
34	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COVER FEATURE 21ST CENTURY USER INTERFACES

Jun Kato, National Institute of Advanced Industrial Science and Technology (AIST)

Takeo Igarashi, University of Tokyo

Masataka Goto, National Institute of Advanced Industrial Science and Technology (AIST)

The programming-with-examples workflow lets developers

create interactive applications with the help of example

data. It takes a general programming environment and adds

dedicated user interfaces for visualizing and managing the

data. This lets both programmers and users understand

applications and configure them to meet their needs.

GUI builders let users define the look of user
interfaces with simple “what you see is what
you get” (WYSIWYG) interaction. How-
ever, WYSIWYG interaction is insufficient

to develop working systems; some programming is
also necessary. Programming is essential to user inter-
face design because it lets developers design how users
interact with an application. To support the develop-
ment of conventional interactive systems, integrated
development environments (IDEs) represent standard-
ized numeric values such as those for MOUSE_CLICKED and
KEY_TYPED as text or symbols. This simple representation
reflects the characteristics of systems that run on com-
puters with standardized input and output devices such
as a mouse, keyboard, and display. They typically handle
a limited amount of data transferred intermittently.

In contrast, modern interactive applications have
been becoming more visual and data-intensive. In
the age of big data, computers have become faster and
smaller, handling more visual data that cannot be pre-
sented intuitively with text or symbols. There are more
variations among applications than before, such as
robot control, gesture recognition, image processing,
and animation.

Prior attempts to support the development of data-
intensive systems include programming by example
(PbE) systems (see Figure 1a). With PbE systems, users
demonstrate desired pairs of input and output data to
the systems—for example, by manipulating robot pos-
tures in front of a camera. Then, the systems infer the
program, such as one to control robot postures. Most
PbE systems let both programmers and end users create

Programming
with Examples
to Develop Data-
Intensive User Interfaces

	 J U LY 2 0 1 6 � 35

programs. However, because these
systems typically encapsulate the pro-
gram logic in a black box, they prevent
users from understanding or directly
specifying detailed behaviors. In addi-
tion, example data have no represen-
tation in such systems and cannot be
managed or edited, making the devel-
opment process irreproducible. So,
PbE systems without the capability of
explicit programming are not suitable
for user interface design that precisely
reflects a programmer’s intention.

In contrast, our programming with
examples (PwE) workflow (see Figure
1b) enables explicit programming and
lets users manage and edit example
data. Programmers collect example
data to aid building program compo-
nents. For instance, to create a gesture-
based application, the programmer
collects a set of example gesture data
from a sensor and tests the application
with that data. (Brad Myers used the
term “Programming with Example”
in 1986,1 though it indicated the omis-
sion of inferences in PbE systems and
did not discuss data representations.)

Here, we discuss using graphical
representations in IDEs to support PwE.
Toward that end, we developed three
IDEs, each of which explores a differ-
ent use of graphical representations,
including photos, videos, and their
interactive editing. Our approach over-
laps somewhat with live programming
(LP), a general technique that enables
live editing of programs during run-
time. (For more on LP, see the “Live
Programming and Programming with
Examples” sidebar.) Our experience
has provided insights on user inter-
face design, including guidelines on
when to use a particular kind of graph-
ical representation and the potential of
visuals as a communication medium
for collaborative application authoring.

PROGRAMMING
WITH EXAMPLES
Modern interactive systems often use
a variety of physical user interfaces
consisting of sensors and actuators
that receive and send large amounts
of raw data as input and output. This
includes visual data, such as photos
and videos; object properties, such as
color, shape, and location; as well as
more structured information, such as

human or robot posture and parame-
ters for animating graphical objects.
Such data serve as examples to tell
computers about the problem we want
to solve.

As we mentioned before, PwE uses
this example data to build and test pro-
grams. For instance, building a pro-
gram could involve training models
for machine-learning algorithms and
specifying robot postures. Testing the

if (Sensor1.isActive) {
 ... // ...
}

Sensor1
session 1

Sensor1
session 2

Output
live

Integrated graphical representations

Inferred program
Explicitly speci�ed program

Example data

PbE system

IDE

(a) (b)

FIGURE 1. Two workflows for developing data-intensive interactive systems. (a) Pro-
gramming by example (PbE). (b) Programming with examples (PwE). Unlike PbE systems,
PwE systems allow the representation of example data and enable explicit programming.
IDE: integrated development environment.

LIVE PROGRAMMING AND
PROGRAMMING WITH EXAMPLES

In terms of the programming experience, the approach most
relevant to programming with examples (PwE) is live program-

ming (LP), which enables live editing of programs at runtime. LP
originated in research on object-oriented programming and visual
programming, recently attracting attention for its application to
text-based programming environments.

LP and PwE both provide a fluid programming experience
through more informative user interfaces, and some overlaps ex-
ist. For example, TextAlive is an LP system. However, their focuses
differ slightly. LP focuses on logic, whereas PwE focuses on data.
LP conceptually aims to make the entire program editable during
runtime; PwE splits the program into the editable part (code) and
the rest (data). This separation not only simplifies the implemen-
tation but also enables end-user program customization.

36	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

program would involve executing it
with recorded input from sensors and
debugging it by checking output from
trained models.

In current development environ-
ments, example data are usually ref-
erenced by textual or symbolic visual
representations such as file names
and icons. In conventional interac-
tive systems, the connection between
the example data, text, and symbols
is usually obvious. In modern interac-
tive applications, that is not the case;
programmers often get confused by
the vague connection. In addition, pro-
grammers are responsible for manag-
ing the data. To examine and edit the
data, they typically must launch exter-
nal tools outside the development
environments, which is tedious and
error-prone. The IDEs we present here
directly support PwE to address these
problems and make the process more
efficient and productive.

There have been several efforts
to support PwE. Most PbE systems

require no programming knowledge,
but exceptions exist. For instance,
Pygmalion lets programmers build
a program by giving concrete input
data instead of writing abstract pro-
gram code.2 The Subtext IDE lets pro-
grammers specify test cases by writing
example input data next to program
code in a code editor.3 Our IDEs employ
the same PwE workflow as these sys-
tems but use graphical instead of tex-
tual representations. This difference
reflects the example data becoming
more visual and complex in modern
interactive applications.

Recent IDEs have successfully
incorporated various forms of exam-
ples. The most relevant one is Gestalt,
which supports the implementation
of machine-learning algorithms for
image recognition.4 It provides dedi-
cated GUIs to manage and edit exam-
ple data. Barista lets programmers
paste graphics directly into the code
editor.5 Standing atop these prior
IDEs with PwE support, we explored

a broader design space that employs
graphical representations in the IDEs.

Blueprint lets programmers search
for example source code in online
repositories and paste the result
through a code completion inter-
face.6 Whereas examples in Blueprint
denote the use of APIs—the logic
of the programs—examples in PwE
denote data used in the programs.

PHOTOS REPRESENTING
STATIC DATA
Here we explore using photos to repre-
sent static example data, which does
not change over time. Our Picode IDE
supports the development of programs
that sense human and robot postures
and control robot postures.7 (For more
on handling posture data, see the
“Related Work in Handling Posture
Data” sidebar.)

Picode
Picode comprises a code editor, pose
library, and preview window (see

RELATED WORK IN HANDLING POSTURE DATA

Topobo is a programming-by-example system
in which users specify how robots should

move by grabbing and moving their joints.1
Choreonoid is a GUI tool with physical simulation
for creating robot motions.2 In both cases, the
user needs no programming knowledge but has
little control over how the robot should respond
to user input. To develop interactive systems that
handle posture data, we still need integrated
development environments (IDEs).

Current IDEs usually come with text-based and
symbolic representations, which cannot represent
complex data such as posture information. Sev-
eral studies have involved integrated still images.
Sikuli shows image data as an inline image in the
code editor,3 and heterogeneous visual program-
ming languages visualize simple tree structures
next to the code editor.4 In these systems, still
images are either the represented data or its

visualization. Our Picode IDE uses photos not as
just mere images but as representations of under-
lying posture data.

References
1.	 H.S. Raffle et al., “Topobo: A Constructive Assembly System

with Kinetic Memory,” Proc. 2004 SIGCHI Conf. Human Fac-

tors in Computing Systems (CHI 04), 2004, pp. 647–654.

2.	 S. Nakaoka et al., “Intuitive and Flexible User Interface for

Creating Whole Body Motions of Biped Humanoid Robots,”

Proc. 2010 IEEE/RSJ Int’l Conf. Intelligent Robots and Sys-

tems (IROS 10), 2010, pp. 1675–1682.

3.	 T. Yeh et al., “Sikuli: Using GUI Screenshots for Search

and Automation,” Proc. 22nd Ann. ACM Symp. User Inter-

face Software and Technology (UIST 09), 2009,

pp. 183–192.

4.	 M. Erwig et al., “Heterogeneous Visual Languages Integrat-

ing Visual and Textual Programming,” Proc. 11th Int’l IEEE

Symp. Visual Languages (VL 95), 1995, pp. 318–325.

	 J U LY 2 0 1 6 � 37

Figure 2). Programmers first take a
photo of a human or robot in the pre­
view window; Picode captures the cor­
responding posture data from a Kinect
sensor or the robot’s servos. Picode
stores a collection of these paired data
in the pose library as a single entry.
Then, programmers drag a photo from
the library and drop it into the code
editor. Picode embeds the photo in
code, which the programmers can exe­
cute with a single click.

User study
A programmer and nonprogrammer
performed pair programming with
Picode for three hours. The program­
mer benefited from the PwE workflow,
and even the nonprogrammer could
infer and comprehend the source code
surrounding inline photos.

Given the encouraging results, we
hosted a workshop for nonprogram­
mers to further investigate the role
of photos in the code. We found that
photos contained three types of infor­
mation that was hardly represented by
text, symbols, or 3D computer graphics
visualizing posture data.

First, photos present the environ­
ment surrounding humans and robots.
This helps programmers quickly under­
stand a program’s operating environ­
ment and objectives. For example,
humans employ the same posture
whether they are pushing a cart on a
slope or performing calisthenics. A robot
employs similar postures when holding
a small or large ball, with the only dif­
ference being how wide the hand opens.
Although numerical distinction is possi­
ble, this is not informative for humans.

Second, photos sometimes indicate
a particular part of a posture. In a text-
based IDE, a programmer could indicate
interest in the second joint of a robot
by inserting a textual comment in the

source code. However, the phrase “the
second joint” will not instantly inform
the reader which joint it is; a photo can
be a more direct representation in which
the programmer points to the joint.

Finally, photos containing human
subjects can express emotion. This
characteristic has been significant
throughout the medium’s long his­
tory and is not found in conventional
source code. By our study’s end, the
pose library included photos showing
participant enjoyment and creative
shots of the robots. The source code
with inline photos was extremely indi­
vidual, showing a variety of clothing,
poses, and expressions. The photos
motivated the nonprogrammers to cus­
tomize the program and further learn
general programming.

VIDEOS REPRESENTING
DYNAMIC BEHAVIOR
Here, we explore using videos to rep­
resent time-coded example data. Our
DejaVu IDE (see Figure 3) supports the
development of interactive camera-
based programs.8 It incorporates a
video-player metaphor into a standard
text-based IDE. (For more on handling
time-coded data, see the “Related Work
in Handling Time-Coded Data” sidebar.)

DejaVu
DejaVu employs two interlinked inter­
faces. The canvas interface corresponds

to real-time video preview in video-​
editing applications. Users can moni­
tor any number of variables, including
input and output, continuously during
runtime in an arbitrary layout. They
can also review a frame of interest in a
past program session.

When programmers select a vari­
able in the code editor and drag it onto
the canvas, DejaVu represents it as a
rectangular box with visuals (images
and skeletal data, in the case of human
subjects in the video) or text (numerical
or Boolean data). Along with monitor­
ing variable values, programmers can
draw sketches and notes on the can­
vas to aid visual data management. By
combining sketches with variable val­
ues, programmers can turn the canvas
into a “dynamic sketchbook” in which
sketches come alive with dynamic data.

Similarly to interfaces in video-
editing applications, the timeline inter­
face represents changes in the example
data over time. The timeline might con­
sist of multiple data streams, each cor­
responding to a variable in the canvas.
A stream of visual data is represented
as a strip of frame thumbnails, and a
stream of numerical or Boolean data is
represented as a time graph. The time­
line enables not only passive review of
example data but also revising the pro­
gram and refreshing it by reexecuting it
with recorded input data, which assists
iterative development.

Pose libraryCode editor Pose

Preview window

FIGURE 2. Picode shows inline photos in the code editor to represent example posture
data. Programmers drag a photo from the pose library and drop it into the code editor.
Picode embeds the photo in code, which the programmers can execute with a single click.

38	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

User feedback
Three professional developers tried
out DejaVu. They had significant
experience in developing interactive
Kinect-based programs with Visual
Studio, a standard IDE. Afterward,
they agreed that DejaVu correlated
well with their current PwE workflow.
We learned three important lessons
from their feedback.

First, the tight integration in the
IDE enables the synchronous connec-
tion between the canvas, timeline,
and code editor. The participants pre-
viously had desired DejaVu’s features
and sometimes even made their own
tools. However, the separate tools
were not as powerful and flexible as
DejaVu’s visual, integrated, and inter-
active support.

Second, it is not always easy
to collect example data from the

RELATED WORK IN HANDLING TIME-CODED DATA

Some IDEs visualize time-coded information of
program executions. ZStep records all stack

traces and provides a navigation interface to go
back and forth over the trace to see which line
of code executed at a particular point.1 Whyline
records the stack traces and window output.2 It
also provides a “Why did this happen (or not hap-
pen)?” interface, which navigates to the cause of
a phenomenon such as the color of a pixel. These
integrations work well for discrete events with
simple data structures but cannot handle contin-
uous data streams such as input from cameras
and output to servo motors.

Some developer tools have timeline interfaces
to help users understand continuous time-coded
data. Exemplar is a standalone tool for authoring
sensor-based interaction by demonstration.3
D.tools records user interactions with physical
computing devices and visualizes the events
along with recorded videos.4 Timelapse has
similar features for event logging and webpage
debugging.5 These tools are either a stand-
alone tool outside the IDE or an IDE without a

text-based code editor. In contrast, the DejaVu
IDE tightly integrates the code editor and timeline
interface.

References
1.	 H. Lieberman et al., “Bridging the Gulf between Code and

Behavior in Programming,” Proc. 1995 SIGCHI Conf. Hu-

man Factors in Computing Systems (CHI 95), 1995,

pp. 480–486.

2.	 A.J. Ko et al., “Finding Causes of Program Output with the

Java Whyline,” Proc. 2006 SIGCHI Conf. Human Factors in

Computing Systems (CHI 06), 2006, pp. 387–396.

3.	 B. Hartmann et al., “Authoring Sensor-Based Interactions

by Demonstration with Direct Manipulation and Pattern

Recognition,” Proc. 2007 SIGCHI Conf. Human Factors in

Computing Systems (CHI 07), 2007, pp. 145–154.

4.	 B. Hartmann et al., “Reflective Physical Prototyping through

Integrated Design, Test, and Analysis,” Proc. 19th Ann. ACM

Symp. User Interface Software and Technology (UIST 06),

2006, pp. 299–308.

5.	 B. Burg et al., “Interactive Record/Replay for Web Applica-

tion Debugging,” Proc. 26th Ann. ACM Symp. User Interface

Software and Technology (UIST 13), 2013, pp. 473–484.

Canvas

Timeline

Code editor

FIGURE 3. DejaVu shows time-coded example data in the canvas and timeline inter-
faces. It incorporates a video-player metaphor into a standard text-based IDE.

	 J U LY 2 0 1 6 � 39

programmer’s surroundings that
satisfy quality or quantity require-
ments for program testing. The pro-
grammers wanted the ability to
import and manipulate the example
data from external sources.

Third, the canvas went beyond
individual data displays and aroused
the need for customizable visualiza-
tion. The visualization could range
from simple graphic combinations
such as overlaying a skeleton on a
color image to more semantic com-
positions such as masking certain
image regions.

INTERACTIVE EDITING
OF EXAMPLE DATA
Whereas the previous two sections
explored visualization of example
data, this section focuses on using
graphical operations to edit exam-
ple data. Our TextAlive IDE (see Fig-
ure 4) supports live programming of
domain-specific applications (video-
rendering programs) and offers inter-
active user interfaces for tuning their
parameters.9 (For more on editing
data, see the “Related Work in Data
Manipulation” sidebar.)

TextAlive is similar to our Vision-
Sketch, which supports the example-
centric development of image-
processing algorithms.10 Although
VisionSketch is primarily for program-
mers, it led us to develop TextAlive,
which investigates the potential of
collaborative application authoring.
With TextAlive’s clearer separation of
user interfaces for programming and
parameter tuning, programmers and
nonprogrammers can collaborate to
create applications.

TextAlive
TextAlive lets users create a synchron
ized kinetic-typography video; it works

just like familiar video-authoring
tools. When users load an audio file
and its transcription, TextAlive auto-
matically creates a video. Other tools
require users to create videos from
scratch and spend a huge amount of
time manually synchronizing audio
and text. TextAlive requires signifi-
cantly less effort.

For each text sample and graphic in
the video, users can select an anima-
tion template and customize its visual
effects with the GUI widgets in the
parameter editor. They can also use
the widgets to debug templates. Syn-
chronization errors can be corrected
in the timeline, which visualizes the
text’s timing information.

Although each animation tem-
plate supports customization, it still
somewhat limits the resulting anima-
tion. To address this issue, TextAlive
enables live programming of the tem-
plates. Many tools for creating anima-
tions include scripting engines, but
such scripting is typically tied to the
specific data and not easily general-
izable for later reuse. These tools also
do not provide much graphical feed-
back during coding. TextAlive enables
more reuse through an abstraction
mechanism and provides continuous
graphical feedback. Programmers can
open a code editor to edit the imple-
mentation and update the resulting
video with just one click. There is no

notion of compilation or execution.
The program that creates the anima-
tions continues running virtually.

The update process not only
updates the video but also populates
or removes the GUI widgets. To popu-
late a widget, programmers declare a
variable in the template definition and
write a comment block right before
the declaration.

User feedback
Four nonprogrammers and three pro-
grammers created videos with Text
Alive. They had varying expertise in
video authoring and programming.
All of them welcomed the features
for authoring kinetic-typography vid-
eos, especially the timeline. Whereas
the nonprogrammers requested more
variations of templates, the program-
mers could implement new templates
and appreciated live programming
and easy widget creation.

To observe collaboration among
users, we deployed TextAlive as a Web
service. From September 2015 to Jan-
uary 2016, the users created more
than 300 videos and 50 templates. The
nonprogrammers reported enjoying
authoring videos, whereas the pro-
grammers reported enjoying develop-
ing templates for extending expres-
sivity with the help of the edited
example data. The programmers some-
times created videos to showcase their

Timeline

Parameter editor

Code editor

FIGURE 4. TextAlive allows live customization of programs with interactive user inter-
faces. Programmers and nonprogrammers can collaborate to create programs.

40	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

templates. Graphical representations
of the programs (videos) and their
parameters (GUI widgets) served as a
bridge between the programmers and
nonprogrammers.

A limitation of our current imple-
mentation is that collaboration is uni-
directional; nonprogrammers have no
direct way to request new templates
with specific visual effects. The sys-
tem ideally should support bidirec-
tional collaboration, which we plan to
work on.

LESSONS LEARNED
We now present lessons learned from
our experiences with our three IDEs
and describe our outlook on this
technology.

Integrated graphical
representations for PwE
Our experiments confirmed that inte-
grating graphical representations lets
programmers understand, manage,
and use the example data to build and
test programs, effectively supporting

the PwE workflow. Combining concrete
graphical representations with abstract
textual representations improved pro-
grammer productivity. Compared to
typical PbE systems that infer the inter-
action logic, PwE leaves it to the pro-
grammers, enabling precise, detailed
interaction design through iterative
testing and edits.

Furthermore, example data with
graphical representations make the
program specification more acces-
sible to nonprogrammers such as
visual designers and end users. They
can easily understand the program
behavior from visual examples (as
with Picode) and even modify the
behavior by interacting with the visu-
als (as with TextAlive).

Intuitive representation
of example data
Integrated graphical representations
can be realistic (for example, photos
and videos) or symbolic (for example, a
skeleton representing a human body),
depending on their use cases. Although
it seems obvious that graphics aid pro-
gramming, which kind of representa-
tion to use is not always obvious. Photos
and videos are particularly useful for
capturing the runtime environment,
including the real-world circumstances
(as with Picode). They might contain
explicit information, such as interac-
tions the user performed, and implicit
information, such as the user’s emo-
tions and environment. On the other
hand, illustrations and symbolic figures
can eliminate unnecessary information
and are often good for understanding
abstract intentions. Combinations of
realistic and symbolic representations
also work well. Just as map applications
support layering of satellite views and
symbolic maps, these two representa-
tions can be overlaid.

RELATED WORK
IN DATA MANIPULATION

Visual programming languages (VPLs) let programmers manip-
ulate visual components to build programs. Most VPLs do not

support graphical operations other than repositioning boxes and
connecting boxes with lines. However, some go beyond the box-and-
line notation and allow editing several data types such as bitmaps.

Some text-based IDEs also provide GUIs for inputting values.
Active code completion provides type-specific GUI widgets for
specifying concrete values.1 For instance, when a programmer
instantiates a Color object, a color palette interface is populated
instead of text-based completion candidates. Unity for authoring
games (http://unity3d.com) and Apparatus for interactive graphs
(http://aprt.us) enable live customization of program outputs
through graphical operations.

Although these IDEs allow interactive editing of certain data
without external tools, they assume that the data can be con-
structed from scratch, which is not feasible for creating modern
applications. In contrast, our TextAlive IDE allows interactive editing
of example data provided from outside the IDE. It has separate
interfaces for programmers and nonprogrammers, connecting
them through integrated graphical representations.

Similarly, Gneiss provides a spreadsheet interface with a simple
domain-specific language to retrieve and organize real-time exam-
ple data from the Web.2 Unlike TextAlive, Gneiss provides a single
user interface that both novices and nonprogrammers can use.

References
1.	 C. Omar et al., “Active Code Completion,” Proc. 34th Int’l Conf. Software Eng.

(ICSE 12), 2012, pp. 859–869.

2.	 K. Chang et al., “A Spreadsheet Model for Handling Streaming Data,” Proc.

2015 SIGCHI Conf. Human Factors in Computing Systems (CHI 15), 2015,

pp. 3399–3402.

	 J U LY 2 0 1 6 � 41

Video-authoring interfaces (such
as DejaVu and TextAlive) can intu-
itively present time-coded struc-
tured data. Researchers have pro-
posed many intuitive interfaces for
manipulating data through GUIs;
we can learn from such interfaces to
integrate data manipulation compo-
nents into IDEs. Although this article
focuses on inherently visual example
data, example data could be sounds,
haptic sensations, tastes, and smells.
Graphical representations could also
be useful in these cases. For instance,
photos of flowers could represent
their scent. At the same time, we fore-
see that future development environ-
ments could exploit human sensory
organs other than the eyes, including
the ears, skin, tongue, and nose.

Collaborative application
authoring in the age of big data
Collaboration among people with
diverse backgrounds is essential for
developing successful user inter-
faces for data-intensive applications
in the age of big data. The amount
and variations of data far surpass
what programmers alone can man-
age and edit.

Current development environ-
ments enable such collaborations in
text-based communication, as seen
in bug reports. Some services, includ-
ing GitHub, allow embedding graph-
ics, but we argue that such graphics
should be more directly bound to the
program specifications, as our exper-
iments demonstrated. This will let
programmers and nonprogrammers
create applications that satisfy their
needs. To achieve this, we need IDEs
with two faces: one for program-
mers and one for nonprogrammers.
The graphical representation is not
just a tool for programmers to build

and test programs or a tool for non-
programmers to customize program
behavior. It is a common language
for both to discuss how the program
should work.

Eliminating borders between
the development and
runtime environments
After IDEs integrate more graphics
and enable people with diverse back-
grounds to comprehend them, we will
eventually reach the point at which no
clear distinction exists between the
development and runtime environ-
ments. Programmers will ship pro-
grams together with the development
environments so that nonprogram-
mers can customize them by updating
the example data. As TextAlive shows,
such development (and runtime) envi-
ronments should be connected to the
Internet for sharing applications. Then,
others can run the application as is but
also edit it seamlessly in the online
development environment to improve
it iteratively.

When no distinction exists between
the development and runtime environ-
ments, applications will always remain
editable. However, if we increase
the level of freedom and allow com-
plete rewriting as implemented in
object-oriented environments such as
Morphic,11 users might become over-
whelmed. They might unintentionally
break the core part of the applications.
Whereas most live-programming en
vironments aim to make everything
editable anytime, we used graphi-
cal representations as the boundary
between what can be easily custom-
ized and what cannot. We believe that
user interface design will become a
process to create applications with
such a boundary that defines the
appropriate flexibility.

As the number of data-driven
applications increases in the
coming decades, their devel-

opment will involve much more data
manipulation that cannot (and should
not) be handled solely by program-
mers. PwE will be essential in such
development, inviting nonprogram-
mers into the iterative development
cycle and letting them customize
applications. There will be no static
distribution of programs, but they
will always remain somewhat cus-
tomizable. Designing such flexibil-
ity will be the important task of user
interface design, and intuitive rep-
resentations of example data will be
essential to effective design. We hope
that the integrated graphical repre-
sentations we introduced in this arti-
cle serve as a good starting point for
the journey toward successful user
interface design in the age of data-
intensive applications.

ACKNOWLEDGMENTS
The projects introduced in this arti-
cle have been done in collaboration
with Xiang Cao, Sean McDirmid, and
Tomoyasu Nakano. The projects are sup-
ported partly by the Japan Science and
Technology Agency ERATO (Exploratory
Research for Advanced Technology)
program and CREST (Core Research for
Evolutionary Science and Technology).
More details are at http://junkato.jp
/programming-with-examples.

REFERENCES
1.	 B.A. Myers, “Visual Programming,

Programming by Example, and
Program Visualization; A Taxon-
omy,” Proc. 1986 SIGCHI Conf. Human
Factors in Computing Systems (CHI 86),
1986, pp. 59–66.

2.	 D.C. Smith, “Pygmalion: An Exe-
cutable Electronic Blackboard,”

42	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

Watch What I Do, MIT Press, 1993,
pp. 19–48.

3.	 J. Edwards, “Subtext: Uncovering
the Simplicity of Programming,”
Proc. 20th Ann. ACM SIGPLAN Conf.
Object-Oriented Programming, Sys-
tems, Languages, and Applications
(OOPSLA 05), 2005, pp. 505–518.

4.	 K. Patel et al., “Gestalt: Integrated
Support for Implementation and
Analysis in Machine Learning,” Proc.
23rd Ann. ACM Symp. User Interface
Software and Technology (UIST 10),
2010, pp. 37–46.

5.	 A.J. Ko and B.A. Myers, “Barista:
An Implementation Framework for
Enabling New Tools, Interaction
Techniques and Views in Code Edi-
tors,” Proc. 2006 SIGCHI Conf. Human
Factors in Computing Systems (CHI
06), 2006, pp. 387–396.

6.	 J. Brandt et al., “Example-Centric
Programming: Integrating Web
Search into the Development Envi-
ronment,” Proc. 2010 SIGCHI Conf.
Human Factors in Computing Systems
(CHI 10), 2010, pp. 513–522.

7.	 J. Kato, D. Sakamoto, and T. Igarashi,
“Picode: Inline Photos Representing

Posture Data in Source Code,” Proc.
2013 SIGCHI Conf. Human Factors in
Computing Systems (CHI 13), 2013,
pp. 3097–3100.

8.	 J. Kato, S. McDirmid, and X. Cao,
“DejaVu: Integrated Support for
Developing Interactive Camera-
Based Programs,” Proc. 25th Ann.
ACM Symp. User Interface Software
and Technology (UIST 12), 2012,
pp. 189–196.

9.	 J. Kato, T. Nakano, and M. Goto,
“TextAlive: Integrated Design
Environment for Kinetic Typogra-
phy,” Proc. 2015 SIGCHI Conf. Human
Factors in Computing Systems (CHI 15),
2015, pp. 3403–3412.

10.	 J. Kato and T. Igarashi, “Vision-
Sketch: Integrated Support for
Example-Centric Programming of
Image Processing Applications,”
Proc. Graphics Interface (GI 14), 2014,
pp. 115–122.

11.	 J.H. Maloney and R.B. Smith,
“Directness and Liveness in the
Morphic User Interface Construction
Environment,” Proc. 8th Ann. ACM
Symp. User Interface Software and
Technology (UIST 05), 1995, pp. 21–28.

ABOUT THE AUTHORS
JUN KATO is a researcher at Japan’s National Institute of Advanced Industrial

Science and Technology (AIST). His research interests include human–computer

interaction, particularly user interfaces for authoring interactive content. Kato

received a PhD in computer science from the University of Tokyo. Contact him

at jun.kato@aist.go.jp or via http://junkato.jp.

TAKEO IGARASHI is a professor in the University of Tokyo’s Graduate School

of Information Science and Technology. His research interests include user

interfaces and computer graphics. Igarashi received a PhD in information engi-

neering from the University of Tokyo. Contact him at takeo@acm.org.

MASATAKA GOTO is a prime senior researcher at AIST. His research interests

include music information research based on signal processing. Goto received

a PhD in engineering from Waseda University. Contact him at m.goto@aist.go.jp.

got
flaws?

Find out more
and get involved:

cybersecurity.ieee.org

