and the closest sample
from a different prototype. (The closest was selected
manually.) is generally more similar to than to

.
C) To measure medium differences we asked for the simi-

larity of each prototype and its respective moderately
similar sample .

D) To measure very small differences, we asked for the sim-
ilarity of each prototype and its respective very similar
sample .

In sum, we asked questions for each of
the BD, SN, and TH tests and for the TL
test. We selected these pairs with the intention to cover a broad
range of differences while minimizing the number of necessary
questions. In an ideal case, we would have asked the subjects to
rate all possible combinations (for 12 samples that would result
in 66 questions). However, we wanted to limit the average time
to complete the listening test (including the time to read the
instructions) to about 10 min. Furthermore, the task of rating
the pairwise similarity of drum samples is rather monotonous,
and thus it is difficult to remain concentrated for a longer period
of time.

To average out any possible effects presenting the 18 (or 12)
questions in a specific order might have, we randomly permu-
tated them for each participant. Furthermore, for each ques-

8All P ; S pairs were from the same sample CD, and about half of the P ;
D pairs came from the same sample CD.

tion the order of each sound in the pair was also randomly
permutated.

4) Implementation and User Interface: The four different
tests were run over a period of more than one year. Each test
could be done over the Internet. The participants were asked to
use headphones; however, we had no control over the quality of
these.

Fig. 2 shows a screenshot of the user interface for the BD
test. The interface was implemented as a web-based Java applet.
The interface is controlled using keyboard keys “A,” “B,” and
the cursor keys. Given a question with a pair of samples A and
B, pressing the respective keyboard character plays the sample.
The cursor left and right keys adjust the similarity rating (the
position of the slider). The slider has a resolution of nine steps.
Using up and down keys the user returns to the previous or pro-
ceeds to the next question.

All question pairs (and ratings) are displayed on one screen
to allow the subject to easily maintain an overview of the ques-
tions. The interface was designed to support users to easily (with
only a few keystrokes) jump between different pairs to adjust
them if necessary. Most participants needed only very few ex-
planations.

The user interface records the overall time spent before
pressing the “Finish” button. Furthermore, for each question
the number of times the samples were listened to is recorded.
If the user never returns to previous questions to readjust the
ratings, there is a dialog box which appears after pressing the
“Finish” button which informs the user of this option and asks
if the user wants to return to the test and use it.

5) Results: Table III shows the time spent listening to and
rating the samples. Completing the ratings in less than one
minute is possible for TL because there are only 12 questions.
Thus, the subject spent an average time of 3.5 s on each ques-
tion. Very high values (beyond 30 min) occur because some
people started the test, did something else in between, and
returned to it later. The participants were told they could use as
much time as they like.

Table IV shows statistics of how often each sample was lis-
tened to per subject. For all listening tests, the lowest number is
1. The very high numbers are a result of some subjects playing
with the interface and experimenting with rhythm patterns. The
median values show that half of the users listened to each sample
at least three times (if we assume that each of the two samples
per question was listened to equally often).

Table V shows how the participants rated the difficulty of the
test. The ratings between different tests show little variance with
respect to the average. To assess the difficulty, the time spent on
the test and the number of times each sample was listened to
might be more useful indicators.

Fig. 3 shows the large variance we observed in the subject’s
ratings (except for very similar pairs where the variance is much
lower). Each subject’s ratings are normalized such that min-
imum equals 1 (not similar) and maximum equals 9 (very sim-
ilar). In the remainder of this paper, we refer to this as the nor-
malized ratings. There are a number of cases where a subject
rated the similarity of a pair with 1 while another rated it with
9. As we will discuss later, we believe this is mainly due to the
difficulty of the task.
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Fig. 2. Screenshot of the user interface used for the BD listening test. The currently selected pair is the last one (lower right). By pressing the “A” and “B” keys,
the respective samples are played. Using the curser up key, the user moves back to the question above. The slider is adjusted using the left and right keys. The
upper part contains the Java applet, and the lower part contains a summary of the instructions.

TABLE III
TIME SPENT PER TEST*

TABLE IV
NUMBER OF TIMES EACH SAMPLE WAS LISTENED TO PER SUBJECT

TABLE V
DIFFICULTY OF EACH TEST*

To quantify the consistency of the ratings we compute the
average pairwise correlation between the ratings of the subjects
(intersubject correlation). This is done for each instrument class.
The average correlation between subjects is between 0.58

and 0.68 (see Table VI). Because we only asked 18 or 12 ques-
tions, many of these intersubject correlations are not significant
for BD and TL at the level. An average intersubject
correlation of 0.64 for experiments on similarity ratings of syn-
thetic instrument timbres was reported in [12]. Similar intersub-
ject correlations were also reported in [48].

In addition, we compute the mean of the normalized sub-
jects’ ratings (MNSR) and measure the average correlation of
each subject with the MNSR . The results are shown in
Table VI. We assume that MNSR is the best approximation of
the ground truth we have. The average correlation between the
subjects and the MNSR is between 0.77 and 0.83 per class. De-
spite the small number of questions we asked per instrument
class, the ratings of almost every subject are significantly corre-
lated with the MNSR. Only in a few cases for TL the correlations
are not significant at the level.

6) Variance: Our results show that there is a large variance in
the ratings. To better understand the variance, we asked one sub-
ject to repeat the test several times.9 In particular, she repeated
the BD test six times over a period of one week. Each time she
used the same headphones. She was given no feedback with re-
spect to how her ratings were correlated to her previous ratings
or to ratings by other subjects. The mean of the correlations of
each individual run with the mean of all six of her normalized
runs is 0.82 which is not much higher than the for BD (0.77).

This large variance in her trials indicates that major factors for
the variance are independent of the specific headphones or an in-
dividually different perception of similarity. A possible factor is
the local context, i.e., the order in which the questions are pre-
sented. Another factor might be the overall difficulty of the ques-
tions (and the resulting difficulty to answer them consistently).

9Previously to the listening test the subject did not fit into any of the C1-C4
categories described in Table I.
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Fig. 3. Boxplots of the normalized similarity ratings. The notches represent a robust estimate of the uncertainty about the medians for box-to-box comparison.
Boxes whose notches do not overlap indicate that the medians differ at the 5% significance level. Whiskers extend from the box to the most extreme rating within
1.5 times the interquartile range of the ratings. The stimuli pairs are sorted according to their mean normalized subjects’ ratings (MNSR). On the x-axis the pairs
are labeled with the four classes described in Subsection IV-A3.

TABLE VI
CORRELATION OF SUBJECT RATINGS WITH THE MNSR AND OTHER SUBJECTS*

A certain learning effect seems to support that the difficulty is
a major factor for the variance. In particular, the correlation of
the ratings of each of her trial runs with the MNSR in temporal
order of the trials is 0.61, 0.83, 0.75, 0.78, 0.85, and 0.94. Quan-
tifying this learning effect would require further experiments.
However, the results indicate that a trained listener might have
a higher correlation with the MNSR.

7) Quality of the Ratings: As stated previously, we consider
the MNSR to be the best approximation of the ground truth we
have. Based on this assumption, we consider ratings which have
a higher correlation with the MNSR to be of higher quality.
Given the data we have, an important question is how to select
participants for future tests to maximize the quality.

Figs. 4 and 5 show the ratings from the subjects having lowest
and highest correlations with the MNSR. The highest correla-
tion of a subject with the MNSR (for TH) is 0.97. The lowest
correlation (for BD) is 0.48.

Using the information of the questionnaire (see Table I), we
analyze if certain groups of subjects perform better than others.
Table VII is computed over the four instrument classes. For
each category C1–C4 (yes/no), we gather all the correlations.
We then compute a two-sample t-test to measure if the means
of these samples differ significantly. In particular, we analyze if
the members of one group perform better than nonmembers.

In the case of drummers (C1), we cannot claim significant
differences because only very few drummers participated. How-
ever, the relatively large difference in the correlations indicates
that drummers might be the ideal subjects for such tests.

Only in the case of C2 (basic level of musical training) we are
able to measure a significant one-sided -value dif-
ference between subjects that have musical training and subjects
that do not. Nonmusically trained subjects tend to have a slightly
lower correlation with the MNSR (0.78 compared to 0.81).

In the case of C3 (previous experience in listening tests), the
high p-value states that our assumption that subjects with pre-
vious experience would perform better is not supported by our
data. One possible explanation for this might be that these sub-
jects had different expectations of the test (e.g., in previous tests
they might have rated the similarity of a violin and a guitar
sound.) and might not have studied the instructions carefully.
The difference for C4 (experience playing or working with drum
samples) is also smaller than we expected.

8) Discussion: Gathering ground truth data from listening
tests is very difficult. As our results show, there is a very high
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Fig. 4. Normalized ratings of the subjects with the lowest correlation with
MNSR. The axes are the same as in Fig. 3 (x-axis are the questions sorted by
MNSR, y-axis are the ratings). The thick black line is the average of all subjects
(MNSR). Each thin gray line corresponds to one subject. The individual corre-
lations are given in the lower part of the figure.

Fig. 5. Same as Fig. 4 for the subjects with the highest correlation with the
MNSR.

TABLE VII
CORRELATION OF CATEGORIES OF PARTICIPANTS AND THEIR PERFORMANCE*

variance in the subjects’ ratings. Nevertheless, we believe that
using the average of all ratings gives us a good approximation

of the ground truth. One of the main limitations of our data is
that we only have a small number of rated pairs per instrument
class.

A number of alternatives exist for designing listening tests
to obtain such ground truth. One alternative we implemented is
to explicitly define the context by using three samples per ques-
tion. In particular, given two samples, the subjects were asked to
rate (on a scale) to which of these a third sample is more similar
to. However, preliminary results from this AB-X tests showed
an equally high variance. In addition, the ratings were more dif-
ficult to analyze. Alternatively, for example, the subjects could
be given all the sounds at once and be asked to organize them
by similarity.

B. Instrument Classes

In contrast to the MNSR obtained using listening tests, the
instrument class each sample belongs to is very easy to obtain.
Furthermore, the instrument class labels are objective. Even if a
bass drum sample with a lot of reverberation sounds similar to
a snare drum sample, it is a fact that it was generated by a bass
drum. However, instrument class data only allows comparisons
on the instrument level. Judgments within an instrument class
cannot be evaluated directly.

The basic assumption we make, which allows us to use the
instrument class labels meaningfully, is that in general the most
similar samples to each sample belong to the same class. The
same assumption is made, for example, when genre labels are
used to evaluate the performance of computational models of
similarity for pieces of music (e.g., [49]).

Using instrument class labels transforms the problem into an
instrument classification task where a large amount of research
has already been published (see Subsection II-C). However, one
important constraint is to directly use the similarity computa-
tions (e.g., using a nearest neighbor classifier).

The details of how exactly we apply the instrument class
ground truth are described in Subsection V-B. Basically, given a
large collection of samples and one query sample, we compute a
ranked list of the most similar samples from the collection. We
then evaluate how many of the top entries in the list are from
the same class as the query. Our results show that the resulting
evaluation statistics are highly correlated with those we obtain
using the MNSR approximation of the ground truth.

1) Data: The samples we use are the same from which we
selected the stimuli for the listening test (see Subsection IV-A2).
The data originates from two sample CDs. The samples are la-
beled by the producers. There are a total of 311 samples be-
longing to four instrument classes: 76 bass drums (BD), 124
snares (SN), 63 toms with a high pitch (TH), and 48 toms with
a low pitch (TL).

V. EVALUATION

In this section, we first describe the evaluation based on the
data from the listening test, followed by the evaluation using
the instrument class data. In Subsection V-C, we discuss our
findings.

Overall, we are interested in computational models of simi-
larity for drum sounds which can generate ratings as close as
possible to the MNSR. The questions we address are: 1) How
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does the MPEG-7 model compare to the auditory image based
model? 2) Which impact do the different parameter settings
have in computing the auditory images? (What are the optimal
parameter settings? What are the differences between the instru-
ment classes?) 3) Can the instrument class data be used to re-
place listening tests? (How can the instrument class data be used
to get the most reliable evaluation statistics?)

A. Listening Test Data

The “ground truth” we use for the evaluations described in
this subsection is the MNSR. For each of the classes BD, SN,
and TH, we have the similarity ratings for 18 pairs of sounds.
For TL, we have 12 rated pairs. In the following, we first de-
scribe the evaluation criteria for the models (and different pa-
rameter settings). We then present the results for the MPEG-7
model followed by the results for the auditory images. Finally,
we analyze if the improvements are statistically significant.

1) Method: Given the MNSR, we are interested in finding
models which rate the similarity of the sound pairs the same
way. To compare the ratings generated by a model and the
MNSR, we compute the correlation coefficient (also known as
Pearson’s product-moment coefficient). The same approach to
evaluate the performance of models for timbre similarity was
used, for example, in [12].

To evaluate the impact of the parameters, we use a simple
grid search. For each parameter, we define a range of interesting
values and evaluate all possible combinations of values for dif-
ferent parameters. An alternative approach to optimize the pa-
rameters is to use a gradient search (as used in [13]).

2) Generalization and Overfitting: An important question is
how our results can be generalized given that we are primarily
focusing on reproducing ratings we obtained in the listening
tests. In particular, the question is if the good performance of
the auditory image model (which we discuss later on) is too op-
timistic because the parameters are overfitted to our specific ob-
servations, or if they can be generalized.

First of all, it is important to state that we are dealing with
very limited degrees of freedom which limit the potential danger
of overfitting. The models we investigate have been published
previously. The parameter ranges are within reasonable bound-
aries. In several cases, the parameters we evaluate lead to sim-
plified versions of published models (e.g., using a simple loga-
rithmic scale instead of the Bark scale, or not using any spec-
tral masking models). Nevertheless, we use the following three
strategies to obtain a rough estimate of possible overfitting ef-
fects.

First, we compare the performance of the model that performs
best on average over all four instrument classes with the models
individually optimized for each instrument class. Large differ-
ences between these differently optimized parameters could in-
dicate overfitting. On the other hand, if the optimal parameters
are similar for all classes, then this indicates that the parameters
are robust.

Second, we measure performance differences for slightly dif-
ferent parameter settings. Small changes of parameter values
should only have a small impact on the performance. If the per-
formance is very good for a large range of parameter values
around the optimum, then there is less danger of overfitting. The

TABLE VIII
RESULTS FOR THE MPEG-7 SIMILARLY MODEL*

smoothness of the performance curve with respect to the gradual
changes of the parameter values is discussed later on.

Third, we compare the results of the listening test data-based
evaluation with the results from instrument class data-based
evaluation. For this second evaluation, the number of samples
is much larger, and different evaluation criteria are used. We
vary a parameter and compute the evaluation results. The
evaluation results for both approaches are highly correlated
(see Subsection V-B). This indicates that we have not overfitted
the parameters to the data.

Despite these three strategies, our findings cannot be general-
ized for drum sounds with added effects (such as reverberation)
or sounds from other instrument classes because we are not an-
alyzing such sounds.

3) MPEG-7 Results: The results for the MPEG-7 distance
model are summarized in Table VIII. The optimal weighting co-
efficients for the distance computation were eval-
uated for each of the four instrument classes. Except for BD the
optimal value for is zero. This indicates that log-attack time
is not a useful dimension. However, as shown in the last three
rows, for the BD data the LAT by itself yields a higher correla-
tion than SC or TC achieve individually. Overall, when consid-
ered individually, the temporal centroid is more powerful
than the spectral centroid .

The best combination on average has an average correlation
of 0.76. Using the specific weights of the MPEG-7 recommen-
dation yields an average correlation of 0.61. The recommen-
dation works particularly well for BD. In all cases except TH,
the best combinations yield correlations which are higher than
the average correlation of the subjects’ ratings with the MNSR.
Given its simplicity, the model works surprisingly well.

In addition, we tried to optimize the MPEG-7 model by im-
plementing variations. One of the best variations we found uses
a simple linear combination

. Furthermore, to compute LAT, we set the threshold for
to 80% of the peak energy instead of 100% and computed the

spectral centroid using the Bark scale. The highest correlations
we found were 0.90 for BD, 0.87 for SN, 0.78 for TH, 0.76 for
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Fig. 6. Evaluation results for the auditory images. Each table summarizes the correlations of 20 160 parameter combinations. For example, in the table in the
upper center (STFT window size) the cell in the upper left has the value 0.93. This value is the maximum correlation (of the computed distances with the MNSR)
on the BD data that any parameter combination (within the search space) achieves with the window size set to 256 samples. In total, there are 2880 (= 20160=7)
different combinations where the STFT window size parameter is set to 256. The settings that produce the best results on average over all instrument classes are
marked with a preceding “*.”

TL 0.76, and an average of 0.78 for the best combination on av-
erage. Although our experiments with variations of the MPEG-7
model were not systematic, this indicates that there is room for
further improvements using timbre space based models. How-
ever, the results we present in the next subsection show that there
is still a large difference compared to the correlations we obtain
using auditory images (which yield a average correlation of 0.93
for the best combination on average).

4) Auditory Images Results: In total, we evaluate a param-
eter space with 20 160 possible combinations. In particular, we
evaluate three settings for the sample length, seven for the STFT
window size, four for the STFT hop size, three for the frequency
scale, four for the number of frequency bands, two for the outer
and middle ear model, two for spectral masking, two for the
loudness, and four for the number of DCT coefficients. The re-
sults, the list of parameters, and the range of values are shown
in Fig. 6.

The best parameter settings on average over all instrument
classes are the following: full sample length, STFT window size
of 4096 samples (93 ms), 1/8th (11.6 ms) STFT hop size, Bark
scale, Terhardt’s model for the outer and middle ear, no model
for spectral masking, loudness in dB, and no DCT compression.
The individual instrument class MNSR correlations for this spe-
cific model instance are BD: 0.89, SN: 0.94, TH: 0.93, and TL:
0.96.

There are a number of observations. One of them is the pos-
itive impact of using only a 250-ms sample length instead of
the full samples for BD. (The results show that this effect is not
noticeable for other instrument classes.) This might be an indi-
cation for the potential of techniques which put a stronger focus
on perceptually relevant patterns in the auditory image. The long

and hardly audible decay might not be as perceptually relevant
as suggested by the sum of energy it contains.

The optimal BD parameters are also different with respect to
the frequency resolution. Best results for BD are achieved with a
low-frequency resolution (six bands) and a short STFT window
size (2048 samples) which leads to less temporal smoothing.
Best results for the other instrument classes are achieved with
much larger window sizes (up to 16 384 samples) and a high
number of frequency bands (72 bands).

Another observation is that using the model by Schroeder et
al. [45] for spectral masking reduces the correlation, e.g., from
0.98 to 0.92 for TH. In the context of classifying pieces of music
according to genre, the negative impact of using this spreading
function was also noted in [50].

On the other hand, a parameter which shows very little impact
is the frequency scale (logarithmic, Mel, or Bark). The small
difference makes the simpler logarithmic model more attractive.
Another parameter which shows less impact than expected is
the hop size. For the models which perform good on average
it seems almost irrelevant if the hop size is 1/8 of the window
size, or the whole window size. Only for SN larger differences
are noticeable (correlation of 0.98 with 1/8, and correlation of
0.94 with hop size 1/2 or 1).

Figs. 7–9 show the pairwise dependencies between selected
parameters. In these figures, each value represents the highest
correlation over all combinations where two parameters are set
to fixed values.

Fig. 7 shows the influence of the frequency scale on the spec-
tral masking. The spreading function we use was designed for
the Bark scale. However, we also apply it to the logarithmic
and Mel scale. The reduction in performance is slightly larger
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Fig. 7. Evaluation results comparing spectral masking (y-axis) and the fre-
quency scale (x-axis).

Fig. 8. Evaluation results comparing spectral masking (y-axis) and the number
of frequency bands (x-axis).

Fig. 9. Evaluation results comparing the outer/middle ear model (y-axis) and
the frequency scale (x-axis).

when the spectral masking model is applied in combination with
the logarithmic scale. The Bark and Mel scales behave almost
identically.

Fig. 8 shows the influence of the number of frequency bands
on the spectral masking. When using only few frequency bands,
the effects of the spectral masking are negligible, as the lim-
ited number of bands already implies strong masking. When in-
creasing the number of frequency bands, the performance re-
mains almost the same when we apply the spectral masking
model. The performance increases without the spectral masking
model except for BD where spectral masking shows no signifi-
cant effects.

Fig. 10. Correlation for different orders of the Minkowski exponent. The audi-
tory images were computed using the parameter settings which performed best
on average (see the second paragraph in Subsection V-A4). Each of the four gray
lines shows the performance on one of the instrument classes. The black line is
the average performance on all classes.

Fig. 9 shows the influence of the frequency scale on the outer
and middle ear model. In most cases (except BD), using the
outer and middle ear model improves the performances.

Fig. 10 shows the effect of the exponent of the Minkowski
distance on the correlation of the best on average parameter set-
ting with the MNSR. The exponent influences the distance
computation as follows:

(10)

where A and B are two auditory images, and iterates over all
“pixels” of the images.
The curves show very different characteristics depending on

the instrument class. In particular, TH and BD are very different.
While TH performs best with an exponent of 1, BD performs
best for an exponent of 5 or 6. On average, using the Euclidean
distance (an exponent of 2) seems to be a reasonable choice.
However, the effects depend very much on the loudness model
used. If sone is used instead of dB, then all curves (including
BD) are much more similar to the curves of TH and TL, and the
peak is on average at 2.

Results which show an optimum exponent of 5 were pub-
lished in [9]. These findings were confirmed in [13] if an ap-
proach is used that does not particularly focus on the onsets.
However, using an approach with a special focus on the onsets
the observed optimum exponent is 1.

5) Statistical Significance: The results show an increase in
average performance over all four instrument classes in terms of
correlation with the MNSR of 0.61 (MPEG-7 recommendation)
to 0.93 (using auditory images). However, some of the improve-
ments are much smaller, e.g., the highest correlation for the au-
ditory image models optimized specifically for TH is 0.97, while
the parameter settings which perform best in average yields 0.96



420 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 2, FEBRUARY 2008

Fig. 11. Histogram of the pairwise difference in errors for the best on average
auditory image model and the MPEG-7 recommendation. (Negative values
mean that the error of the MPEG-7 recommendation is larger.)

TABLE IX
RESULTS FOR THE AUDITORY IMAGE-BASED SIMILARITY MODEL*

for TH. Given that we only have a small number of MNSR ob-
servations we use statistical tests measure if the improvements
are significant.

To measure the significance of the difference we look at the
absolute deviation of the model from the MNSR. For each of the

sound pairs (from all instrument classes),
we have the model rating (e.g., MPEG-7 or auditory image
based) and the MNSR (our “ground truth”) . We normalize

and such that the means equal zero and variances equal
one. We compute the absolute error of each model (per pair) as

.
Given for the MPEG-7 model and for the auditory

image model which performs best on average we can use a
Wilcoxon (sign rank test) to test if the error of the MPEG-7
model is significantly higher. The reason for using the nonpara-
metric Wilcoxon test is that we do not assume that the distribu-
tion is necessarily Gaussian.

Fig. 11 shows a histogram of over all 66 pairs.
That is, the differences in error between the best on average
auditory image based model and the MPEG-7 recommendation.
The one-sided -value (median is 8.2e-6. Thus,
the error of the MPEG-7 recommendation is significantly higher
on the data we used to optimize the parameters of the auditory
image model.

The significance of differences for the different auditory
image models is shown in Table IX. The results shows the
improvements when using the parameter settings optimized
for an individual class compared to the settings which work
best on average. The improvements are largest for BD. All
improvements except those for TL are significant .

B. Instrument Class Data

In this subsection, we focus on the question if instrument class
information can be used to evaluate the similarity of samples
from the same class. The obvious limitation using instrument
class data is that it does not allow us to develop instrument-spe-
cific similarity models. However, instrument class information

Fig. 12. Precision at n = 1; 5; 10; 20 using the instrument class data for audi-
tory images where all parameters are fixed except for the number of frequency
bands.

is much easier to obtain than similarity ratings from listening
tests.

The basic assumption we make is that samples from the same
instrument class are on average more similar to each other than
to samples from different classes. Similar assumptions are made
when genre class information is used to evaluate music simi-
larity (see, e.g., [49] and [51]).

We measure the performance of a model in terms of retrieval
precision at . For each sample, we compute the list of most
similar samples (for ). We measure the per-
centage of similar samples which are from the same instru-
ment class as the query sample. The precision at is computed
by averaging this count for all 311 samples (the samples are de-
scribed in Subsection IV-B1).

In addition, we analyze the impact of using a “sample CD
filter.” In particular, when computing the list of similar sam-
ples given a query sample, we ignore all samples from the same
sample CD which are from the same instrument class. The mo-
tivation for doing this is that samples from the same sample CD
might be particularly similar. For example, the only difference
between two samples might be that, in one case, the same bass
drum was hit “mezzo forte” and “forte” in the other case. This is
conceptually very similar to filtering songs from the same artist
when using genre class information to evaluate music similarity
[49], [51].

To compare the evaluation based on the listening test data
with the evaluation based on the instrument class data, we com-
pute the correlation of the respective evaluation statistics for a
range of parameters. In particular, we compute the correlation
between the precision curves and the MNSR correlation curves
while varying the number of frequency bands (for the auditory
image-based model) in the range from 5 to 150 in steps of 5. All
other parameters are fixed to the settings which perform best on
average according to the evaluation using the MNSR (see the
second paragraph in Subsection V-A4). A question of particular
interest is if the optimal number of frequency bands is the same
for both evaluation procedures.

Fig. 12 shows the evaluation results (precision at ) using
instrument class information and no sample CD filter. When
using more than 40 frequency bands the most similar sample to
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Fig. 13. Precision results using a sample CD filter (compare to Fig. 12).

Fig. 14. Correlation of the average normalized subject ratings with the models
(where only the number of frequency bands is varied). The gray lines are the
correlation for individual instrument classes. The thick black line is the average.

each sample is from the same instrument class. Thus, in terms
of instrument classification, using a nearest neighbor classifier
would yield 100% accuracy for the classification of the four
instrument classes. Overall, the precisions are very high.

Fig. 13 shows the evaluation results (precision at ) using a
sample CD filter and instrument class information. The preci-
sions are lower compared to those where no sample CD filter
is used (all values are below 80%). One possible explanation
is that this is due to the reduced number of relevant samples
for each query. Other than the reduced precisions, there are two
additional changes. First, the shapes of the performance curves
have changed. Second, the relationship between the curves has
changed. For example, the differences between the curves for

and are much smaller.
Fig. 14 shows the correlation of the auditory image-based

models and the MNSR. Of particular interest is the average cor-
relation (thick black line). In general, the results show that, for
each class, using more frequency bands is better.

To compare the different evaluation procedures, we compute
the correlations of their performance curves. In particular, for
each of the eight different approaches using instrument class
data (four different values for and using a CD sample filter or
not), we compute the correlation with the average curve shown
in Fig. 14. The results are given in Table X. All correlations are

TABLE X
CORRELATION OF THE EVALUATION RESULTS*

very significant (all -values are smaller than 1e-8). In average
(over different values of ) the correlations are higher when a
sample CD filter is used.

The effects of using a sample CD filter are particularly no-
ticeable for and . For there is no dif-
ference. However, we do not consider this as an indication that
using will in general produce more reliable results. In-
stead, we believe that, when using instrument class data to eval-
uate similarity, it is important to obtain the data from different
sample CDs (and thus from different instruments and recording
settings) and filter samples from the same CD.

C. Discussion

We have found the following answers to the three questions
stated in the beginning of this section: First, the model based on
auditory images perform clearly better than the MPEG-7 model
which is based on the concept of a timbre space with only few di-
mensions. The parameters which perform best on average yield
a correlation with the MNSR of 0.76 for the MPEG-7 recom-
mendation, and 0.93 for the auditory image-based model.

Second, using auditory images, we have found optimal param-
eters for each instrument class and parameters which perform
best on average. The parameters which work best on average are
described in the second paragraph in Subsection V-A4; the pa-
rameters which work best for individual instrument classes can
be seen in Fig. 6. We have found that in some cases simple ap-
proximations can be used to replace more complex models of the
auditory system. Furthermore, we have found that the parameter
settings optimized for individual instrument classes perform sig-
nificantly better than the average best parameter settings in all
cases except for TL. We found the largest differences between the
average best and individual best model for BD. However, given
the limited data we have, the average best model seems prefer-
able as it is most likely to generalize well.

Third, we have been able to show that using instrument
class data instead of data from listening tests is an attractive
alternative to evaluate models of similarity (if the focus is not
on developing different models for each instrument class). We
have observed correlations of up to 0.96 between the evaluation
statistics computed using data from listening tests and statistics
computed using instrument class data. Furthermore, our results
also show that the instrument class data should be from at least
two different sample CDs, and that a “sample CD filter” should
be used in the evaluations to produce more reliable results.
This confirms earlier findings [29], [52]. However, in contrast
to using data from listening tests, using instrument class data
does not allow developing instrument class specific models.

1) Generalization and Overfitting: As mentioned in
Subsection V-A2, we have been cautious not to claim overop-
timistic performances of the auditory image based model. The
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following three observations indicate that the performance of
the parameters which performs best on average can be gener-
alized. First, Fig. 6 shows that in most cases, slightly different
parameter values only have a small impact on the performance.
Second, the influence of different parameter values on the
performance are similar for most instrument classes (except
for some differences between BD and the other instrument
classes). Third, using an alternative ground truth and a much
larger dataset yields very similar evaluation statistics. However,
future studies based on larger scale listening tests are neces-
sary to recommend optimal models for individual instrument
classes. Our results show that there is a significant potential for
such improvements especially for bass drums.

VI. CONCLUSION

The primary objective of the work we presented was to eval-
uate and optimize computational models of similarity for drum
samples. Such models are a core technology of retrieval inter-
faces to large sample libraries [1]. We have studied different
models and the impact of parameters. We focused on four per-
cussive instruments which are bass drums, snare drums, high-
pitched toms, and low-pitched toms. We did not consider sam-
ples to which effects have been added; that is, we only consider
very dry samples.

We obtained the ground truth data we used for our evaluations
from two sources. Our primary source are listening tests where
subjects rated the similarity of pairs of sounds. The secondary
source are instrument class labels.

We have found that a similarity model which directly com-
pares aligned auditory images performs significantly better than
the MPEG-7 recommendation. We have presented the results
of extensive experiments where we have explored a parameter
space of 20 160 different possible combinations. We analyzed
the impact of using different perceptually motivated computa-
tion steps such as using the Bark scale compared to the Mel
scale. We found that using a simple approach to approximate
effects of spectral masking in the auditory system reduced the
overall performance. In addition, our results show little differ-
ence between using the simple logarithmic scale to approxi-
mate the nonlinear perception of frequency and the more com-
plex Bark and Mel scales. Overall, the model which is most ro-
bust in terms of generalization yields an average correlation of
0.93 with human similarity ratings. We believe that this is high
enough for the applications we are targeting.

Furthermore, we showed that instrument class data is an at-
tractive alternative source for ground truth data compared to data
gathered in listening tests. Our results show correlations of up
to 0.96 for the evaluation statistics.

There are various directions for future work. We believe a par-
ticularly interesting direction is to investigate how focusing on
the onsets (or other perceptually relevant parts of the signal) can
increase the performance. This could be done, for example, using
techniques suggested in [13]. In general, focusing on specific
characteristics which attract the listeners attention seems a viable
direction for future work. An alternative direction could be to im-
prove the simple alignment approach we have used. For example,
dynamic time warping techniques could be used instead. Further-
more, an interesting direction seems to be to investigate models
which allow higher frequency resolutions for lower frequencies

and at the same time higher temporal resolution for higher fre-
quencies. Additionally, it would be interesting to develop models
which can deal with drum sounds to which effects have been
added (such as reverberation). Finally, these models should be
connected to generic models of categorization and similarity that
have been proposed in cognitive science (e.g., [53]).
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