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I
n the context of singing voice synthesis, expression control manipu-
lates a set of voice features related to a particular emotion, style, or 
singer. Also known as performance modeling, it has been 
approached from different perspectives and for different purposes, 
and different projects have shown a wide extent of applicability. The 

aim of this article is to provide an overview of approaches to expression 
control in singing voice synthesis. We introduce some musical applica-
tions that use singing voice synthesis techniques to justify the need for 
an accurate control of expression. Then, expression is defined and 
related to speech and instrument performance modeling. Next, we pres-
ent the commonly studied set of voice parameters that can change 
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perceptual aspects of synthesized voices. After that, we provide an 
up-to-date classification, comparison, and description of a selec-
tion of approaches to expression control. Then, we describe how 
these approaches are currently evaluated and discuss the benefits 
of building a common evaluation framework and adopting per-
ceptually-motivated objective measures. Finally, we discuss the 
challenges that we currently foresee.

SINGING VOICE SYNTHESIS SYSTEMS
In recent decades, several applications have shown how singing voice 
synthesis technologies can be of interest for composers [1], [2]. Tech-
nologies for the manipulation of voice features have been increas-
ingly used to enhance tools for music creation and postprocessing, 
singing a live performance, to imitate a singer, and even to generate 

voices that are difficult to produce naturally (e.g., castrati). 
More examples can be found with pedagogical purposes or as 
tools to identify perceptually relevant voice properties [3]. 
These applications of the so-called music information 
research field may have a great impact on the way we inter-
act with music [4]. Examples of research projects using sing-
ing voice synthesis technologies are listed in Table 1.

The generic framework of these systems is represented 
in  Figure 1, based on [5]. The input may consist of the 
score (e.g., the note sequence, contextual marks related to 
loudness, or note transitions), lyrics, and the intention 
(e.g., the style or emotion). The intention may be derived 
from the lyrics and score content (shown by the dashed 
line). The input may be analyzed to get the phonetic tran-
scription, the alignment with a reference performance, or 
contextual data. The expression control generation block 
represents the implicit or explicit knowledge of the system 
as a set of reference singing performances, a set of rules, 
or statistical models. Its output is used by the synthesizer 
to generate the sound, which may be used iteratively to 
improve the expression controls.

A key element of such technologies is the singer voice 
model [1], [2], [6], although due to space constraints, it is not 
described here in detail. For the purpose of this article, it is more 
interesting to classify singing synthesis systems with respect to the 
control parameters. As shown in Table 2, those systems are classified 
into model-based and concatenative synthesizers. While, in signal 
models, the control parameters are mostly related to a perception 
perspective, in physical models, these are related to physical aspects 
of the vocal organs. In concatenative synthesis, a cost criterion is 
used to retrieve sound segments (called units) from a corpus that are 
then transformed and concatenated to generate the output utter-
ance. Units may cover a fixed number of linguistic units, e.g., 
diphones that cover the transition between two phonemes or a more 
flexible and wider scope. In this case, control parameters are also 
related to perceptual aspects.

[TABLE 1] RESEARCH PROJECTS USING  
SINGING VOICE SYNTHESIS TECHNOLOGIES.

PROJECT WEBSITE

Cantor http://www.virsyn.de

Cantor diGitaLis https://CantordiGitaLis.Limsi.Fr/

Chanter https://Chanter.Limsi.Fr

FLinGer http://www.CsLu.oGi.edu/tts/FLinGer

LyriCos http://www.CsLu.oGi.edu/tts/demos

orpheus http://www.orpheus-musiC.orG/v3

sinsy http://www.sinsy.jp

symphoniC Choirs  
virtuaL instrument

http://www.soundsonLine.Com/symphoniC-Choirs

voCaListener https://staFF.aist.Go.jp/t.nakano/voCaListener

voCaListener  
(produCt version)

http://www.voCaLoid.Com/Lineup/voCaLis

voCaListener2 https://staFF.aist.Go.jp/t.nakano/voCaListener2

voCaLoid http://www.voCaLoid.Com

voCareFiner https://staFF.aist.Go.jp/t.nakano/voCareFiner

voCawatCher https://staFF.aist.Go.jp/t.nakano/voCawatCher
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[FIG1] Generic framework blocks for expression control.
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Within the scope of this review, we focus on the perceptual 
aspects of the control parameters, which are used to synthesize 
expressive performances by taking a musical score, lyrics, or an 
optional human performance as the input. However, this article  
does not discuss voice conversion and morphing in which input 
voice recordings are analyzed and transformed [7], [8].

EXPRESSION IN MUSICAL PERFORMANCE AND SINGING
Expression is an intuitive aspect of a music performance, but it is 
complex to define. In [5, p. 2], it is viewed as “the strategies and 
changes which are not marked in a score but which performers 
apply to the music.” In [9, p. 1], expression is “the added value of a 
performance and is part of the reason that music is interesting to 
listen to and sounds alive.” A complete definition is given in 
[10, p. 150], relating the liveliness of a score to “the artist’s under-
standing of the structure and ‘meaning’ of a piece of music, and 
his/her (conscious or unconscious) expression of this understand-
ing via expressive performance.” From a psychological perspective, 
Juslin [11, p. 276] defines it as “a set of perceptual qualities that 
reflect psychophysical relationships between ‘objective’ properties 
of the music, and ‘subjective’ impressions of the listener.”

Expression has a key impact on the perceived quality and natu-
ralness. As pointed out by Ternström [13], “even a single sine wave 
can be expressive to some degree if it is expertly controlled in 
amplitude and frequency.” Ternström says that musicians care 
more about instruments being adequately expressive than sound-
ing natural. For instance, in Clara Rockmore’s performance of 
Vocalise by Sergei Vasilyevich Rachmaninoff, a skillfully controlled 
Theremin expresses her intentions to a high degree (all cited 
sounds have been collected and shown online; see [51]), despite 
the limited degrees of freedom.

In the case of the singing voice, achieving a realistic sound syn-
thesis implies controlling a wider set of parameters than just the 
amplitude and frequency. These parameters can be used by a singing 
voice synthesizer or to transform a recording. From a psychological 
perspective, pitch contour, vibrato features, intensity contour, trem-
olo, phonetic timing, and others related to timbre are the main con-
trol parameters that are typically used to transmit a message with a 
certain mood or emotion [12] and shaped by a musical style [14]. 
These are described in detail in the section “Singing Voice Perfor-
mance Features.”

Nominal values for certain parameters can be inferred from 
the musical score through the note’s pitch, dynamics, and 
duration as well as its articulation, such as staccato or legato 

marks. However, these values are not intrinsically expressive per 
se. In other words, expression contributes to the differences 
between these values and a real performance. Different strategies 
for generating expression controls are explained in the section 
“Expression-Control Approaches.”

It is important to note that there is more than one acceptable 
expressive performance for a given song [1], [3], [15]. Such vari-
ability complicates the evaluation and comparison of different 
expression-control approaches. This issue is tackled in the “Eval-
uation” section. Besides singing, expression has been studied in 
speech and instrumental music performance.

CONNECTION TO SPEECH AND INSTRUMENTAL 
MUSICAL PERFORMANCE
There are several common aspects of performing expressively 
through singing voice, speech, and musical instruments. In 
speech, the five acoustic attributes of prosody have been widely 
studied [16], for instance, to convey emotions [17]. The most stud-
ied attribute is the fundamental frequency (F0) of the voice source 
signal. Timing is the acoustic cue of rhythm, and it is a rather 
complex attribute given the number of acoustic features to which 
it is related [16, p. 43]. Other attributes are intensity, voice quality 
(related to the glottal excitation), and articulation (largely deter-
mined by the phonetic context and speech rate).

Expressive music performance with instruments has also 
been widely studied. Several computational models are reviewed 
in [18, p. 205], such as the KTH model, which is based “on per-
formance rules that predict the timing, dynamics, and articula-
tion from local musical context.” The Todd model links the 
musical structure to a performance with simple rules like mea-
surements of human performances. The Mazzola model ana-
lyzes musical structure features such as tempo and melody and 
iteratively modifies the expressive parameters of a synthesized 
performance. Finally, a machine-learning model discovers pat-
terns within a large amount of data; it focuses, for instance, on 
timing, dynamics, and more abstract structures like phrases and 
manipulates them via tempo, dynamics, and articulation. In [5], 
30 more systems are classified into nonlearning methods, linear 
regression, artificial neural networks, and rule-/case-based 
learning models, among others.

In this review, we adopt a signal processing perspective to focus 
on the acoustic cues that convey a certain emotion or evoke a 
singing style in singing performances. As mentioned in [12, 
p. 799], “vocal expression is the model on which musical 

[TABLE 2] SINGING VOICE SYNTHESIS SYSTEmS ANd CONTROL PARAmETERS.

SINGING SYNTHESIS SYSTEmS

mOdEL-BASEd SYNTHESIS CONCATENATIVE SYNTHESIS

SIGNAL mOdELS PHYSICAL mOdELS FIXEd LENGTH
UNITS

NONUNIFORm
LENGTH UNITS

PARAmETERS F0, resonanCes (Center FreQuenCy  
and Bandwidth), sinusoid FreQuenCy,  
phase, ampLitude, GLottaL puLse  
speCtraL shape, and phonetiC timinG

voCaL apparatus-reLated parameters
(tonGue, jaw, voCaL traCt LenGth  
and tension, suBGLottaL air pressure,  
and phonetiC timinG)

F0, ampLitude, timBre,
and phonetiC timinG
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expression is based,” which highlights the topic relevance for both 
the speech and the music performance community. Since there is 
room for improvement, the challenges that we foresee are 
described in the “Challenges” section.

SINGING VOICE PERFORmANCE FEATURES
In the section “Expression in Musical Performance and Singing,” 
we introduced a wide set of low-level parameters for singing voice 
expression. In this section, we relate them to other musical ele-
ments. Then, the control parameters are described, and finally, we 
illustrate them by analyzing a singing voice excerpt.

FEATURE CLASSIFICATION
As in speech prosody, music can also be decomposed into various 
musical elements. The main musical elements, such as melody, 
dynamics, rhythm, and timbre, are built on low-level acoustic 
features. The relationships between these elements and the 
acoustic features can be represented in several ways [19, p. 44]. 
Based on this, Table 3 relates the commonly modeled acoustic 
features of the singing voice to the elements to which they 
belong. Some acoustic features spread transversally over several 
elements. Some features are instantaneous, such as F0 and 
intensity frame values, some span over a local time window, such 
as articulation and attack, and others have a more global tempo-
ral scope, such as F0 and intensity contours or vibrato and trem-
olo features.

Next, for each of these four musical elements, we provide 
introductory definitions to their acoustic features. Finally, these 
are related to the analysis of a real singing voice performance.

MELODY-RELATED FEATURES
The F0 contour, or the singer’s rendition of the melody (note 
sequence in a score), is the sequence of F0 frame-based values [20]. 
F0 represents the “rate at which the vocal folds open and close 
across the glottis,” and acoustically it is defined as “the lowest 
 periodic cycle component of the acoustic waveform” [12, p. 790]. 
Perceptually, it relates to the pitch, defined as “the aspect of audi-
tory sensation whose variation is associated with musical melodies” 
[21, p. 2]. In the literature, however, the pitch and F0 terms are 
often used indistinctly to refer to F0.

The F0 contour is affected by microprosody [22], i.e., fluctua-
tions in pitch and dynamics due to phonetics (not attributable to 
expression). While certain phonemes such as vowels may have sta-
ble contours, other phonemes such as velar consonants may fluc-
tuate because of articulatory effects.

A skilled singer can show expressive ability through the mel-
ody rendition and modify it more expressively than unskilled 
singers. Pitch deviations from the theoretical note can be inten-
tional as an expressive resource [3]. Moreover, different articula-
tions, i.e., the F0 contour in a transition between consecutive 
notes, can be used expressively. For example, in staccato, short 
pauses are introduced between notes. In the section “Transverse 
Features,” the use of vibrato is detailed.

DYNAMICS-RELATED FEATURES
As summarized in [12, p. 790], the intensity (related to the per-
ceived loudness of the voice) is a “measure of energy in the acous-
tic signal” usually from the waveform amplitude. It “reflects the 
effort required to produce the speech” or singing voice and is 
measured by energy at a frame level. A sequence of intensity val-
ues provides the intensity contour, which is correlated to the 
waveform envelope and the F0 since the energy increases with 
the F0 so as to produce a similar auditory loudness [23]. Acousti-
cally, vocal effort is primarily related to the spectrum slope of the 
glottal sound source rather than the overall sound level. Tremolo 
may also be used, as detailed in the section “Transverse Features.”

Microprosody also has an influence on intensity. The phonetic 
content of speech may produce intensity increases as in plosives or 
reductions like some unvoiced sounds.

RHYTHM-RELATED FEATURES
The perception of rhythm involves cognitive processes such as “move-
ment, regularity, grouping, and yet accentuation and differentiation” 
[24, p. 588], where it is defined as “the grouping and strong/weak rela-
tionships” among the beats or “the sequence of equally spaced phe-
nomenal impulses which define a tempo for the music.” The tempo 
corresponds to the number of beats per minute. In real-life perfor-
mances, there are timing deviations from the nominal score [12].

Similar to the role of speech rate in prosody, phoneme onsets 
are also affected by singing voice rhythm. Notes and lyrics are 
aligned so that the first vowel onset in a syllable is synchronized 
with the note onset and any preceding phoneme in the syllable is 
advanced [3], [25].

TIMBRE-RELATED FEATURES
The timbre mainly depends on the vocal tract dimensions and on 
the mechanical characteristics of the vocal folds, which affect the 
voice source signal [23]. Timbre is typically characterized by an 
amplitude spectrum representation and is often decomposed into 
source and vocal tract components.

[TABLE 3] CLASSIFICATION OF SINGING VOICE EXPRESSION FEATURES.

mELOdY dYNAmICS RHYTHm TImBRE

viBrato and tremoLo (depth and rate) pauses voiCe sourCe

attaCk and reLease phoneme time LaG sinGer’s Formant

artiCuLation phrasinG suBharmoniCs

F0 Contour intensity Contour note/phoneme onset/duration Formant tuninG

F0 Frame vaLue intensity Frame vaLue timinG deviation aperiodiCity 
speCtrumdetuninG tempo



 IEEE SIGNAL PROCESSING MAGAZINE [59] NOvEMbER 2015

The voice source can be described in terms of its F0, ampli-
tude, and spectrum (i.e., vocal loudness and mode of phona-
tion). In the frequency domain, the spectrum of the voice 
source is generally approximated by an average slope of −12 dB/
octave, but it typically varies with vocal loudness [23]. The voice 
source is relevant for expression and is used differently among 
singing styles [14].

The vocal tract filters the voice source, emphasizing certain 
frequency regions or formants. Although formants are affected by 
all vocal tract elements, some have a higher effect on certain for-
mants. For instance, the first two formants are related to the pro-
duced vowel, with the first formant being primarily related to the 
jaw opening and the second formant to the tongue body shape. 
The next three formants are related to timbre and voice identity, 
with the third formant being particularly influenced by the 
region under the tip of the tongue and the fourth to the vocal 
tract length and dimensions of the larynx [23]. In western male 
operatic voices, the third, fourth, and fifth formants typically 
cluster, producing a marked spectrum envelope peak around 

3 kHz, the so-called singer’s formant cluster [23]. This makes it 
easier to hear the singing voice over a loud orchestra. The 
affected harmonic frequencies (multiples of F0) are radiated most 
efficiently toward the direction where the singer is facing, nor-
mally the audience.

Changing modal voice into other voice qualities can be used 
expressively [26]. A rough voice results from a random modulation 
of the F0 of the source signal (jitter) or of its amplitude (shimmer). 
In a growl voice, subharmonics emerge because of half-periodic 
vibrations of the vocal folds, and, in breathy voices, the glottis does 
not completely close, increasing the presence of aperiodic energy.

TRANSVERSE FEATURES
Several features from Table 3 can be considered transversal given 
that they are spread over several elements. In this section, we 
highlight the most relevant ones.

Vibrato is defined [23] as a nearly sinusoidal fluctuation of F0. In 
operatic singing, it is characterized by a rate that tends to range 
from 5.5 to 7.5 Hz and a depth around ±0.5 or 1 semitones. 
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Tremolo [23] is the vibrato counterpart observed in intensity. It is 
caused by the vibrato oscillation when the harmonic with the greatest 
amplitude moves in frequency, increasing and decreasing the distance 
to a formant, thus making the signal amplitude vary. Vibrato may be 
used for two reasons [23, p. 172]. Acoustically, it prevents harmonics 
from different voices from falling into close regions and producing 
beatings. Also, vibratos are difficult to produce under phonatory diffi-
culties such as pressed phonation. Aesthetically, vibrato shows that the 
singer is not running into such problems when performing a difficult 
note or phrase such as a high-pitched note.

Attack is the musical term to describe the pitch and intensity 
contour shapes and duration at the beginning of a musical note or 
phrase. Release is the counterpart of attack, referring to the pitch 
and intensity contour shapes at the end of a note or phrase.

As summarized in [27], grouping is one of the mental struc-
tures that are built while listening to a piece that describes the 
hierarchical relationships between different units. Notes, the low-
est-level units, are grouped into motifs, motifs are grouped into 
phrases, and phrases are grouped into sections. The piece is the 
highest-level unit.  Phrasing is a transversal aspect that can be rep-
resented as an “arch-like shape” applied to both the tempo and 
intensity during a phrase [15, p. 149]. For example, a singer may 
increase the tempo at the beginning of a phrase or decrease it at 
the end for classical music.

SINGING VOICE PERFORMANCE ANALYSIS
To illustrate the contribution of the acoustic features to expression, 
we analyze a short excerpt from a real singing performance (an 
excerpt from the song “Unchain My Heart;” see [51]). It contains 
clear expressive features such as vibrato in pitch, dynamics, timing 
deviations in rhythm, and growl in timbre. The result of the analy-
sis is shown in Figures 2 and 3. (The dashed lines indicate har-
monic frequencies, and the circle is placed at the subharmonics.) 
The original score and lyrics are shown in Figure 2(a), where each 
syllable corresponds to one note except for the first and last ones, 

which correspond to two notes. The singer introduces some 
changes, such as ornamentation and syncopation, which are repre-
sented in Figure 2(b). In (c), the note pitch is specified by the 
expected frequency in cents, and the note onsets are placed at the 
expected time using the note figures and a 120-beats/minute 
tempo. Figure 2(d) shows the extracted F0 contour in blue and the 
notes in green. The microprosody effects can be observed, for 
example, in a pitch valley during the attack to the word “heart.” At 
the end, vibrato is observed. The pitch stays at the target pitch for a 
short period of time, especially in the ornamentation notes.

In a real performance, the tempo is not generally constant 
throughout a score interpretation. In general, beats are not equally 
spaced through time, leading to tempo fluctuation. Consequently, 
note onsets and rests are not placed where expected with respect to 
the score. In Figure 2(d), time deviations can be observed between 
the labeled notes and the projection colored in red from the score. 
Also, the note durations differ from the score.

The recording’s waveform and energy, which are aligned to the 
estimated F0 contour, are shown in Figure 2(e) and (f), respectively. 
The intensity contour increases/decays at the beginning/end of each 
segment or note sequence. Energy peaks are especially prominent at 
the beginning of each segment since a growl voice is used, and 
increased intensity is needed to initiate this effect.

We can take a closer look at the waveform and spectrum of a win-
dowed frame, as shown in Figure 3. In the former, we can see the 
pattern of a modulation in the amplitude or macroperiod, which 
spans over several periods. In the latter, we can see that, for the win-
dowed frame, apart from the frequency components related to F0 
around 320 Hz, five subharmonic components appear between F0 
harmonics, which give the growl voice quality. Harmonics are 
marked with a dashed line and subharmonics between the second 
and the third harmonics with a red circle.

If this set of acoustic features is synthesized appropriately, the 
same perceptual aspects can be decoded. Several approaches that 
generate these features are presented next.

Corpus-Based Methods

Expression-Control
Approaches

Performance
Driven

Noniterative Iterative
Analysis by
Synthesis

Corpus
Derived

Rule
Based

Statistical Modeling
of Expression

Controls

Unit Selection
of Expression

Controls

[FIG4] Classification of expression-control methods in singing voice synthesis.
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EXPRESSION-CONTROL APPROACHES
In the section “Singing Voice Performance Features,” we defined 
the voice acoustic features and related them to aspects of music 
perception. In this section, we focus on how different approaches 
generate expression controls. First, we propose a classification of 
the reviewed approaches and then we compare and describe them. 
As will be seen, acoustic features generally map one to one to 
expressive controls at the different temporal scopes, and the syn-
thesizer is finally controlled by the lowest-level acoustic features 
(i.e., F0, intensity, and spectral envelope representation).

CLASSIFICATION OF APPROACHES
To see the big picture of the reviewed works on expression control, 
we propose a classification in Figure 4. Performance-driven 
approaches use real performances as the control for a synthesizer, 
taking advantage of the implicit rules that the singer has applied 
to interpret a score. Expression controls are estimated and applied 
directly to the synthesizer. Rule-based methods derive a set of 
rules that reflect the singers’ cognitive process. In analysis by syn-
thesis, rules are evaluated by synthesizing singing voice 

performances. Corpus-derived, rule-based approaches generate 
expression controls from the observation of singing voice contours 
and imitating their behavior. Statistical approaches generate sing-
ing voice expression features using techniques such as hidden 
Markov models (HMMs). Finally, unit selection-based approaches 
select, transform, and concatenate expression contours from 
excerpts of a singing voice  database (DB). Approaches using a 
training database of expressive singing have been labeled as cor-
pus-based methods. The difficulties of the topic reviewed in this 
article center on how to generate control parameters that are per-
ceived as natural. The success of conveying natural expression 
depends on a comprehensive control of the acoustic features 
introduced in the section “Singing Voice Performance Features.” 
Currently, statistical approaches are the only type of system that 
jointly model all of the expression features.

COMPARISON OF APPROACHES
In this article, we review a set of works that model the features 
that control singing voice synthesis expression. Physical modeling 
perspective approaches can be found, for instance, in [28].

[TABLE 4] A COmPARISON OF APPROACHES FOR EXPRESSION CONTROL IN SINGING VOICE SYNTHESIS.

TYPE REFERENCE CONTROL FEATURES SYNTHESIZER STYLE OR EmOTION INPUT LANGUAGE

perFormanCe
driven

[29] timinG, F0, intensity,
sinGer’s Formant CLuster

unit seLeCtion opera sCore,  
sinGinG voiCe

German

[30] timinG, F0, intensity, viBrato sampLe Based GeneriC LyriCs, midi notes, 
sinGinG voiCe

spanish

[31] timinG, F0, intensity sampLe Based popuLar musiC 
(rwC-mdB)1

LyriCs, sinGinG 
voiCe

japanese

[32] timinG, F0, intensity, timBre sampLe Based musiC Genre 
(rwC-mdB)2

LyriCs, sinGinG 
voiCe

japanese

[33] timinG, F0, sinGer Formant resynthesis  
oF speeCh

ChiLdren’s  
sonGs

sCore, tempo, 
speeCh

japanese

ruLe
Based

[3] timinG, Consonant duration,  
voweL onset, timBre ChanGes, 
Formant tuninG, overtone  
sinGinG, artiCuLation siLenCe  
to note

Formant 
synthesis

opera sCore,  midi,  
or keyBoard

not speCiFied

[37] timinG, miCropauses, tempo  
and phrasinG, F0, intensity,  
viBrato and tremoLo,  
timBre QuaLity

sampLe Based anGry, sad,
happy

sCore, LyriCs, 
tempo, eXpressive 
intentions

swedish,
enGLish

[40] timBre (manuaL), phonetiCs,  
timinG, F0,
intensity, musiCaL  
artiCuLation, sustains,
viBrato and tremoLo  
(rate and depth)

sampLe Based GeneriC sCore, LyriCs, 
tempo

japanese,  
enGLish,   
spanish

statistiCaL
modeLinG

[25] timinG, F0, timBre hmm Based ChiLdren’s  
sonGs

sCore and LyriCs japanese

[42] timinG, F0, viBrato  
and tremoLo,
timBre, sourCe

hmm Based ChiLdren’s  
sonGs

musiCXmL2  
sCore

japanese,
enGLish

[22] BaseLine F0 (reLative  
to note), viBrato rate  
and depth (not tremoLo),  
intensity

sampLe Based ChiLdren’s  
sonGs

sCore (no  
LyriCs to  
Create modeLs)

japanese

unit
seLeCtion

[43] F0, viBrato, tremoLo,  
intensity

sampLe Based jaZZ standards sCore LanGuaGe  
independent

1 real world Computing (rwC) music database: https://staff.aist.go.jp/m.goto/rwC-mdB/
2 musiCXmL: http://www.musicxml.com
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Within each type of approach in Figure 4, there are one or more 
methods for expression control. In Table 4, we provide a set of 
items that we think can be useful for comparison. The “Type” col-
umn refers to the type of expression control from Figure 4 to 
which the reference belongs. In the “Control Feature” column, we 
list the set of features addressed by the approach. The “Synthesizer” 
column provides the type of synthesizer used to generate the sing-
ing voice, and the “Style or Emotion” column provides the emo-
tion, style, or sound to which the expression is targeted. The 
“Input” column details the input to the system (e.g., the score, lyr-
ics, tempo, and audio recording). The “Language” column lists the 
language dependency of each method, if any.

We have collected samples in [51] as examples of the results of 
the reviewed expression-control approaches. Listeners will observe 
several differences among them. First, some samples consist of a cap-
pella singing voices, and others are presented with background 
music, which may mask the synthesized voice and complicate the 
perception of the generated expression. Second, the samples corre-
spond to different songs, making it difficult to compare approaches. 
Athough the lyrics in most cases belong to a particular language, in 
some samples, they are made by repeating the same syllable, such as 
/la/. We believe that the evaluation of a synthesized song can be 

performed more effectively in a language spoken by the listener. 
Finally, the quality of the synthetic voice is also affected by the type of 
synthesizer used in each sample. The difficulties in comparing them 
and the subsequent criticisms are discussed in the “Evaluation” and 
“Challenges” sections. 

PERFORMANCE-DRIVEN APPROACHES
Performance-driven approaches use a real performance to control 
the synthesizer. The knowledge applied by the singer, implicit in 
the extracted data, can be used in two ways. In the first one, control 
parameters such as F0, intensity, and timing from the reference 
recording are mapped to the input controls of the synthesizer so 
that the rendered performance follows the input signal expression. 
Alternatively, speech audio containing the target lyrics is trans-
formed to match the pitch and timing of the input score. Figure 5 
summarizes the commonalities of these approaches on the inputs 
(reference audio, lyrics, and, possibly, the note sequence) and inter-
mediate steps (phonetic alignment, acoustic feature extraction, and 
mapping) that generate internal data such as timing information, 
acoustic features, and controls used by the synthesizer. 

In Table 5, we summarize the correspondence between the 
extracted acoustic features and the synthesis parameters for each of 

Notes

Lyrics

Recording

Phonetic
Alignment

Notes and Lyrics

Extract Acoustic
Features

Timing Mapping Controls Synthesizer Sound

Extract Acoustic
Features

Update
Parameters

F0, Dynamics,
Timbre, Vibrato (Rate

and Depth)

(Only Iterative Approaches)

[FIG5] The general framework for performance-driven approaches.

[TABLE 5] mAPPING FROm ACOUSTIC FEATURES TO SYNTHESIZER CONTROLS.

mAPPEd SYNTHESIS PARAmETERS

ACOUSTIC  
FEATURES [29] [30] [31] [32] [33]

F0 F0 smoothed and  
Continuous pitCh

midi note numBer,  
pitCh Bend and  
sensitivity

midi note numBer,  
pitCh Bend and  
sensitivity

F0

viBrato inCLuded in F0
impLiCitLy 

viBratos From input  
or From dB sinGer

inCLuded in F0
impLiCitLy

inCLuded in F0
impLiCitLy 

inCLuded in F0
impLiCitLy

enerGy dynamiCs dynamiCs dynamiCs dynamiCs dynamiCs

phonetiC
aLiGnment

phoneme timinG onsets oF voweLs  
or voiCed phonemes

note onset and  
duration

note onset and  
duration

phoneme timinG

timBre sinGer’s Formant  
CLuster ampLitude

not used not used miXinG diFFerent  
voiCe QuaLity dBs

sinGer’s Formant CLuster 
ampLitude and ampLitude 
moduLation oF the 
synthesiZed siGnaL
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these works. The extracted F0 can be mapped directly into the F0 
control parameter, processed into a smoothed and continuous ver-
sion, or split into the Musical Instrument Digital Instrument 
(MIDI) note, pitch bend, and its sensitivity parameters. Vibrato can 
be implicitly modeled in the pitch contour, extracted from the 
input, or selected from a database. Energy is generally mapped 
directly into dynamics. From the phonetic alignment, note onsets 
and durations are derived, mapped directly to phoneme timing, or 
mapped either to onsets of vowels or voiced phonemes. Concerning 
timbre, some approaches focus on the singer’s formant cluster, 
and, in a more complex case, the output timbre comes from a mix-
ture of different voice quality databases.

Approaches using estimated controls achieve different levels of 
robustness depending on the singing voice synthesizers and voice 
databases. In the system presented in [29], a unit selection frame-
work is used to create a singing voice synthesizer from a particular 
singer’s recording in a nearly automatic procedure. In comparison 
to a sample-based system, where the design criterion is to mini-
mize the size of the voice database with only one possible unit sam-
ple (e.g., diphones), the criterion in unit selection is related to 
redundancy to allow the selection of consecutive units in the data-
base at the expense of having a larger database. The system auto-
matically segments the recorded voice into phonemes by aligning 
it to the score and feeding the derived segmentation constraints to 
an HMM recognition system. Units are selected to minimize a cost 
function that scores the amount of time, frequency, and timbre 
transformations. Finally, units are concatenated. In this approach, 
the main effort is put on the synthesis engine. Although it uses a 
unit selection-based synthesizer, the expression controls for pitch, 
timing, dynamics, and timbre, like the singer’s formant, are 
extracted from a reference singing performance of the target score. 
These parameters are directly used by the synthesizer to modify the 
selected units with a combination of sinusoidal modeling (SM) 
with time domain pitch synchronous overlap add (TD-PSOLA) 
called SM-PSOLA. Editing is allowed by letting the user participate 
in the unit selection process, change some decisions, and modify 
the unit boundaries. Unfortunately, this approach only manipulates 
the singer’s formant feature of timbre so that other significant tim-
bre-related features in the opera singing style are not handled.

In [30], the steps followed are: extraction of acoustic features 
such as energy, F0, and automatic detection of vibrato sections; 
mapping into synthesis parameters; and phonetic alignment. The 
mapped controls and the input score are used to build an internal 
score that matches the target timing, pitch, and dynamics, and 
minimizes the transformation cost of samples from a database. 
However, this approach is limited since timbre is not handled and 
also because the expression features of the synthesized perfor-
mance are not compared to the input values. Since this approach 
lacks a direct mapping of acoustic features to control parameters, 
these differences are likely to happen. On the other hand, the possi-
bility of using a singer DB to produce vibratos other than the 
extracted ones from the reference recording provides a new degree 
of freedom to the user.

Toward a more robust methodology to estimate the parameters, 
in [31], the authors study an iterative approach that takes the 

target singing performance and lyrics as input. The musical score 
or note sequence is automatically generated from the input. The 
first iteration provides an initialization of the system similar to the 
previous approach [30]. At this point, these controls can be manu-
ally edited by applying pitch transposition, correction, vibrato mod-
ifications, and pitch and intensity smoothing. The iterative process 
continues by analyzing the synthesized waveform and adjusting the 
control parameters so that, in the next iteration, the results are 
closer to the expected performance. In [32], the authors extend this 
approach by including timbre. Using different voice quality data-
bases from the same singer, the corresponding versions of the tar-
get song are synthesized as in the previous approach. The system 
extracts the spectral envelopes of each one to build a three-dimen-
sional (3-D) voice timbre space. Next, a temporal trajectory in this 
space is estimated from the reference target performance to repre-
sent its spectral timbre changes. Finally, singing voice synthesis 
output is generated using the estimated trajectory to imitate the 
target timbre change. Although expression control is more robust 
than the previous approach, thanks to iteratively updating the 
parameters and by allowing a certain degree of timbre control, 
these approaches also have some limitations. First, it cannot be 
assured that the iterative process will converge to the optimal set of 
parameter values. Second, the timbre control is limited to the vari-
ability within the set of available voice quality databases. 

In [33], naturally spoken readings of the target lyrics are trans-
formed into a singing voice by matching the target song properties 
described in the musical score. Other input data are the phonetic 
segmentation and the synchronization of phonemes and notes. 
This approach first extracts acoustic features such as F0, spectral 
envelope, and the aperiodicity index from the input speech. Then, a 
continuous F0 contour is generated from discrete notes, phoneme 
durations are lengthened, and the singer’s formant cluster is gener-
ated. The fundamental frequency contour takes into account four 
types of fluctuations: 1) overshoot (F0 exceeds the target note after 
a note change), 2) vibrato, 3) preparation (similar to overshoot 
before the note change), and 4) fine fluctuations. The first three 
types of F0 fluctuations are modeled by a single second-order trans-
fer function that depends mainly on a damping coefficient, a gain 
factor, and a natural frequency. A rule-based approach is followed 
for controlling phoneme durations by splitting consonant-to-vowel 
transitions into three parts. First, the transition duration is not 

[TABLE 6] SINGING VOICE-RELATEd KTH RULES’ dEPENdENCIES.

ACOUSTIC FEATURE dEPENdENCIES
Consonant duration previous voweL LenGth
voweL onset synChroniZed with timinG
Formant FreQuenCies voiCe CLassiFiCation
Formant FreQuenCies pitCh, iF otherwise F0 wouLd eXCeed 

the First Formant
speCtrum sLope deCrease with inCreasinG intensity
viBrato inCrease depth with inCreasinG 

intensity
pitCh in CoLoratura  
passaGes

eaCh note represented as a viBrato 
CyCLe

pitCh phrase attaCk  
(and reLease)

at pitCh start (end) From (at) 11 
semitones BeLow tarGet F0
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modified for singing. Then, the consonant part is transformed 
based on a comparative study of speech and singing voices. Finally, 
the vowel section is modified so that the duration of the three parts 
matches the note duration. With respect to timbre, the singer’s for-
mant cluster is handled by an emphasis function in the spectral 
domain centered at 3 kHz. Amplitude modulation is also applied to 
the synthesized singing voice according to the generated vibrato’s 
parameters. Although we have classified this approach as perfor-
mance-driven since the core data are found in the input speech 
recording, some aspects are modeled, such as the transfer function 
for F0, rules for phonetic duration, and a filter for the singer’s for-
mant cluster. Similarly to [29], in this approach, timbre control is 
limited to the singer formant, so the system cannot change other 
timbre features. However, if the reference speech recording con-
tains voice quality variations that fit the target song, this can add 
some naturalness to the synthesized singing performance.

Performance-driven approaches achieve a highly expressive con-
trol since performances implicitly contain knowledge naturally 
applied by the singer. These approaches are especially convenient for 
creating parallel database recordings, which are used in voice con-
version approaches [8]. On the other hand, the phonetic segmenta-
tion may cause timing errors if not manually corrected. The 
noniterative approach lacks robustness because the differences 
between the input controls and the controls extracted from the syn-
thesized sound are not corrected. In [32], timbre control is limited 
by the number of available voice qualities. We note that a human 
voice input for natural singing control is required for these 
approaches, which can be considered a limitation since it may not 
be available in most cases. When such a reference is not given, other 
approaches are necessary to derive singing control parameters from 
the input musical score.

RULE-BASED APPROACHES
Rules can be derived from work with synthesizing and analyzing 
sung performances. Applying an analysis-by-synthesis method, an 
ambitious rule-based system for western music was developed at 
KTH in the 1970s and improved over the last three decades [3]. By 

synthesizing sung performances, this method aims at identifying 
acoustic features that are perceptually important, either individually 
or jointly [15]. The process of formulating a rule is iterative. First, a 
tentative rule is formulated and implemented and the resulting syn-
thesis is assessed. If its effect on the performance needs to be 
changed or improved, the rule is modified and the effect of the 
resulting performance is again assessed. On the basis of parameters 
such as phrasing, timing, metrics, note articulation, and intonation, 
the rules modify pitch, dynamics, and timing. Rules can be combined 
to model emotional expressions as well as different musical styles. 
Table 6 lists some of the acoustic features and their dependencies.

The rules reflect both physical and musical phenomena. Some 
rules are compulsory and others optional. The consonant duration 
rule, which lengthens consonants following short vowels, also 
applies to speech in some languages. The vowel onset rule corre-
sponds to the general principle that the vowel onset is synchro-
nized with the onset of the accompaniment, even though lag and 
lead of onset are often used for expressive purposes [34]. The spec-
trum slope rule is compulsory as it reflects the fact that vocal 
loudness is controlled by subglottal pressure and an increase of 
this pressure leads to a less steeply sloping spectrum envelope. 
The pitch in coloratura passages rule implies that the fundamental 
frequency makes a rising–falling gesture around the target fre-
quency in legato sequences of short notes [35]. The pitch phrase 
attack, in lab jargon referred to as bull’s roaring onset, is an orna-
ment used in excited moods and would be completely out of place 
in a tender context. Interestingly, results close to the KTH rules 
have been confirmed by machine-learning approaches [36].

A selection of the KTH rules [15] has been applied to the Voca-
loid synthesizer [37]. Features are considered at the note level 
(start and end times), intra- and internote (within and between 
note changes), and to timbre variations (not related to KTH 
rules). The system implementation is detailed in [38] along with 
the acoustic cues, which are relevant for conveying basic emo-
tions such as anger, fear, happiness, sadness, and love/tenderness 
[12]. The rules are combined in expressive palettes indicating to 
what degree the rules need to be applied to convey a target 

[TABLE 7] THE SELECTION OF RULES FOR SINGING VOICE: LEVEL OF APPLICATION ANd AFFECTEd ACOUSTIC FEATURES.

LEVEL RULES AFFECTEd ACOUSTIC FEATURES
note duration Contrast deCrease duration and intensity oF short notes pLaCed neXt to LonG notes

punCtuation insert miCropauses in Certain pitCh intervaL and duration ComBinations
tempo Constant vaLue For the note seQuenCe (measured in Beats/min)
intensity smooth/stronG enerGy LeveLs, hiGh pitCh notes intensity inCreases 3 dB/oCtave
transitions LeGato, staCCato (pause is set to more than 30% oF interonset intervaL)
phrasinG arCh inCrease/deCrease tempo at phrase BeGinninG/end, same For enerGy
FinaL ritardando deCrease tempo at the end oF a pieCe

intra-/internote attaCk pitCh shape From startinG pitCh untiL tarGet note, enerGy inCreases smoothLy
note artiCuLation pitCh shape From the startinG to the endinG note, smooth enerGy
reLease enerGy deCreases smoothLy to Zero, duration is manuaLLy edited

viBrato
and tremoLo

manuaL ControL oF position, depth, and rate (Cosine FunCtion and random  
FLuCtuations)

timBre BriGhtness inCrease hiGh FreQuenCies dependinG on enerGy
rouGhness speCtraL irreGuLarities
Breathiness manuaL ControL oF noise LeveL (not inCLuded in emotion paLettes)
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emotion. The relationship between application level, rules, and 
acoustic features is shown in Table 7. As an example of the com-
plexity of the rules, the punctuation rule at the note level inserts 
a 20-millisecond micropause if a note is three tones lower than 
the next one and its duration is 20% larger. Given that this work 
uses a sample-based synthesizer, voice quality modifications are 
applied to the retrieved samples. In this case, the timbre varia-
tions are limited to rules affecting brightness, roughness, and 
breathiness and, therefore, do not cover the expressive possibili-
ties of a real singer.

Apart from the KTH rules, in corpus-derived rule-based sys-
tems, heuristic rules are obtained to control singing expression 
by observing recorded performances. In [6], expression controls 
are generated from high-level performance scores where the 
user specifies the note articulation, pitch, intensity, and vibrato 
data that are used to retrieve templates from recorded samples. 
This work, used in the Vocaloid synthesizer [39], models the 
singer’s performance with heuristic rules [40]. The parametric 
model is based on anchor points for pitch and intensity, which 
are manually derived from the observation of a small set of 
recordings. At synthesis, the control contours are obtained by 
interpolating the anchor points generated by the model. The 
number of points used for each note depends on its absolute 
duration. The phonetics relationship with timing is handled by 
synchronizing the vowel onset with the note onset. Moreover, 
manual editing is permitted for the degree of articulation appli-
cation as well as its duration, pitch and dynamics contours, pho-
netic transcription, timing, vibrato and tremolo depth and rate, 
and timbre characteristics.

The advantage of these approaches is that they are relatively 
straightforward and completely deterministic. Random variations 
can be easily introduced so that the generated contours are differ-
ent for each new synthesis of the same score, resulting in distinct 
interpretations. The main drawbacks are that either the models 
are based on few observations that do not fully represent a given 
style or they are more elaborate but become unwieldy due to the 
complexity of the rules.

STATISTICAL MODELING APPROACHES
Several approaches have been used to statistically model and 
 characterize expression-control parameters using HMMs. They 
have a common precedent in speech synthesis [41], where the 
parameters such as spectrum, F0, and state duration are jointly 
modeled. Compared to unit selection, HMM-based approaches tend 
to produce lower speech quality, but they need a smaller data set to 
train the system without needing to cover all combinations of con-
textual factors. Modeling a singing voice with HMMs amounts to 
using similar contextual data as those used for speech synthesis, 
adapted to singing voice specificities. Moreover, new voice charac-
teristics can be easily generated by changing the HMM parameters.

These systems operate in two phases: training and synthesis. 
In the training part, acoustic features are first extracted from the 
training recordings, such as F0, intensity, vibrato parameters, and 
Mel-cepstrum coefficients. Contextual labels, i.e., the relation-
ships of each note, phoneme, or phrase with the preceding and 
succeeding values, are derived from the corresponding score and 
lyrics. Contextual labels vary in their scope at different levels, 
such as phoneme, note, or phrase, according to the approach, as 
summarized in Table 8. This contextual data are used to build the 
HMMs that relate how these acoustic features behave according 
to the clustered contexts. The phoneme timing is also modeled in 
some approaches. These generic steps for the training part in 
HMM-based synthesis are summarized in Figure 6. The figure 
shows several blocks found in the literature, which might not be 
present simultaneously in each approach. We refer to [41] for the 
detailed computations that HMM training involves.

In the synthesis part, given a target score, contextual labels are 
derived as in the training part from the note sequence and lyrics. 
Models can be used in two ways. All necessary parameters for singing 
voice synthesis can be generated from them; therefore, state dura-
tions, F0, vibrato, and Mel-cepstrum observations are generated to 
synthesize the singing voice. On the other hand, if another synthe-
sizer is used, only control parameters, such as F0, vibrato depth and 
rate, and dynamics need to be generated, which are then used as 
input of the synthesizer.

[TABLE 8] CONTEXTUAL FACTORS IN Hmm-BASEd SYSTEmS.

Hmm-BASEd APPROACHES LEVELS CONTEXTUAL FACTORS

[25]
phoneme p/C/n phonemes
note p/C/n note F0, durations, and positions within the measure

[42] phoneme Five phonemes (CentraL and two preCedinG and suCCeedinG)
mora numBer oF phonemes in the p/C/n mora

position oF the p/C/n mora in the note
note musiCaL tone, key, tempo, LenGth, and dynamiCs oF the p/C/n note

position oF the Current note in the Current measure and phrase
ties and sLurred artiCuLation FLaG
distanCe Between Current note and neXt/previous aCCent and staCCato
position oF the Current note in the Current CresCendo or deCresCendo

phrase numBer oF phonemes and moras in the p/C/n phrase
sonG numBer oF phonemes, moras, and phrases in the sonG

[22] note reGion manuaLLy seGmented Behavior types (BeGinninG, sustained, endinG)
note midi note numBer and duration (in 50-miLLiseCond units)

detuninG: modeL F0 By the reLative diFFerenCe to the nominaL note

p/C/n: previous, Current, and neXt.
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As introduced in the section “Classification of Approaches,” statis-
tical methods jointly model the largest set of expression features 
among the reviewed approaches. This gives them a better generaliza-
tion ability. As long as singing recordings for training involve differ-
ent voice qualities, singing styles or emotions, and the target 
language phonemes, these will be reproducible at synthesis given the 
appropriate context labeling. Model interpolation allows new models 
to be created as a combination of existing ones. New voice qualities 
can be created by modifying the timbre parameters. However, this 
flexibility is possible at the expense of having enough training record-
ings to cover the combinations of the target singing styles and voice 
qualities. In the simplest case, a training database of a set of songs 
representing a single singer and style in a particular language would 
be enough to synthesize it. As a drawback, training HMMs with large 
databases tends to produce smoother time series than the original 
training data, which may be perceived as unnatural.

In [25], a corpus-based singing voice synthesis system based 
on HMMs is presented. The contexts are related to phonemes, 
note F0 values, and note durations and positions, as we show in 
Table 8 (dynamics are not included). Also, synchronization 
between notes and phonemes needs to be handled adequately, 
mainly because phoneme timing does not strictly follow the score 
timing, and phonemes might be advanced with respect to the 
nominal note onsets (negative time lag).

In this approach, the training part generates three models: 1) for 
the spectrum and excitation (F0) parts extracted from the train-
ing database, 2) for the duration of context-dependent states, and 3) 

to model the time lag. The second and third model note timing and 
phoneme durations of real performances, which are different than 
what can be inferred from the musical score and its tempo. Time 
lags are obtained by forced alignment of the training data with con-
text-dependent HMMs. Then, the computed time lags are related to 
their contextual factors and clustered by a decision tree.

The singing voice is synthesized in five steps: 1) the input score 
(note sequence and lyrics) is analyzed to determine note duration 
and contextual factors, 2) a context-dependent label sequence of 
contextual factors as shown in Table 8 is generated, 3) the song 
HMM is generated, 4) its state durations are jointly determined 
with the note time lags, and 5) spectral and F0 parameters are gen-
erated, which are used to synthesize the singing voice. The authors 
claim that the synthesis performance achieves a natural singing 
voice, which simulates expression elements of the target singer 
such as voice quality and singing style (i.e., F0 and time lag).

In [25], the training database consists of 72 minutes of a male 
voice singing 60 Japanese children’s songs in a single voice quality. 
These are the characteristics that the system can reproduce in a 
target song. The main limitation of this approach is that the con-
textual factors scope is designed to only cover phoneme and note 
descriptors. Longer scopes than just the previous and next note 
are necessary to model higher-level expressive features such as 
phrasing. Although we could not get samples from this work, an 
evolved system is presented next.

The system presented in [25] has been improved and is publicly 
available as Sinsy, an online singing voice synthesizer [42]. The new 
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characteristics of the system include reading input files in 
MusicXML format with F0, lyrics, tempo, key, beat, and dynamics  as 
well as extended contextual factors used in the training part, vibrato 
rate and depth modeling, and a reduction of the computational cost. 
Vibrato is jointly modeled with the spectrum and F0 by including 
the depth and rate in the observation vector in the training step.

The new set of contexts automatically extracted from the musical 
score and lyrics used by the Sinsy approach are also shown in Table 8. 
These factors describe the context such as previous, current, and next 
data at different hierarchical levels: phoneme, mora (the sound unit 
containing one or two phonemes in Japanese), note, phrase, and the 
entire song. Some of them are strictly related to musical expression 
aspects, such as musical tone, key, tempo, length and dynamics of 
notes, articulation flags, or distance to accents and staccatos.

Similar to [25], in this case, the training database consists of 
70 minutes of a female voice singing 70 Japanese children’s songs 
in a single voice quality. However, it is able to reproduce more 
realistic expression control since vibrato parameters are also 
extracted and modeled. Notes are described with a much richer 
set of factors than the previous work. Another major improve-
ment is the scope of the contextual factors shown in Table 8, 
which spans from the phoneme level to the whole song and is, 
therefore, able to model phrasing.

In [22], a statistical method is able to model singing styles. 
This approach focuses on baseline F0; vibrato features such as its 
extent, rate, and evolution over time, not tremolo; and dynamics. 
These parameters control the Vocaloid synthesizer, and so the tim-
bre is not controlled by the singing style modeling system but is 
dependent on the database.

A preprocessing step is introduced after extracting the acous-
tic features such as F0 and dynamics to get rid of the micropros-
ody effects on such parameters by interpolating F0 in unvoiced 
sections and flattening F0 valleys of certain consonants. The 
main assumption here is that expression is not affected by 

phonetics, which is reflected in erasing such dependencies in the 
initial preprocessing step and also in training note HMMs instead 
of phoneme HMMs. Also, manual checking is done to avoid errors 
in F0 estimation and MIDI events such as note on and note off 
estimated from the phonetic segmentation alignment. A novel 
approach estimates the vibrato shape and rate, which at synthesis 
is added to the generated baseline melody parameter. The shape is 
represented with the low-frequency bins of the Fourier transform 
of single vibrato cycles. In this approach, context-dependent 
HMMs model the expression parameters summarized in Table 8. 
Feature vectors contain melody, vibrato shape and rate, and 
dynamics components.

This last HMM-based work focuses on several control features 
except for timbre, which is handled by the Vocaloid synthesizer.  
This makes the training database much smaller in size. It consists 
of 5 minutes of five Japanese children’s songs since there is no 
need to cover a set of phonemes. Contextual factors are rich at 
the note level since the notes are divided into three parts (begin, 
sustain, and end), and the detuning is also modeled relative to the 
nominal note. On the other hand, this system lacks the modeling 
of wider temporal aspects such as phrasing.

UNIT SELECTION APPROACHES
The main idea of unit selection [29] is to use a database of singing 
recordings segmented into units that consist of one or more pho-
nemes or other units such as diphones or half phones. For a target 
score, a sequence of phonemes with specific features such as pitch 
or duration is retrieved from the database. These are generally 
transformed to match the exact required characteristics.

An important step in this kind of approach is the definition of 
the target and concatenation cost functions as the criteria on which 
unit selection is built. The former is a distance measure of the unit 
transformation in terms of a certain acoustic feature such as pitch or 
duration. Concatenation costs measure the perceptual consequences 
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[FIG7] The performance feature (F0) generated by unit selection.
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of joining nonconsecutive units. These cost functions’ contributions 
are weighted and summed to get the overall cost of the unit sequence. 
The goal is then to select the sequence with the lowest cost.

Unit selection approaches present the disadvantages of requir-
ing a large database, which needs to be labeled, and the subcost 
weights need to be determined. On the other hand, the voice qual-
ity and naturalness are high because of the implicit rules applied by 
the singer within the units.

A method to model pitch, vibrato features, and dynamics based 
on selecting units from a database of performance contours has 
recently been proposed [43]. We illustrate it in Figure 7 for the F0 
contour showing two selected source units for a target note sequence 
where units are aligned at the transition between the second and 
third target notes. The target note sequence is used as input to gen-
erate the pitch and dynamics contours. A reference database is used  
that contains extracted pitch, vibrato features, and dynamics from 
expressive recordings of a single singer and style. In addition to these 
features, the database is labeled with the note pitches, durations, and 
strength as well as the start and end times of note transitions. This 
approach splits the task of generating the target song expression con-
tours into first finding similar and shorter note combinations (source 
units A and B in Figure 7), and then transforming and concatenating 
the corresponding pitch and dynamics contours to match the target 
score (the dashed line in  Figure 7). These shorter contexts are the so-
called units, defined by three consecutive notes or silences, so that 
consecutive units overlap by two notes. The contour of dynamics is 
generated similarly from the selected units.

With regard to unit selection, the cost criterion consists of the 
combination of several subcost functions, as summarized in 
Table 9. In this case, there are four functions and unit selection is 
implemented with the Viterbi algorithm. The overall cost function 
considers the amount of transformation in terms of note durations 
(note duration cost) and pitch interval (pitch interval cost) to pre-
serve as much as possible the contours as originally recorded. It 
also measures how appropriate it is to concatenate two units (con-
catenation cost) as a way of penalizing the concatenation of units 
from different contexts. Finally, the overall cost function also favors 
the selection of long sequences of consecutive notes (continuity 
cost), although the final number of consecutive selected units 
depends on the resulting cost value. This last characteristic is rele-
vant to be able to reflect the recorded phrasing at synthesis.

Once a sequence is retrieved, each unit is time scaled and pitch 
shifted. The time scaling is not linear; instead, most of the trans-
formation is applied in the sustain part and keeping the transition 
(attacks and releases) durations as close to the original as possible. 
Vibrato is handled with a parametric model, which allows the orig-
inal rate and depth contour shapes to be kept.

The transformed unit contours are overlapped and added after 
applying a cross-fading mask, which mainly keeps the shape of 
the attack to the unit central note. This is done separately for the 
intensity, baseline pitch and vibrato rate, and vibrato depth con-
tours. The generated baseline pitch is then tuned to the target 
note pitches to avoid strong deviations. Then, vibrato rate and 
depth contours are used to compute the vibrato oscillations, 
which are added to the baseline pitch.

The expression database contains several combinations of 
note durations, pitch intervals, and note strength. Such a data-
base can be created systematically [44] to cover a relevant portion 
of possible units. Notes are automatically detected and then man-
ually checked. Vibrato sections are manually segmented, and the 
depth and rate contours are estimated. An important characteris-
tic of such a database is that it does not contain sung text, only 
sung vowels to avoid microprosody effects when extracting pitch 
and dynamics.

This approach controls several expression features except for 
timbre aspects of the singing voice. In our opinion, a positive char-
acteristic is that it can generate expression features without suffer-
ing from smoothing as is the case in HMMs. The selected units 
contain the implicit rules applied by the singer to perform a vibrato, 
an attack, or a release. In addition, the labeling and cost functions 
for unit selection are designed in a way that favors the selection of 
long sequences of consecutive notes in the database to help the 
implicit reproduction of high expression features such as phrasing. 
Similarly to the KTH rules, this approach is independent of phonet-
ics since this is handled separately by the controlled synthesizer, 
which makes it convenient for any language. The lack of an explicit 
timbre control could be addressed in the future by adding control 
features such as the degree of breathiness or brightness.

WHEN TO USE EACH APPROACH
The use of each approach has several considerations: the limitations 
of each one; whether singing voice recordings are available since 
these are needed in model training or unit selection; the reason for 
synthesizing a song, which could be for database creation or rule 
testing; or flexibility requirements such as model interpolation. In 
this section, we provide brief guidelines on the suitability of each 
type of approach.

Performance-driven approaches are suitable to be applied, by 
definition, when the target performance is available, since the 
expression of the singer is implicit in the reference audio and it 
can be used to control the synthesizer. Another example of appli-
cability is the creation of parallel databases for different purposes 
such as voice conversion [8]. An application example for the case 
of speech to singing synthesis is the generation of singing 

[TABLE 9] UNIT SELECTION COST FUNCTIONS.

COST dESCRIPTION COmPUTATION
note duration Compare sourCe and tarGet unit note durations oCtave ratio (sourCe/tarGet unit notes)
pitCh intervaL Compare sourCe and tarGet unit note intervaLs oCtave ratio (sourCe/tarGet unit intervaLs)
ConCatenation Favor CompatiBLe units From the dB Zero iF ConseCutive units
Continuity Favor seLeCtion oF ConseCutive units penaLiZe seLeCtion oF nonConseCutive units
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performances for untrained singers, whose timbre is taken from 
the speech recording and the expression for pitch and dynamics 
can be obtained from a professional singer.

Rule-based approaches are suitable to be applied to verify the 
defined rules and also to see how these are combined, for example, 
to convey a certain emotion. If no recordings are available, rules 
can still be defined with the help of an expert so that these 
approaches are not fully dependent on singing voice databases. 

Statistical modeling approaches are also flexible, given that it is 
possible to interpolate models and create new voice characteristics. 
They have the advantage that, in some cases, these are part of complete 
singing voice synthesis systems, i.e., those that have the score as input 
and that generate both the expression parameters and output voice.

Similarly to rule-based and statistical modeling approaches, 
unit selection approaches do not need the target performance, 
although they can benefit from it. On the other hand, unit selec-
tion approaches share a common characteristic with performance-
driven approaches. The implicit knowledge of the singer is 
contained in the recordings, although in unit selection it is 
extracted from shorter audio segments. Unlike statistical models, 
no training step is needed, so the expression databases can be 
improved just by adding new labeled singing voice recordings. 

EVALUATION
In the beginning of this article, we explained that a score can be 
interpreted in several acceptable ways, making expression a 

subjective aspect to rate. However, “procedures for systematic and 
rigorous evaluation do not seem to exist today” [1, p. 105], espe-
cially if there is no ground truth to compare with. In this section, 
we first summarize typical evaluation strategies. Then, we propose 
the initial ideas to build a framework that solves some detected 
issues, and finally, we discuss the need for automatic measures to 
rate expression.

CURRENT EVALUATION STRATEGIES
Expression control can be evaluated from subjective or objective 
perspectives. The former typically consists of listening tests where 
participants perceptually evaluate some psychoacoustic charac-
teristic such as voice quality, vibrato, and overall expressiveness of 
the generated audio files. A common scale is the mean opinion 
score (MOS), with a range from one (bad) to five (good). In pair-
wise comparisons, using two audio files obtained with different 
system configurations, preference tests rate which option 
achieves a better performance. Objective evaluations help to com-
pare how well the generated expression controls match a refer-
ence real performance by computing an error.

Within the reviewed works, subjective tests outnumber the 
objective evaluations. The evaluations are summarized in 
Table 10. For each approach, several details are provided such as a 
description of the evaluation (style, voice quality, naturalness, 
expression, and singer skills), the different rated tests, and infor-
mation on the subjects if available. Objective tests are done only 

[TABLE 10] CONdUCTEd SUBJECTIVE ANd OBJECTIVE EVALUATIONS PER APPROACH.

TESTS

TYPE APPROACH mETHOd dESCRIPTION SUBJECTS

perFormanCe
driven

[29] suBjeCtive rate voiCe QuaLity with pitCh modiFiCation oF  
ten pairs oF sentenCes (sm-psoLa versus td-psoLa)

10 suBjeCts

[30] suBjeCtive inFormaL ListeninG test not speCiFied

[31] oBjeCtive two tests: LyriCs aLiGnment and mean error  
vaLue oF eaCh iteration For F0 and intensity  
Compared to tarGet

no suBjeCts

[32] oBjeCtive two tests: 3-d voiCe timBre representation  
and euCLidean distanCe Between reaL and  
measured timBre

no suBjeCts

[33] suBjeCtive paired Comparisons oF diFFerent ConFiGurations  
to rate naturaLness oF synthesis in a seven-step  
sCaLe (−3 to 3)

10 students with normaL
hearinG aBiLity

ruLe
Based

[3] suBjeCtive ListeninG tests oF partiCuLar aCoustiC Features 15 sinGers or
sinGinG teaChers

[37] none none none

[40] suBjeCtive ListeninG tests ratinGs (1–5) 50 suBjeCts with diFFerent
LeveLs oF musiCaL traininG

statistiCaL
modeLinG

[25] suBjeCtive ListeninG test (1–5 ratinGs) oF 15 musiCaL phrases.  
two tests: with and without time-LaG modeL

14 suBjeCts

[42] suBjeCtive not detaiLed (Based on [25]) not speCiFied

[22] suBjeCtive rate styLe and naturaLness ListeninG tests  
ratinGs (1–5) oF ten random phrases per suBjeCt

10 suBjeCts

unit
seLeCtion

[43] suBjeCtive rate eXpression, naturaLness, and sinGer skiLLs  
ListeninG tests ratinGs (1–5)

17 suBjeCts with diFFerent
LeveLs oF musiCaL traininG
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for performance-driven approaches, i.e., when a ground truth is 
available. In the other approaches, no reference is directly used 
for comparison, so only subjective tests are carried out. However, 
in the absence of a reference of the same target song, the gener-
ated performances could be compared to the recording of another 
song, as is done in the case of speech synthesis.

In our opinion, the described evaluation strategies are devised 
for evaluating a specific system and, therefore, focus on a concrete 
set of characteristics that are particularly relevant for that system. 
For instance, the evaluations summarized in Table 10 do not 
include comparisons to other approaches. This is due to the sub-
stantial differences between systems, which make the evaluation 
and comparison between them a complex task. These differences 
can be noted in the audio excerpts of the accompanying Web site 
to this article, which were introduced in the section “Comparison 
of Approaches.” At this stage, it is difficult to decide which method 
more efficiently evokes a certain emotion or style, performs better 
vibratos, changes the voice quality in a better way, or has a better 
timing control. There are limitations in achieving such a compre-
hensive evaluation and comparing the synthesized material.

TOWARD A COMMON EVALUATION FRAMEWORK
The evaluation methodology could be improved by building the 
systems under similar conditions to reduce the differences among 
performances and by sharing the evaluation criteria. Building a 
common framework would help to easily evaluate and compare 
the singing synthesis systems.

The main blocks of the reviewed works are summarized in 
 Figure 8. For a given target song, the expression parameters are 
generated to control the synthesis system. To share as many com-
monalities as possible among systems, these could be built under 
similar conditions and tested by a shared evaluation criterion. 
Then, the comparison would benefit from focusing on the tech-
nological differences and not on other aspects such as the target 
song and singer databases.

Concerning the conditions, several aspects could be shared 
among approaches. Currently, there are differences in the target 
songs synthesized by each approach, the set of controlled expres-
sion features, and the singer recordings (e.g., singer gender, style, 
or emotion) used to derive rules, train models, build expression 
databases, and build the singer voice models.

A publicly available data set of songs, with scores (e.g., in 
MusicXML format) and reference recordings, could be helpful if 
used as target songs to evaluate how expression is controlled by 
each approach. In addition, deriving the expression controls and 
building the voice models from a common set of recordings would 
have a great impact on developing this evaluation framework. If all 
approaches shared such a database, it would be possible to com-
pare how each one captures expression and generates the control 
parameters since the starting point would be the same for all of 
them. Additionally, both sample- and HMM-based synthesis systems 
would derive from the same voice. Thus, it would be possible to 
test a single expression-control method with several singing voice 
synthesis technologies. The main problem we envisage is that 
some approaches are initially conceived for a particular synthesis 
system. This might not be a major problem for the pitch contour 
control, but it would be more difficult to apply the voice timbre 
modeling of HMM-based systems to sample-based systems.

The subjective evaluation process is worthy of particular note. 
Listening tests are time-consuming tasks, and several aspects need 
to be considered in their design. The different backgrounds related 
to singing voice synthesis, speech synthesis, technical skills, and 
the wide range of musical skills of the selected participants can be 
taken into consideration by grouping the results according to 
such expertise, and clear instructions have to be provided on what 
to rate, e.g., which specific acoustic features of the singing voice to 
focus on, and how to rate using pairwise comparisons or MOS.  
Moreover, uncontrolled biases in the rating of stimuli due to the 
order in which these are listened to can be avoided by presenting 
them using pseudorandom methods such as Latin squares, and 
the session duration has to be short enough so as not to decrease 
the participant’s level of attention. However, often, the reviewed 
evaluations are designed differently and are not directly compara-
ble. Next, we introduce a proposal to overcome this issue.

PERCEPTUALLY MOTIVATED OBJECTIVE MEASURES
The constraints in the section “Toward a Common Evaluation Frame-
work” make it unaffordable to extensively evaluate different configu-
rations of systems by listening to many synthesized performances. 
This can be solved if objective measures that correlate with perception 
are established. Such perceptually motivated objective measures can 
be computed by learning the relationship between MOS and extracted 

features at a local or global scope. The mea-
sure should be ideally independent from the 
style and the singer, and it should provide 
ratings for particular features such as timing, 
vibrato, tuning, voice quality, or the overall 
performance expression. These measures, 
besides helping to improve the systems’ per-
formance, would represent a standard for 
evaluation and allow for scalability.

The development of perceptually moti-
vated objective measures could benefit from 
approaches in the speech and audio pro-
cessing fields. Psychoacoustic and cognitive 
models have been used to build objective [FIG8] The proposed common evaluation framework.
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metrics for assessing audio quality and speech intelligibility [45], 
and its effectiveness has been measured by its correlation to MOS 
ratings. Interestingly, method-specific measures have been com-
puted in unit selection cost functions for speech synthesis [46]. 
Other approaches for speech quality prediction are based on a log-
likelihood measure as a distance between a synthesized utterance 
and an HMM model built from features based on MFCCs and F0 of 
natural recordings [47]. This gender-dependent measure is corre-
lated to subjective ratings such as naturalness. For male data, it 
can be improved by linearly combining it with parameters typically 
used in narrow-band telephony applications, such as noise or 
robotization effects. For female data, it can be improved by linearly 
combining it with parameters related to signal-like duration, for-
mants, or pitch. The research on automatic evaluation of expres-
sive performances is considered an area to exploit, although it is 
still not mature enough [48]; e.g., it could be applied to develop 
better models and training tools for both systems and students.

Similar to the speech and instrumental music performance com-
munities, the progress in the singing voice community could be 
incentivized through evaluation campaigns. These types of evalua-
tions help to identify the aspects that need to be improved and can 
be used to validate perceptually motivated objective measures. 
Examples of past evaluation campaigns are the Synthesis Singing 
Challenge [52] and the Performance Rendering Contest (Rencon) 
http://renconmusic.org/ [48]. In the first competition, one of the tar-
get songs was compulsory and the same for each team. The perfor-
mances were rated by 60 participants with a five-point scale 
involving the quality of the voice source, quality of the articulation, 
expressive quality, and the overall judgment. The organizers con-
cluded that “the audience had a difficult task, since not all systems 
produced both a baritone and a soprano version, while the quality of 
the voices used could be quite different (weaker results for the 
female voice)” [52]. Rencon’s methodology is also interesting. 
Expressive performances are generated from the same Disklavier 
grand piano so that the differences among approaches are only due 
to the performance and are subjectively evaluated by an audience 
and experts. In 2004, voice synthesizers were also invited. Favorable 
reviews were received but not included in the ranking.

CHALLENGES
While expression control has advanced in recent years, there are 
many open challenges. In this section, we discuss some specific chal-
lenges and consider the advantages of hybrid approaches. Next, we 
discuss important challenges in approaching a more human-like 
naturalness in the synthesis. Then, requirements for intuitive and 
flexible singing voice synthesizers’ interfaces are analyzed, along with 
the importance of associating a synthetic voice with a character.

TOWARD HYBRID APPROACHES
Several challenges have been identified in the described 
approaches. Only one of the performance-driven approaches deals 
with timbre, and it depends on the available voice quality data-
bases. This approach would benefit from techniques for the analy-
sis of the target voice quality, its evolution over time, and 
techniques for voice quality transformations so to be able 

to synthesize any type of voice quality. The same analysis and 
transformation techniques would be useful for the unit selection 
approaches. Rule-based approaches would benefit from machine-
learning techniques that learn rules from singing voice recordings 
to characterize a particular singer and explore how these are com-
bined. Statistical modeling approaches currently do not utilize 
comprehensive databases that cover a broad range of styles, emo-
tions, and voice qualities. If we could take databases that efficiently 
cover different characteristics of a singer in such a way, it would 
lead to interesting results such as model interpolation.

We consider the combination of existing approaches to have 
great potential. Rule-based techniques could be used as a prepro-
cessing step to modify the nominal target score so that it contains 
variations such as ornamentations and timing changes related to the 
target style or emotion. The resulting score could be used as the 
target score for statistical and unit selection approaches where 
the expression parameters would be generated.

MORE HUMAN-LIKE SINGING SYNTHESIS
One of the ultimate goals of singing synthesis technologies is to 
synthesize human-like singing voices that cannot be distinguished 
from human singing voices. Although the naturalness of synthe-
sized singing voices has been increasing, perfect human-like natu-
ralness has not yet been achieved. Singing synthesis technologies 
will require more dynamic, complex, and expressive changes in 
the voice pitch, loudness, and timbre. For example, voice quality 
modifications could be related to emotions, style, or lyrics.

Moreover, automatic context-dependent control of those 
changes will also be another important challenge. The current tech-
nologies synthesize words in the lyrics without knowing their mean-
ings. In the future, the meanings of the lyrics could be reflected in 
singing expressions as human singers do. Human-like singing syn-
thesis and realistic expression control may be a very challenging 
goal, given how complex this has been proven for speech.

When human-like naturalness increases, the “Uncanny Valley” 
hypothesis [49] states that some people may feel a sense of creepi-
ness. Although the Uncanny Valley is usually associated with robots 
and computer graphics, it is applicable even to singing voices. In 
fact, when a demonstration video by VocaListener [31] first 
appeared in 2008, the Uncanny Valley was often mentioned by lis-
teners to evaluate its synthesized voices. An exhibition of a singer 
robot driven by VocaWatcher [50] in 2010 also elicited more reac-
tions related to the Uncanny Valley. However, we believe that such a 
discussion of this valley should not discourage further research. 
What this discussion means is that the current technologies are in 
a transitional stage towards future technologies that will go beyond 
the Uncanny Valley [50] and that it is important for researchers to 
keep working toward such future technologies.

Note, however, that human-like naturalness is not always 
demanded. As sound synthesis technologies are often used to provide 
artificial sounds that cannot be performed by natural instruments, 
synthesized singing voices that cannot be performed by human sing-
ers are also important and should be pursued in parallel, sometimes 
even for aesthetic reasons. Some possible examples are extremely fast 
singing or singing with pitch or timbre quantization.
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MORE FLEXIBLE INTERFACES FOR SINGING SYNTHESIS
User interfaces for singing synthesis systems will play a more 
important role in the future. As various score- and performance-
driven interfaces are indispensable for musicians in using general 
sound synthesizers, singing synthesis interfaces have also had 
various options such as score-driven interfaces based on the 
piano-roll or score editor and performance-driven interfaces in 
which a user can just sing along with a song and a synthesis sys-
tem then imitates him or her (as mentioned in the section “Per-
formance-Driven Approaches”). More intuitive interfaces that do 
not require time-consuming manual adjustment will be an 
important goal for ultimate singing interfaces. So far, direct 
manipulator-style interfaces, such as the aforementioned score- 
or performance-driven interfaces, are used for singing synthesis 
systems, but indirect producer-style interfaces, such as those that 
enable users to verbally communicate with and ask a virtual 
singer to sing in different ways, will also be attractive to help 
users focus on how to express the user’s message or intention 
through a song, although such advanced interfaces have yet to be 
developed. More flexible expression control of singing synthesis in 
real time is also another challenge.

MULTIMODAL ASPECTS OF SINGING SYNTHESIS
Attractive singing synthesis itself must be a necessary condition for 
its popularity, but it is not a sufficient condition. The most famous 
virtual singer, Hatsune Miku, has shown that having a character 
can be essential to make singing synthesis technologies popular. 
Hatsune Miku is the name of the most popular singing synthesis 
software package in the world. She is based on Vocaloid and has a 
synthesized voice in Japanese and English with an illustration of a 
cartoon girl. After Hatsune Miku originally appeared in 2007, many 
people started listening to a synthesized singing voice as the main 
vocal of music, something rare and almost impossible before Hat-
sune Miku. Many amateur musicians have been inspired and moti-
vated by her character image together with her voice and have 
written songs for her. Many people realized that having a character 
facilitated writing lyrics for a synthesized singing voice and that 
multimodality is an important aspect in singing synthesis.

An important multimodal challenge, therefore, is to generate 
several attributes of a singer, such as a voice, face, and body. The face 
and body can be realized by computer graphics or robots. An exam-
ple of simultaneous control of voice and face was shown in the com-
bination of VocaListener [31] and VocaWatcher [50], which imitates 
singing expressions of the voice and face of a human singer.

In the future, speech synthesis could also be fully integrated 
with singing synthesis. It will be challenging to develop new voice 
synthesis systems that could seamlessly generate any voice pro-
duced by a human or virtual singer/speaker.
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