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AutoLeadGuitar: Automatic Generation of Guitar 
Solo Phrases in the Tablature Space 

Matt McVicar, Satoru Fukayama, Masataka Goto 

Abstract-We present AutoLeadGuitar, a system for automati­
cally generating guitar solo tablatures from an input chord and 
key sequence. Our system generates solos in distinct musical 
phrases, and is trained using existing digital tablatures sourced 
from the web. When generating solos AutoLeadGuitar assigns 
phrase boundaries, rhythms and fretboard positions within a 
probabilistic framework, guided towards chord tones by two user­
specified parameters (chord tone preference during and at the 
end of phrases). Furthermore, guitar-specific ornaments such as 
hammer-ons, pull-offs, slides and string bends are built directly 
into our model. Listening tests with our model output confirm 
that the inclusion of chord tone preferences, phrasing, and guitar 
ornaments corresponds to an increase in user satisfaction. 

Keywords--Computer generated music, Music information re­
trieval 

I. INTRODUCTION 

THIS paper introduces a method of algorithmic composition 
for the guitar. Guitar parts in popular music can broadly be 

split into rhythm (outlining the main harmony/rhythmic pulse) 
and lead parts (harmonies/solo breaks). Naturally extending our 
previous work [1], the current paper is focused on the latter. 

A. Motivation 

Our main motivation for this work is that automatically 
generated guitar solos have the potential be used in situations 
when a popular music composer would like a guitar solo in a 
piece but lacks the necessary familiarity with the instrument 
to compose one. Furthermore, we believe that automatically 
generated content could be used as a pedagogical aid, to help 
amateur musicians learn different approaches to playing over a 
given chord sequence. This work could therefore be considered 
an example of 'Creative MIR' [2], whose goal is to use real­
world applications to transfer Music Information Retrieval 
results beyond the immediate research community. 

B. Challenges and proposed solutions 

There are several challenges which must be overcome in the 
automatic generation of guitar solos. First, algorithmic melody 
composition (of which we consider the current work to be a 
subtask) has been said to be challenging to evaluate without 
the presence of a musical context [3]. Inspired by previous 
work [4], [5], our system counters this by using a key and 
chord sequence as a user-defined input, and guides the melody 
towards chord tones to enhance musicality and realism. 
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Fig, l. Flowchart of AutoLeadGuitar's main processes_ Training data (digital 
tablatures annotated with chords, keys and phrases) are used to create models 
for the detection of phrases in existing solos, and for the generation of novel 
solos when complemented with an input chord and key sequence, 

We believe one of the key concepts in generating realistic 
guitar solos to be etlective phrasing. Indeed, it has recently 
been shown that composing musical events in phrases facilitates 
perception and analysis by the human auditory system [6], and 
is essential in conveying expressiveness in music [7]. Phrasing 
is particularly challenging for guitarists when compared to 
other solo instruments (such as the wind instrument family) as 
guitarists cannot rely on pauses for breath to construct lyrical 
phrases. To better understand the phrasing techniques used by 
lead guitarists, the first stage of the current work is therefore an 
analysis of existing guitar solos, leading to a statistical model 
for the detection of phrases in digital scores. An algorithm for 
the generation of guitar solo phrases is subsequently introduced, 
defined by parameters learned from an existing corpus. 



Generating music for the guitar algorithmically is also 
particularly challenging owing to the physical layout of the 
instrument. Specifically, the pitch ranges for guitar strings 
significantly overlap, meaning there is more than one position 
(string and fret number) to play most notes. Tablature notation 
(or simply tab, plural tabs), which explicitly notates the position 
in which to play each note in a piece, was developed to 
overcome this ambiguity. Existing compositional models which 
output traditional notation rather than tab would therefore 
necessitate an automatic fingering or arrangement (see II-B). To 
combat this and to exploit attractive aspects of the instrument 
such as string bends, hammer-ons, pull-offs, and slides, our 
model composes directly in the tablature space. A high-level 
outline of our proposed techniques is shown in Figure 1. 

C. Paper structure 

The remainder of this paper is organised as follows. In Sec­
tion II we survey the literature on computer-aided composition, 
algorithmic guitar fingering/arrangement and phrase boundary 
detection. Section III outlines our phrase boundary detection 
and compositional model, which are evaluated in Section IV. 
Finally, we conclude the work and discuss areas of future 
research in Section V. 

II. RELEVANT LITERATURE 

A. Computer-aided melody generation 

Algorithmic composition has a rich and varied research 
history (see, for example, [8], [9] and the survey [10]), of which 
computer-aided composition [5], in which the compositional 
task is split between human and computer, is an interesting 
subtask. The interaction between human expert and the machine 
in computer-aided composition may occur in a fixed order, or 
involve several iterations back-and-forth [11]. 

The generation of melodies given a chord sequence is a 
particularly popular topic in computer-aided composition, a 
particular example of which is John Biles' GenJam [4], a 
genetic algorithm for the generation of jazz solos. GenJam 
takes a chord sequence as input and outputs an improvised 
solo, with melody phenotype fitness optimized over several 
iterations via user feedback. Pachet and various collaborators 
[12], [13] have tackled generation of sequences (including 
melodies) via Markov processes with hard constraints such as 
"end the phrase on this note" and with great care taken to avoid 
plagarism in model output. 

B. Automatic guitar fingering and arrangement 

As mentioned in Section I, the layout of the guitar means 
that mapping a given musical score to string and fret positions 
is non-trivial, and may not even be possible. Algorithmically 
mapping a score to a tab and minimally altering a score to 
ensure it is playable on the guitar are referred to as algorithmic 
fingering and arrangement respectively. 

Sayegh first considered the problem of algorithmic fingering 
for stringed instruments [14], introducing an optimum path 
paradigm algorithm, later developed by Radicioni [15] to 
minimise fingering difficulty at the phrase, rather than global 
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level. A data -driven approach to the same problem was 
suggested by Radisavljevic and Driessen [16], whose path 
difference learning learns the weight costs of a particular 
playing style based on labelled tabs. Genetic algorithms have 
also been explored as a means of efficiently exploring the large 
search space created in the fingering decision problem [17]. 
Hori et al. [18] designed an input-output Hidden Markov Model 
(HMM) for the automatic arrangement of guitar pieces. 

C. Automatic phrase boundary detection 

Existing phrase boundary detection methods are mostly based 
in the audio domain. Aucouturier and Sandler [19] detected 
changes in spectral similarity to identify phrase boundaries, 
whilst Cheng and Chew [20] instead used loudness and 
expressive parameters. An unsupervised HMM was presented 
by Kim and Weinzierl [21] which used cues including note 
duration relative to the preceding note. Pearce et al. conducted 
a comparison and evaluation of symbolic data-driven and rule­
based phrase detection algorithms [22], finding that a hybrid 
model was able to attain an f -measure of 0.66. 

III. METHODS 

A. Identification of guitar solo phrase boundaries 

We formulate phrase boundary detection probabilistically via 
a supervised Hidden Markov Model, with observed states as 
symbolic note properties (pitch, note duration etc.) and states 
corresponding to the underlying phrase structure. 

When inspecting existing solos, we noticed that some 
phrases contained brief rests and that in others phrases ran 
consecutively without rest, meaning that the presence of a 
rest is neither necessary nor sufficient to segment phrases. 
Furthermore, we noticed that phrase ends had distinct charac­
teristics which made them amenable to automatic identification, 
most notably that they tended to end on chord tones and on 
strong metrical position, and had duration significantly longer 
than their predecessors. On the basis of these observations, 
our model has three hidden states at each time point t: 
Xt E {no phrase, phrase, phrase end} (note that phrase starts 
can be uniquely defined as following immediately from a 'no 
phrase' or 'phrase end'). 

Hidden chain model parameters for the HMM (initial 
distribution of phrases Ani (Xl) and phrase-to-phrase transitions 
Arans (Xt IXt-l» were set using a fully-labelled dataset using 
maximum likelihood estimation (MLE). We set the observation 
probabilities Pobs(YtIXt) based on the following assumptions. 
First, that phrases are unlikely to contain rests. Second, phrases 
end on strong metrical positions and harmonically stable pitches. 
Finally, phrase ends are likely to have a duration significantly 
longer than their predecessors. 

To model these properties mathematically, we extracted the 
following properties of each symbolic note: whether the note 
was an onset or a rest, the metrical position (quantized to 
sixteenth notes), the pitch relative to the underlying chord, and 
note duration relative to its predecessors (calculated by taking 
the ratio of the note duration and the median duration of the 
previous three notes). We then set the probability of witnessing 



note Y given state x at time t as the product of y's rest, metric 
position, relative duration, and chord tone probabilities: 

Pobs(Ytlxt) = Pr(Ytlxt)Pm(Ytlxt)Pd(Ytlxt)Pc(Ytlxt). 

Pr, Pm and Pc were estimated from training data directly from 
normalised histogram counts. Pd represents a waiting time and 
is therefore naturally modelled as a Gamma distribution, the 
shape and scale parameters of which were estimated using 
MLE. The joint probability of a hidden state sequence x = 

(Xl, . . .  , XT) and observed note sequence y = (YI, . . .  , YT) 
given these parameters can then be computed via: 

T 
P(x,y) = Ani (xI) II Ptrans(xtlxt-l)' Pobs(Ytlxt) 

t=2 
The state sequence which maximises this quantity: 

y* 
= argmaxP(x,y) 

y 

can then found efficiently via the Viterbi algorithm [23]. 

B. Generation of phrase boundaries 

Our phrase generation algorithm is intuitive and we believe 
mimics the creative process guitarists use when improvising 
a solo. It is outlined in Figure 2. Given a set of measures 
over which to play, our algorithm begins by choosing a metric 
position in the first measure (phrase onset selection, A) and a 
phrase duration (phrase duration selection, B). A phrase onset 
is then chosen for the next phrase (A), chosen from whatever 
remains of the current measure and the next full measure. This 
process is then repeated until the solo measures are exhausted. 
We implemented this algorithm by calculating a phrase start 
probability Pps and phrase duration distribution Ppd from our 
training data. We found that Ppd was well approximated by a 
normal distribution, with mean usually a little over one measure. 
Phrase onset probabilities carried over multiple measures (such 
as the second iteration of algorithm stage A in Figure 2) were 
normalised to meet the probability criterion. 

C. Generation of rhythms 

Phrase rhythms were set from a note onset bigram model, 
which specified the probability of an onset at each sixteenth 
note given the last onset position. These probabilities were 
calculated from our training data and collected into a matrix: 

16 
R E IR16X16, such that L Ri,j = 1.0 for i = 1, ... ,16. 

j=l 

The above-diagonal elements of R represent transitions further 
into the current measure, elements below and on the diagonal 
represent transitions into the following measure. The first onset 
of each phrase was set to be start of the phrase itself, with a 
random walk over the rows of R used to generate subsequent 
onsets within the phrase, until the phrase was exhausted. 

In practice we found that favourable results were obtained 
by extending the offset of the final note of a phrase to the 
onset of the following phrase, increasing the duration of the 
final note in the phrase and mimicking the behaviour seen in 
existing solos (recall Subsection III-A). 
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Fig. 2. AutoLeadGuitar's phrase generation algorithm, which alternates 
between phrase onset selection (stage A) and phrase duration selection (stage 
B) until the designated measures are exhausted. 

D. Phrase pitch state space: 

To set the pitch for each note onset, we constructed a bigram 
model in the tablature space. To incorporate string bending, a 
facet we believe to be important in expressive guitar playing, 
each unique state in the pitch model consisted of a (string, 
fret, bend) triple. Bends were measured in integer number of 
semi tones (0 for unbent states). This data was collected in a 
matrix P E IRlsl x lSI, where lSI denotes the number of unique 
(string, fret, bend) state triples seen in the data. 

E. Key normalization 

To maximally exploit our training data and increase our 
system's generalisation potential, we transposed our data into 
two canonical keys (C major/A minor) before normalising the 
rows of P. The reason we believe a key dependent, rather than 
chord dependent model to be valid is that lead guitarists in the 
blues and rock genre frequently improvise using the ubiquitous 
pentatonic scale (pitch classes A, C, D, E, G in the key of C 
major/A minor), as observed by Flor and Holder [24]: 

"For rock and roll and blues songs, knowledge of pentatonic 
scales and a song's key is usually sufficient for improvising. " 

P was 'untransposed' into a user-specified key during testing. 

F Highlighting chord tones 

We found that by simply taking random walks over P, at 
the end of phrases our model frequently ended on dissonant or 
unresolved tones, resulting in a slightly frustrating listening 
experience. Similarly, we noticed that interesting non-diatonic 
chord tones were unfortunately rarely highlighted. One method 



to counter this suggested to students of the guitar is to 
highlight specific chord tones in solos: 

" . . .  try starting your idea on a chord and aim for another, 
meeting the change with a strong, chord-defining pitch. " [25] 

We incorporated this behaviour in our compositions by added 
two parameters to guide the random walk process towards chord 
tones. Specifically, given the current pitch state St we calculate 
the probability of the next state St+l by interpolating between 
the t-th row of P, and a function which is 1.0 if St+l is a 
chord tone and 0.0 otherwise: 

P(St+lISt) = wP(St+lISt) + (1 - w):ll.(St+1 E Ct+l), 

where Ct+l are the pitch classes of the chord at time t + 1 and 
w E [0,1] is an interpolation weight. Recalling from Subsection 
III-A that many phrases ended on chord tones, we set w = /3 
when the note was the final note in a phrase and, otherwise, 
where /3" E [0,1] and generally /3 > ,. 

G. Exploiting guitar-specific ornaments 

When two subsequent states occur on the same string, a 
guitarist has the option of transitioning between them in at 
least three novel ways. Briefly defining some terminology: a 
slide between states is a simple glissando from one fret to 
the next, a hammer-on is sounded by 'hammering' from one 
fret on a string to a higher fret on the same string without 
plucking/picking, and a pull-off is formed by 'pulling' one 
finger from the fretboard onto a lower fret. 

The probability of any one of these ornaments occurring 
between any two states in the model was learnt from data using 
the same methodology above. We stored the probabilities in 
(fairly sparse) key normalized hammer-on/pull-off and slide 
transition matrices HP, S E IRlsl x lSI for each ornament. Note 
that hammer-ons and pull-offs may be stored in a single 
matrix since they are only possible on state transitions strictly 
increasing/decreasing fret numbers respectively. A hammer­
on/pull-off between states with indices i and j was then 
included with probability HPi,j. If no hammer-on or pull­
off was included, a slide was between the states was added 
with probability Si,j. 

IV. EXPERIMENTS 

A. Data collection 

We collected digital guitar tablatures to train our model from 
the user-generated content website GuitarPro.netl , choosing ten 
songs each from four popular guitarists in the blues/rock style: 
Jimi Hendrix, Eric Clapton, Jimmy Page, and 'Slash' (Saul 
Hudson). Guitarists were chosen according to tab popularity 
(number of tabs), with songs chosen which were mostly in 
COlmnon time and in standard tuning (or tuned sharp or flat 1 
semi tone, which is easily transposed). When more than one 
tab was available for a song, the most accurate or complete 
tab was chosen. Each tab was then converted to MusicXML 
format via GuitarPro for automated analysis. 

t http://www.gprotab.neti 
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TABLE II. PHRASE BOUNDARY DETECTION PERFORMANCE. COLUMNS 

2-4: INTER-ARTIST TESTING. COLUMNS 5-7: INTRA-ARTIST TESTING. 

Performance 
Inter-artist Intra-artist 

Guitarist p r 7 p r 7 
Eric Clapton 0.74 0.61 0.67 0.81 0.55 0.66 
Jimi Hendrix 0.79 0.55 0.65 0.79 0.50 0.61 
Jimmy Page 0.78 0.58 0.66 0.82 0.64 0.72 
Slash 0.73 0.47 0.57 0.70 0.52 0.59 
Total 0.73 0.54 0.63 0.70 0.54 0.63 

Downbeat-synchronised chord sequences, key sequences and 
phrase boundaries were then annotated for each solo by the 
authors. In total we found our dataset to contain 1,266 guitar 
solo phrases consisting of 11,854 individual notes. 

B. HMM for guitar solo phrase boundary detection 

We tested our HMM for phrase boundary detection using 
cross-fold validation. Unsure if the guitarists in our training 
set exhibited artist-specific phrasing, we performed two types 
of experiment. First, for each artist we held out one test song 
and trained our model on the remaining songs, repeating this 
for each of the artist's ten songs (inter-artist testing). We were 
also interested to see if a more general phrase detection model 
could be developed, and so for each test song also trained a 
model on every tab which was not by the given test artist (30 
tabs total, intra-artist testing). 

Performance was measured by calculating the precision, 
recall, and f -measure of detection of phrase boundaries, 
with an exact match required for a 'hit'. The results of 
our experiments can be seen in Table II. Inspecting the left 
portion of Table II, we see that the total precision of our 
model in detecting boundaries was 0.73. Recall was lower 
than precision, implying that our model was too cautious in 
predicting boundaries. In f-measure our boundary detection 
performance totals 0.63, a figure comparable with existing 
methods [26]. Interestingly, the right portion of Table II reveals 
similar performances, indicating that the features we used for 
detecting phrases are shared among guitarists, and that a general 
model for detecting phrase boundaries in symbolic guitar solos 
is plausible. 

Upon closer inspection of our results, we found the reason 
for lower recall in boundary detection was that our model did 
not predict a boundary when confronted with short repeated 
melodic motifs. These cues are currently not built into our 
detection or generation model, with the knock-on consequence 
that our generated solos will not exhibit this behaviour. Building 
repetition into our boundary detection and generation models 
therefore forms part of our future work. 

C. Generation of novel guitar solos 

The quality of the generated solos was assessed by the 
use of listening tests. We studied the efficaciousness of the 
three main attributes of our compositional model: highlighting 
chord tones, musical phrasing, and guitar-specific ornaments, 
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TABLE I. GUITARISTS, THEIR ASSOCIATED ARTISTS AND THE SONGS USED TO TRAIN THE MODEL. 

Guitarist Associated acts Training tabs 

Eric Clapton 
Solo, Cream, Derek & the 
Dominos, John Mayall & 
the Bluesbreakers 

Bad Love, Badge, Crossroads, Cocaine, Hide Away, Layla, Nobody Knows You 
When You're Down and Out, Old Love, Sunshine of Your Love, White Room, Layla 

Jimi Hendrix 
The Jimi Hendrix 
Experience 

All Along the Watchtower, Bold as Love, Come On, Crosstown Traffic, Fire, Foxy 
lady, Hey Joe, Spanish castle magic, Stone Free, The Wind Cries Mary 

Jimmy Page Led Zeppelin 
Babe I'm Gonna Leave You, Communication Breakdown, Good Times Bad Times, 
Houses of the Holy, Rock and Roll, Stairway to Heaven, Tangerine, The Lemon Song, 
The Rover, Whole Lotta Love 

Slash Guns N' Roses 
Civil War, It's So Easy, Knockin' on Heaven's Door, Mr Brownstone, Nightrain, 
November Rain, Paradise City, Sweet Child 0' Mine, Welcome to the jungle, You 
Could Be Mine 

testing the hypothesis that the addition of these attributes will 
correlate positively with listener satisfaction. 

Participant and model description: Participants consisted of 
six researchers from the authors' institution. All were male, 
and had musical experience spanning 0 -25 years. 

Models for each of the artists in Table I were trained from 
nine of ten songs, with the final song held out for testing. For 
each artist, AutoLeadGuitar then generated four solos using 
the methods detailed in Subsections III-B -III-G. 

To minimise the burden on participants, instead of 
generating solos corresponding to every possible pair of 
attribute activations, we generated four audio clips with 
increasing model complexity for each artist. Specifically, we 
constructed a baseline model where we set the parameters 
f3 = I = 0, and 'turned off' phrasing by enforcing that 
the entire solo was comprised of one uninterrupted phrase. 
Furthermore, we limited the state space to states which 
featured no bends, and set the matrices HP and S to be 
filled with O. In the next model we set f3 = 0.5 and I = 0.3, 
subsequently included phrasing and finally allowed string 
bends and other ornaments for the most complex model. 

Experimental conditions: As AutoLeadGuitar exports to 
MusicXML, the output can be easily synthesized in existing 
software packages. Audio was synthesized using GuitarPro with 
a generic rock guitar timbre and a full backing track. A 20s clip 
was taken from the middle of each of the solos with a 2s fade 
in and out. Presentation order was randomized across model 
complexity to prevent any confounding effects of familiarity, 
and participants were simply asked to rank the solos by each 
artist by preference, from 1 (favourite) to 4 (least favourite). 
Repeated listens of each clip was permitted. 

Videos of the synthesized output (from which the 20s clips 
were generated) for our most sophisticated model can be 
viewed online 2. An example tab produced by our system with 
all attributes active is also shown in Figure 3. 

2https:l!vimeo.com/I00385330, https:llvimeo.com/I00385331, https:llvimeo. 
coml100385332, https:llvimeo.comI100385333 
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Fig. 3. Example AutoLeadGuitar output in traditional (upper) and tab (lower) 
notation, trained using Hendrix tabs. Hammer-ons/pull-offs are indicated by 
slur, slides with a slash and bends with arrows, phrase ends by vibrato. 

Results: Ranks for each artist and participant obtained from 
our experiments can be seen in Table III. Model sophistication 
decreases down rows, with participant rankings shown in the 
rightmost columns. Kendall's T, which counts the number of 
correctly ranked pairs in a list [27], was used to measure the 
performance of each individual ranking and shown in the final 
row of each artist. 

All rankings in our experiments were non-negative, meaning 
that no participant perceived there to be a negative correlation 
between model sophistication and enjoyment. In half of all cases 
the participants ranked the clips either in complete agreement 
with model complexity or swapped a single pair of clips (12124 
audio clips with T � 0.67). The solos generated using Jimi 
Hendrix tabs as training data appeared to correlate most strongly 
with model complexity, with an average T of 0.67 and all but 
one listener ranking the most sophisticated model as their 
favourite. Eric Clapton proved the most challenging artist 
to rank. An interesting effect we had not anticipated is that 
some participant's ranks more closely correlated with model 
sophistication than others (compare T for participants B and 



TABLE III. RAN KINGS AND PERFORMANCE (KENDALL'S T, GRAY 

ROWS) OF GENERATED SOLOS. ABBREVIATIONS: "CHRD." = CHORD TONE 

PREFERENCE, "PHRS." = RHTYHMIC PHRASING, "ORN. "  = GUITAR-SPECIFIC 

ORNAMENTS. CORRECT RAN KINGS ARE IN BOLD. 

Participant/rank 

Artist Chrd. Phrs. Om. A B C D E F 

Clapton ./ ./ ./ 2 1 2 1 2 
./ ./ 2 2 
./ 4 4 4 4 4 4 

3 2 3 3 
T 0.0 0.67 0.0 0.33 0.67 0.33 
Hendrix ./ ./ ./ 2 1 

./ ./ 2 2 3 
./ 3 3 4 2 2 4 

4 4 4 4 2 
T 1 .0 0.67 0.67 0.67 0.67 0.33 
Page ./ ./ ./ 2 

./ ./ 2 2 2 3 2 
./ 3 3 3 2 

4 4 4 4 4 4 

T 1 .0 1 .0 0.0 0.33 1 .0 0.33 
Slash ./ ./ ./ 2 2 2 2 

./ ./ ./ 3 2 3 3 2 3 
./ I 3 4 I 3 I 

4 4 I 4 4 4 

T 0.33 1 .0 0.0 0.33 1 .0 0.33 

C). In future work and with more judges we would like to 
investigate if these agreements are correlated with either generic 
or guitar-specific musical training. 

Finally, we tested the hypothesis that each successive 
model attribute (chord tone preference, phrasing, guitar-specific 
ornaments) offered a significant increase in user satisfaction by 
use of the one-sided Wilcoxon signed-rank test. Each increase 
in complexity was found to be significant at the 5% level, the 
only exception being the baseline model against the model 
with chord tone preferences (p = 0.093). All non-consecutive 
models pairs (e.g. baseline model vs. most sophisticated model) 
were found to offer increases in user enjoyment (p :s; 0.001). 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we described AutoLeadGuitar, a system 
for generating phrased guitar solos given a chord and key 
progression. To gain insight into guitar phrasing, we designed 
an HMM for the detection of phrase boundaries which exceeded 
0.6 in f -measure and was found to be artist-independent. We 
then generated solos in the tablature space, highlighting chord 
tones, using phrasing and exploiting guitar-specific ornaments. 
Listening experiments revealed that adding musical attributes 
resulted in an increase in user satisfaction, with significant 
differences in model rankings found in all but one case. In 
future work, we would like to incorporate repeated melodies 
into our phrase detection and generation algorithms and use a 
higher-resolution rhythm model. 
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