What is speech spotter?
- Enable a user to enter voice commands into a speech recognizer in the midst of natural human-human conversation
- The system monitors human conversation and accepts only a speech-spotter utterance that does not appear in natural conversation
- Use two kinds of nonverbal speech information
 - "Er..."
 - "What's the date today?"
- This is intentionally unnatural!

Benefits
1. Can immediately use a speech recognizer whenever needed
2. Can use even in telephone conversation
 - Hands-free interface with only microphone
 - User is free regarding body movement
3. Can feel free to use any words in conversation
 - Not have to carefully avoid saying anything that the system will accept

New Direction of Speech Interface
- Exploit nonverbal speech information
 - Current speech-input interfaces have not fully exploited the potential of speech
 - Most speech recognizers utilize only verbal (phoneme) information
- Make use of nonverbal speech information intentionally controlled by a user

Previous Interfaces
- Difficult to use speech recognition in human-human conversation
 - Cannot judge whether a user is talking to another person or the system
 - Previous word-spotting approaches
 - Voice command is preceded by a keyword (e.g., "Computer", "Casper", "Maxwell", etc.)
 - User was forced to avoid use of the keyword
 - Use other input devices (button or camera)
 - The usual behavior of a user is restricted
 - Cannot be used in telephone conversation
- No practical means using only microphone input

Application Systems
- On-demand information system for assisting human-human conversation
 - Obtain information while talking to another person
 - Weather information (obtained from WWW)
 - Local weather forecast for today, tomorrow, etc.
 - Date and time information (obtained from NTP)
 - Today's date and time
 - News information (obtained from WWW)
 - Latest news headlines regarding world affairs, business, sports, and entertainment
- Music-playback system for enriching telephone conversation
 - Listen to background music while talking to another person on the telephone
 - Saying the song title (on SQL database server)
 - Play back the appropriate song (title on the screen)
 - Saying the artist's name
 - Show a numbered list of song titles for that artist
 - Play back the song selected by its title or number
Implementation

Endpoint Detector
- Detect the **beginning** of an utterance
 - Determine as being 130 ms before the FP end
- Detect the **end** of an utterance
 - Determine by checking the ML hypothesis
 - Stop when there is no possibility of other words
 - Stop when the hypothesis reaches the silence pause

Filled-Pause Detector
- Detect both ends of each filled pause
 - Real-time filled-pause (FP) detection method
 - Independent of vocabulary and language
 - Detect a lengthened vowel in any word
 - Detect two acoustical features of FP
 - Small pitch transition
 - Small spectral envelope deformation

Utterance Classifier
- Distinguish between normal and high-pitch utterances
 - Difficult to judge whether the pitch is raised
 - Pitch range differs among individuals
 - **Base fundamental frequency (base F0)**
 - Unique pitch reference for each speaker
 - Estimate by averaging the voice pitch during a filled pause (FP) (e.g., "uh...")
 - Use pitch value relative to the base F0

Experimental Results
- Evaluation of detection performance
 - Compare the speech-spotter function with a method w/o using the preceding FP
 - Tested on 40-minute corpus consisting of normal and speech-spotter utterances
 - Uttered by 12 Japanese subjects
 - 218 speech-spotter utterances

Summary
- Propose a new speech interface function "Speech Spotter"
 - Unnaturalness of nonverbal speech info. can be used as a practical interface function
 - User can intentionally control whether each utterance is accepted (processed) by the speech recognizer
 - General idea can be used in other applications

Audio signal input ➔ **Filled-pause detector** ➔ **Feature extractor** ➔ **MFCC** ➔ **F0 estimator** ➔ **Speech recognizer** (Modified CSRC toolkit) ➔ **Recognition result** ➔ **Utterance classifier** (Pitch classifier) ➔ **Speech-spotter utterance** ➔ **Application system**

Speech Spotter

<table>
<thead>
<tr>
<th>pitch (F0)</th>
<th>average pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>filled pause utterance</td>
<td>average pitch</td>
</tr>
<tr>
<td>filled pause utterance</td>
<td>average pitch</td>
</tr>
</tbody>
</table>

Thresholding method

- **Filled-pause period**
- **Endpoint detector** (Utterance detector)
- **Speech recognizer**
- **Recognition result**
- **Utterance classifier**
- **Speech-spotter utterance**
- **Application system**

Feature extractor

Audio signal input

Filled-pause detector

- **Beginning and end points**
- **Maximum likelihood hypothesis**

F0 estimator

- **Pitch (F0)**

Speech recognizer

- **Pitch classifier**

Application system

Summary

- **Recall rate** 0.78 0.78 1
- **Precision rate** 0.35 0.77

Use of preceding FP is important

Experimental Results

- **Evaluation of detection performance**
 - Compare the speech-spotter function with a method w/o using the preceding FP
 - Tested on 40-minute corpus consisting of normal and speech-spotter utterances
 - Uttered by 12 Japanese subjects
 - 218 speech-spotter utterances

- **Usability of two application systems**
 - Easy to use, can be used without any training
 - Convenient, suitable for use in conversation
 - Appreciate novelty and usefulness
 - First system that people can use to obtain speech-based information assistance in telephone conversation
On-demand information system for assisting human-human conversation

A: Hey, I've suddenly forgotten... What is the date today?
B: Yes, what is today's date? Well, shall we ask the On-Demand Conversation Assistance System? Er..., what's the date today?
* The system displays the current date and time: "August 22, 2003, Friday, 23:51:10 JST"
A: Uh, it's already the 22nd!
B: Oh really? Well, that means our excursion is tomorrow.
I hope it doesn't rain.
A: Shall we ask about the weather too? Er..., what's tomorrow's weather?
* The system checks tomorrow's weather report and displays the result: "Clear"
B: Uh, no rain. Great!
A: That's good!

Future Directions

- Interfaces using intentional nonverbal info.
 1. "Speech Completion" [HCI Intl. 2001] [ICSLP 2002]
 5. "Speech ???"

Further developing this concept...

Music-playback system for enriching telephone conversation

B calls A on the telephone.
A: Yes...
B: Hello?
A: Uh..., what's up?
B: Thanks for all your help last time.
A: No problem. How have you been since?
B: Whew! I've been super busy writing that paper... I'm beat.
(Several minutes later)
A: Uh..., that reminds me, the song called "Fly Away" that we heard at that place, wasn't that good?
B: Oh, what song was that?
A: Shall we try listening to it?
B: What? We can hear it now?
A: Sure. This is a phone with a music-playback system.
We can listen to that song like this... Er..., "Fly Away"!
* The system plays the song of that name on both of their handsets.
B: Wow, amazing! You can listen to a song by just saying its name!
Um..., this is a good song.
A: That's right!
(Conversation continues about various songs.)