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The programming-with-examples workflow lets developers 

create interactive applications with the help of example 

data. It takes a general programming environment and adds 

dedicated user interfaces for visualizing and managing the 

data. This lets both programmers and users understand 

applications and configure them to meet their needs.

GUI builders let users define the look of user 
interfaces with simple “what you see is what 
you get” (WYSIWYG) interaction. How-
ever, WYSIWYG interaction is insufficient 

to develop working systems; some programming is 
also necessary. Programming is essential to user inter-
face design because it lets developers design how users 
interact with an application. To support the develop-
ment of conventional interactive systems, integrated 
development environments (IDEs) represent standard-
ized numeric values such as those for MOUSE_CLICKED and 
KEY_TYPED as text or symbols. This simple representation 
reflects the characteristics of systems that run on com-
puters with standardized input and output devices such 
as a mouse, keyboard, and display. They typically handle 
a limited amount of data transferred intermittently.

In contrast, modern interactive applications have 
been becoming more visual and data-intensive. In 
the age of big data, computers have become faster and 
smaller, handling more visual data that cannot be pre-
sented intuitively with text or symbols. There are more 
variations among applications than before, such as 
robot control, gesture recognition, image processing, 
and animation.

Prior attempts to support the development of data- 
intensive systems include programming by example 
(PbE) systems (see Figure 1a). With PbE systems, users 
demonstrate desired pairs of input and output data to 
the systems—for example, by manipulating robot pos-
tures in front of a camera. Then, the systems infer the 
program, such as one to control robot postures. Most 
PbE systems let both programmers and end users create 
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programs. However, because these 
systems typically encapsulate the pro-
gram logic in a black box, they prevent 
users from understanding or directly 
specifying detailed behaviors. In addi-
tion, example data have no represen-
tation in such systems and cannot be 
managed or edited, making the devel-
opment process irreproducible. So, 
PbE systems without the capability of 
explicit programming are not suitable 
for user interface design that precisely 
reflects a programmer’s intention.

In contrast, our programming with 
examples (PwE) workflow (see Figure 
1b) enables explicit programming and 
lets users manage and edit example 
data. Programmers collect example 
data to aid building program compo-
nents. For instance, to create a gesture- 
based application, the programmer 
collects a set of example gesture data 
from a sensor and tests the application 
with that data. (Brad Myers used the 
term “Programming with Example” 
in 1986,1 though it indicated the omis-
sion of inferences in PbE systems and 
did not discuss data representations.)

Here, we discuss using graphical 
representations in IDEs to support PwE. 
Toward that end, we developed three 
IDEs, each of which explores a differ-
ent use of graphical representations, 
including photos, videos, and their 
interactive editing. Our approach over-
laps somewhat with live programming 
(LP), a general technique that enables 
live editing of programs during run-
time. (For more on LP, see the “Live 
Programming and Programming with 
Examples” sidebar.) Our experience 
has provided insights on user inter-
face design, including guidelines on 
when to use a particular kind of graph-
ical representation and the potential of 
visuals as a communication medium 
for collaborative application authoring.

PROGRAMMING  
WITH EXAMPLES
Modern interactive systems often use 
a variety of physical user interfaces 
consisting of sensors and actuators 
that receive and send large amounts 
of raw data as input and output. This 
includes visual data, such as photos 
and videos; object properties, such as 
color, shape, and location; as well as 
more structured information, such as 

human or robot posture and parame-
ters for animating graphical objects. 
Such data serve as examples to tell 
computers about the problem we want 
to solve.

As we mentioned before, PwE uses 
this example data to build and test pro-
grams. For instance, building a pro-
gram could involve training models 
for machine-learning algorithms and 
specifying robot postures. Testing the 

if (Sensor1.isActive) {
 ... // ...
}
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FIGURE 1. Two workflows for developing data-intensive interactive systems. (a) Pro-
gramming by example (PbE). (b) Programming with examples (PwE). Unlike PbE systems, 
PwE systems allow the representation of example data and enable explicit programming. 
IDE: integrated development environment.

LIVE PROGRAMMING AND
PROGRAMMING WITH EXAMPLES

In terms of the programming experience, the approach most 
relevant to programming with examples (PwE) is live program-

ming (LP), which enables live editing of programs at runtime. LP 
originated in research on object-oriented programming and visual 
programming, recently attracting attention for its application to 
text-based programming environments.

LP and PwE both provide a fluid programming experience 
through more informative user interfaces, and some overlaps ex-
ist. For example, TextAlive is an LP system. However, their focuses 
differ slightly. LP focuses on logic, whereas PwE focuses on data. 
LP conceptually aims to make the entire program editable during 
runtime; PwE splits the program into the editable part (code) and 
the rest (data). This separation not only simplifies the implemen-
tation but also enables end-user program customization.
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program would involve executing it 
with recorded input from sensors and 
debugging it by checking output from 
trained models.

In current development environ-
ments, example data are usually ref-
erenced by textual or symbolic visual 
representations such as file names 
and icons. In conventional interac-
tive systems, the connection between 
the example data, text, and symbols 
is usually obvious. In modern interac-
tive applications, that is not the case; 
programmers often get confused by 
the vague connection. In addition, pro-
grammers are responsible for manag-
ing the data. To examine and edit the 
data, they typically must launch exter-
nal tools outside the development 
environments, which is tedious and 
error-prone. The IDEs we present here 
directly support PwE to address these 
problems and make the process more 
efficient and productive.

There have been several efforts 
to support PwE. Most PbE systems 

require no programming knowledge, 
but exceptions exist. For instance, 
Pygmalion lets programmers build 
a program by giving concrete input 
data instead of writing abstract pro-
gram code.2 The Subtext IDE lets pro-
grammers specify test cases by writing 
example input data next to program 
code in a code editor.3 Our IDEs employ 
the same PwE workflow as these sys-
tems but use graphical instead of tex-
tual representations. This difference 
reflects the example data becoming 
more visual and complex in modern 
interactive applications.

Recent IDEs have successfully 
incorporated various forms of exam-
ples. The most relevant one is Gestalt, 
which supports the implementation 
of machine-learning algorithms for 
image recognition.4 It provides dedi-
cated GUIs to manage and edit exam-
ple data. Barista lets programmers 
paste graphics directly into the code 
editor.5 Standing atop these prior 
IDEs with PwE support, we explored 

a broader design space that employs 
graphical representations in the IDEs.

Blueprint lets programmers search 
for example source code in online 
repositories and paste the result 
through a code completion inter-
face.6 Whereas examples in Blueprint 
denote the use of APIs—the logic 
of the programs—examples in PwE  
denote data used in the programs.

PHOTOS REPRESENTING 
STATIC DATA
Here we explore using photos to repre-
sent static example data, which does 
not change over time. Our Picode IDE 
supports the development of programs 
that sense human and robot postures 
and control robot postures.7 (For more 
on handling posture data, see the 
“Related Work in Handling Posture 
Data” sidebar.)

Picode
Picode comprises a code editor, pose 
library, and preview window (see 

RELATED WORK IN HANDLING POSTURE DATA

Topobo is a programming-by-example system 
in which users specify how robots should 

move by grabbing and moving their joints.1 
Choreonoid is a GUI tool with physical simulation 
for creating robot motions.2 In both cases, the 
user needs no programming knowledge but has 
little control over how the robot should respond 
to user input. To develop interactive systems that 
handle posture data, we still need integrated 
development environments (IDEs).

Current IDEs usually come with text-based and 
symbolic representations, which cannot represent 
complex data such as posture information. Sev-
eral studies have involved integrated still images. 
Sikuli shows image data as an inline image in the 
code editor,3 and heterogeneous visual program-
ming languages visualize simple tree structures 
next to the code editor.4 In these systems, still 
images are either the represented data or its 

visualization. Our Picode IDE uses photos not as 
just mere images but as representations of under-
lying posture data.
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Figure 2). Programmers first take a 
photo of a human or robot in the pre­
view window; Picode captures the cor­
responding posture data from a Kinect 
sensor or the robot’s servos. Picode 
stores a collection of these paired data 
in the pose library as a single entry. 
Then, programmers drag a photo from 
the library and drop it into the code 
editor. Picode embeds the photo in 
code, which the programmers can exe­
cute with a single click.

User study
A programmer and nonprogrammer 
performed pair programming with 
Picode for three hours. The program­
mer benefited from the PwE workflow, 
and even the nonprogrammer could 
infer and comprehend the source code 
surrounding inline photos.

Given the encouraging results, we 
hosted a workshop for nonprogram­
mers to further investigate the role 
of photos in the code. We found that 
photos contained three types of infor­
mation that was hardly represented by 
text, symbols, or 3D computer graphics 
visualizing posture data.

First, photos present the environ­
ment surrounding humans and robots. 
This helps programmers quickly under­
stand a program’s operating environ­
ment and objectives. For example, 
humans employ the same posture 
whether they are pushing a cart on a 
slope or performing calisthenics. A robot 
employs similar postures when holding 
a small or large ball, with the only dif­
ference being how wide the hand opens. 
Although numerical distinction is possi­
ble, this is not informative for humans.

Second, photos sometimes indicate 
a particular part of a posture. In a text-
based IDE, a programmer could indicate 
interest in the second joint of a robot 
by inserting a textual comment in the 

source code. However, the phrase “the 
second joint” will not instantly inform 
the reader which joint it is; a photo can 
be a more direct representation in which 
the programmer points to the joint.

Finally, photos containing human 
subjects can express emotion. This 
characteristic has been significant 
throughout the medium’s long his­
tory and is not found in conventional 
source code. By our study’s end, the 
pose library included photos showing 
participant enjoyment and creative 
shots of the robots. The source code 
with inline photos was extremely indi­
vidual, showing a variety of clothing, 
poses, and expressions. The photos 
motivated the nonprogrammers to cus­
tomize the program and further learn 
general programming.

VIDEOS REPRESENTING 
DYNAMIC BEHAVIOR
Here, we explore using videos to rep­
resent time-coded example data. Our 
DejaVu IDE (see Figure 3) supports the 
development of interactive camera-
based programs.8 It incorporates a 
video-player metaphor into a standard 
text-based IDE. (For more on handling 
time-coded data, see the “Related Work 
in Handling Time-Coded Data” sidebar.)

DejaVu
DejaVu employs two interlinked inter­
faces. The canvas interface corresponds 

to real-time video preview in video-​
editing applications. Users can moni­
tor any number of variables, including 
input and output, continuously during 
runtime in an arbitrary layout. They 
can also review a frame of interest in a 
past program session.

When programmers select a vari­
able in the code editor and drag it onto 
the canvas, DejaVu represents it as a 
rectangular box with visuals (images 
and skeletal data, in the case of human 
subjects in the video) or text (numerical 
or Boolean data). Along with monitor­
ing variable values, programmers can 
draw sketches and notes on the can­
vas to aid visual data management. By 
combining sketches with variable val­
ues, programmers can turn the canvas 
into a “dynamic sketchbook” in which 
sketches come alive with dynamic data.

Similarly to interfaces in video- 
editing applications, the timeline inter­
face represents changes in the example 
data over time. The timeline might con­
sist of multiple data streams, each cor­
responding to a variable in the canvas. 
A stream of visual data is represented 
as a strip of frame thumbnails, and a 
stream of numerical or Boolean data is 
represented as a time graph. The time­
line enables not only passive review of 
example data but also revising the pro­
gram and refreshing it by reexecuting it 
with recorded input data, which assists 
iterative development.

Pose libraryCode editor Pose 

Preview window

FIGURE 2. Picode shows inline photos in the code editor to represent example posture 
data. Programmers drag a photo from the pose library and drop it into the code editor. 
Picode embeds the photo in code, which the programmers can execute with a single click.
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User feedback
Three professional developers tried 
out DejaVu. They had significant 
experience in developing interactive 
Kinect-based programs with Visual 
Studio, a standard IDE. Afterward, 
they agreed that DejaVu correlated 
well with their current PwE workflow. 
We learned three important lessons 
from their feedback.

First, the tight integration in the 
IDE enables the synchronous connec-
tion between the canvas, timeline, 
and code editor. The participants pre-
viously had desired DejaVu’s features 
and sometimes even made their own 
tools. However, the separate tools 
were not as powerful and flexible as 
DejaVu’s visual, integrated, and inter-
active support.

Second, it is not always easy 
to collect example data from the 

RELATED WORK IN HANDLING TIME-CODED DATA

Some IDEs visualize time-coded information of 
program executions. ZStep records all stack 

traces and provides a navigation interface to go 
back and forth over the trace to see which line 
of code executed at a particular point.1 Whyline 
records the stack traces and window output.2 It 
also provides a “Why did this happen (or not hap-
pen)?” interface, which navigates to the cause of 
a phenomenon such as the color of a pixel. These 
integrations work well for discrete events with 
simple data structures but cannot handle contin-
uous data streams such as input from cameras 
and output to servo motors.

Some developer tools have timeline interfaces 
to help users understand continuous time-coded 
data. Exemplar is a standalone tool for authoring 
sensor-based interaction by demonstration.3 
D.tools records user interactions with physical 
computing devices and visualizes the events 
along with recorded videos.4 Timelapse has 
similar features for event logging and webpage 
debugging.5 These tools are either a stand-
alone tool outside the IDE or an IDE without a 

text-based code editor. In contrast, the DejaVu 
IDE tightly integrates the code editor and timeline 
interface.

References
1.	 H. Lieberman et al., “Bridging the Gulf between Code and 

Behavior in Programming,” Proc. 1995 SIGCHI Conf. Hu-

man Factors in Computing Systems (CHI 95), 1995,  

pp. 480–486.

2.	 A.J. Ko et al., “Finding Causes of Program Output with the 

Java Whyline,” Proc. 2006 SIGCHI Conf. Human Factors in 

Computing Systems (CHI 06), 2006, pp. 387–396.

3.	 B. Hartmann et al., “Authoring Sensor-Based Interactions 

by Demonstration with Direct Manipulation and Pattern 

Recognition,” Proc. 2007 SIGCHI Conf. Human Factors in 

Computing Systems (CHI 07), 2007, pp. 145–154.

4.	 B. Hartmann et al., “Reflective Physical Prototyping through 

Integrated Design, Test, and Analysis,” Proc. 19th Ann. ACM 

Symp. User Interface Software and Technology (UIST 06), 

2006, pp. 299–308.

5.	 B. Burg et al., “Interactive Record/Replay for Web Applica-

tion Debugging,” Proc. 26th Ann. ACM Symp. User Interface 

Software and Technology (UIST 13), 2013, pp. 473–484.

Canvas

Timeline

Code editor

FIGURE 3. DejaVu shows time-coded example data in the canvas and timeline inter-
faces. It incorporates a video-player metaphor into a standard text-based IDE.
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programmer’s surroundings that 
satisfy quality or quantity require-
ments for program testing. The pro-
grammers wanted the ability to 
import and manipulate the example 
data from external sources.

Third, the canvas went beyond 
individual data displays and aroused 
the need for customizable visualiza-
tion. The visualization could range 
from simple graphic combinations 
such as overlaying a skeleton on a 
color image to more semantic com-
positions such as masking certain 
image regions.

INTERACTIVE EDITING  
OF EXAMPLE DATA
Whereas the previous two sections 
explored visualization of example 
data, this section focuses on using 
graphical operations to edit exam-
ple data. Our TextAlive IDE (see Fig-
ure 4) supports live programming of 
domain-specific applications (video- 
rendering programs) and offers inter-
active user interfaces for tuning their 
parameters.9 (For more on editing 
data, see the “Related Work in Data 
Manipulation” sidebar.)

TextAlive is similar to our Vision-
Sketch, which supports the example-
centric development of image- 
processing algorithms.10 Although 
VisionSketch is primarily for program-
mers, it led us to develop TextAlive, 
which investigates the potential of 
collaborative application authoring. 
With TextAlive’s clearer separation of 
user interfaces for programming and 
parameter tuning, programmers and 
nonprogrammers can collaborate to 
create applications.

TextAlive
TextAlive lets users create a synchron
ized kinetic-typography video; it works 

just like familiar video-authoring  
tools. When users load an audio file 
and its transcription, TextAlive auto-
matically creates a video. Other tools 
require users to create videos from 
scratch and spend a huge amount of 
time manually synchronizing audio 
and text. TextAlive requires signifi-
cantly less effort.

For each text sample and graphic in 
the video, users can select an anima-
tion template and customize its visual 
effects with the GUI widgets in the 
parameter editor. They can also use 
the widgets to debug templates. Syn-
chronization errors can be corrected 
in the timeline, which visualizes the 
text’s timing information.

Although each animation tem-
plate supports customization, it still 
somewhat limits the resulting anima-
tion. To address this issue, TextAlive 
enables live programming of the tem-
plates. Many tools for creating anima-
tions include scripting engines, but 
such scripting is typically tied to the 
specific data and not easily general-
izable for later reuse. These tools also 
do not provide much graphical feed-
back during coding. TextAlive enables 
more reuse through an abstraction 
mechanism and provides continuous 
graphical feedback. Programmers can 
open a code editor to edit the imple-
mentation and update the resulting 
video with just one click. There is no 

notion of compilation or execution. 
The program that creates the anima-
tions continues running virtually.

The update process not only 
updates the video but also populates 
or removes the GUI widgets. To popu-
late a widget, programmers declare a 
variable in the template definition and 
write a comment block right before 
the declaration.

User feedback
Four nonprogrammers and three pro-
grammers created videos with Text
Alive. They had varying expertise in 
video authoring and programming. 
All of them welcomed the features 
for authoring kinetic-typography vid-
eos, especially the timeline. Whereas 
the nonprogrammers requested more 
variations of templates, the program-
mers could implement new templates 
and appreciated live programming 
and easy widget creation.

To observe collaboration among 
users, we deployed TextAlive as a Web 
service. From September 2015 to Jan-
uary 2016, the users created more 
than 300 videos and 50 templates. The 
nonprogrammers reported enjoying 
authoring videos, whereas the pro-
grammers reported enjoying develop-
ing templates for extending expres-
sivity with the help of the edited 
example data. The programmers some-
times created videos to showcase their 

Timeline

Parameter editor

Code editor

FIGURE 4. TextAlive allows live customization of programs with interactive user inter-
faces. Programmers and nonprogrammers can collaborate to create programs.
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templates. Graphical representations 
of the programs (videos) and their 
parameters (GUI widgets) served as a 
bridge between the programmers and 
nonprogrammers.

A limitation of our current imple-
mentation is that collaboration is uni-
directional; nonprogrammers have no 
direct way to request new templates 
with specific visual effects. The sys-
tem ideally should support bidirec-
tional collaboration, which we plan to 
work on.

LESSONS LEARNED
We now present lessons learned from 
our experiences with our three IDEs 
and describe our outlook on this 
technology.

Integrated graphical 
representations for PwE
Our experiments confirmed that inte-
grating graphical representations lets 
programmers understand, manage, 
and use the example data to build and 
test programs, effectively supporting 

the PwE workflow. Combining concrete 
graphical representations with abstract 
textual representations improved pro-
grammer productivity. Compared to 
typical PbE systems that infer the inter-
action logic, PwE leaves it to the pro-
grammers, enabling precise, detailed 
interaction design through iterative 
testing and edits.

Furthermore, example data with 
graphical representations make the 
program specification more acces-
sible to nonprogrammers such as 
visual designers and end users. They 
can easily understand the program 
behavior from visual examples (as 
with Picode) and even modify the 
behavior by interacting with the visu-
als (as with TextAlive).

Intuitive representation 
of example data
Integrated graphical representations 
can be realistic (for example, photos 
and videos) or symbolic (for example, a 
skeleton representing a human body), 
depending on their use cases. Although 
it seems obvious that graphics aid pro-
gramming, which kind of representa-
tion to use is not always obvious. Photos 
and videos are particularly useful for 
capturing the runtime environment, 
including the real-world circumstances 
(as with Picode). They might contain 
explicit information, such as interac-
tions the user performed, and implicit 
information, such as the user’s emo-
tions and environment. On the other 
hand, illustrations and symbolic figures 
can eliminate unnecessary information 
and are often good for understanding 
abstract intentions. Combinations of 
realistic and symbolic representations 
also work well. Just as map applications 
support layering of satellite views and 
symbolic maps, these two representa-
tions can be overlaid.

RELATED WORK
IN DATA MANIPULATION

Visual programming languages (VPLs) let programmers manip-
ulate visual components to build programs. Most VPLs do not 

support graphical operations other than repositioning boxes and 
connecting boxes with lines. However, some go beyond the box-and-
line notation and allow editing several data types such as bitmaps.

Some text-based IDEs also provide GUIs for inputting values. 
Active code completion provides type-specific GUI widgets for 
specifying concrete values.1 For instance, when a programmer 
instantiates a Color object, a color palette interface is populated 
instead of text-based completion candidates. Unity for authoring 
games (http://unity3d.com) and Apparatus for interactive graphs 
(http://aprt.us) enable live customization of program outputs 
through graphical operations.

Although these IDEs allow interactive editing of certain data 
without external tools, they assume that the data can be con-
structed from scratch, which is not feasible for creating modern 
applications. In contrast, our TextAlive IDE allows interactive editing 
of example data provided from outside the IDE. It has separate 
interfaces for programmers and nonprogrammers, connecting 
them through integrated graphical representations.

Similarly, Gneiss provides a spreadsheet interface with a simple 
domain-specific language to retrieve and organize real-time exam-
ple data from the Web.2 Unlike TextAlive, Gneiss provides a single 
user interface that both novices and nonprogrammers can use.
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Video-authoring interfaces (such 
as DejaVu and TextAlive) can intu-
itively present time-coded struc-
tured data. Researchers have pro-
posed many intuitive interfaces for 
manipulating data through GUIs; 
we can learn from such interfaces to 
integrate data manipulation compo-
nents into IDEs. Although this article 
focuses on inherently visual example 
data, example data could be sounds, 
haptic sensations, tastes, and smells. 
Graphical representations could also 
be useful in these cases. For instance, 
photos of flowers could represent 
their scent. At the same time, we fore-
see that future development environ-
ments could exploit human sensory 
organs other than the eyes, including 
the ears, skin, tongue, and nose.

Collaborative application 
authoring in the age of big data
Collaboration among people with 
diverse backgrounds is essential for 
developing successful user inter-
faces for data-intensive applications 
in the age of big data. The amount 
and variations of data far surpass 
what programmers alone can man-
age and edit.

Current development environ-
ments enable such collaborations in 
text-based communication, as seen 
in bug reports. Some services, includ-
ing GitHub, allow embedding graph-
ics, but we argue that such graphics 
should be more directly bound to the 
program specifications, as our exper-
iments demonstrated. This will let 
programmers and nonprogrammers 
create applications that satisfy their 
needs. To achieve this, we need IDEs 
with two faces: one for program-
mers and one for nonprogrammers. 
The graphical representation is not 
just a tool for programmers to build 

and test programs or a tool for non-
programmers to customize program 
behavior. It is a common language 
for both to discuss how the program 
should work.

Eliminating borders between 
the development and 
runtime environments
After IDEs integrate more graphics 
and enable people with diverse back-
grounds to comprehend them, we will 
eventually reach the point at which no 
clear distinction exists between the 
development and runtime environ-
ments. Programmers will ship pro-
grams together with the development 
environments so that nonprogram-
mers can customize them by updating 
the example data. As TextAlive shows, 
such development (and runtime) envi-
ronments should be connected to the 
Internet for sharing applications. Then, 
others can run the application as is but 
also edit it seamlessly in the online 
development environment to improve 
it iteratively.

When no distinction exists between 
the development and runtime environ-
ments, applications will always remain 
editable. However, if we increase 
the level of freedom and allow com-
plete rewriting as implemented in 
object-oriented environments such as 
Morphic,11 users might become over-
whelmed. They might unintentionally 
break the core part of the applications. 
Whereas most live-programming en
vironments aim to make everything 
editable anytime, we used graphi-
cal representations as the boundary 
between what can be easily custom-
ized and what cannot. We believe that 
user interface design will become a 
process to create applications with 
such a boundary that defines the 
appropriate flexibility.

As the number of data-driven 
applications increases in the 
coming decades, their devel-

opment will involve much more data 
manipulation that cannot (and should 
not) be handled solely by program-
mers. PwE will be essential in such 
development, inviting nonprogram-
mers into the iterative development 
cycle and letting them customize 
applications. There will be no static 
distribution of programs, but they 
will always remain somewhat cus-
tomizable. Designing such flexibil-
ity will be the important task of user 
interface design, and intuitive rep-
resentations of example data will be 
essential to effective design. We hope 
that the integrated graphical repre-
sentations we introduced in this arti-
cle serve as a good starting point for 
the journey toward successful user 
interface design in the age of data- 
intensive applications. 
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