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ABSTRACT 
In this paper, acoustic cues and human capability for dis-

criminating singing and speaking voices are discussed to 

develop an automatic discrimination system for singing 

and speaking voices. Based on the results of preliminary 

subjective experiments, listeners discriminate between 

singing and speaking voices with 70.0% accuracy for 200-

ms signals and 99.7% for one-second signals. Since even 

short stimuli of 200 ms can be correctly discriminated, not 

only temporal characteristics but also short-time spectral 

features can be cues for discrimination. To examine how 

listeners distinguish between these two voices, we con-

ducted subjective experiments with singing and speaking 

voice stimuli whose voice quality and prosody were sys-

tematically distorted by using signal processing techniques. 

The experimental results suggest that spectral and prosodic 

cues complementarily contributed to perceptual judgments. 

Furthermore, a software system that can automatically 

discriminate between singing and speaking voices and such 

performances is also reported.  

Keywords 

Singing voice, Speaking voice, Perception, Discrimination, 

Voice quality, Prosody 

INTRODUCTION 
Sounds from the human mouth include such acoustic 

events as speaking, singing, laughing, coughing, whistling, 

and lip noises. Humans communicate by creatively using 

these acoustic events because they can instantaneously 

discriminate between such sounds by perceiving the 

various features that characterize them. The purpose of our 

research is to clarify how humans discriminate between 

these voices. 

Among such acoustic events, this paper focuses on the dis-

crimination between singing and speaking voices. When 

humans sing, the vocal style can vary from the speaking 

voice to some degree. Furthermore, singing voice is a vocal 

style to which various emotions are added based on a 

song's key and its lyrics; that is, vocal style represents vari-

ous emotional voices in an abstract form. Therefore, reveal-

ing the characteristics that influence the perception of the 

singing voice creates the possibility of applications that 

discriminate between other vocal styles, such as irate or 

whispery voices. 

Many research results have reported the characteristics of 

singing voices, whose typical characteristics include the 

fundamental frequency (F0, perceived as pitch) and inten-

sity that vary widely; the spectral envelope of the singing 

voice has additional resonance at a medium frequency 

range known as the singing formant (Sundberg, 1974). 

Although the singing formant is observed in the voices of 

opera singers, it is not necessarily observed in amateurs. 
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However, humans can discriminate a singing from a speak-

ing voice in daily conversation even if these voices are 

produced by an amateur. 

Also, previous work related to the singing voice includes a 

control model of fundamental frequency trajectory (Saito et 

al., 2002; Saito et al., 2004), general characteristics (Kawa-

hara and Katayose, 2001; Edmund Kim, 2003), acoustic 

differences between trained and untrained singers' voices 

(Omori  et al., 1996; Brown et al., 2000; Watts et al., 

2006), the subjective evaluation of common singing skills 

(Nakano et al., 2006), and singing voice morphing between 

expressions (Yonezawa et al., 2005). On the other hand, 

previous work related to the discrimination between sing-

ing and speaking voices includes a holomorphic model of 

the differences in glottal air flow (Rothenberg, 1981; Alku 

et al., 1992; Alku et al., 1996) and the dynamic characteris-

tics of F0 trajectory (Shin et al., 2001). Therefore, most 

previous work has focused on either the singing or the 

speaking voice.  

Table 1.  Listening samples based on signal length in in-

vestigation of signal length necessary for discrimination. 

Signal length Singing voice Speaking voice 

100, 150, 200, 250,  

500, 750, 1,000 ms 25 signals 25 signals   

1,250 ms 20 signals 20 signals   

1,500, 2,000 ms 10 signals 10 signals   

Total 215 signals 215 signals   
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Figure 1. Human discrimination performance between 

singing and speaking voices as a function of signal length.  
 

None of these works has presented knowledge based on 

subjective and objective evaluations of acoustic features 

that influence discrimination between voices. The goal of 

this study is to characterize the nature of singing and 

speaking voices based on subjective experiments and build 

measures that automatically discriminate between them. 

HUMAN PERFORMANCE OF 

DISCRIMINATING SINGING AND 

SPEAKING VOICES 
We investigated the human capability to discriminate be-

tween singing and speaking voices by conducting a subjec-

tive experiment. First, we introduce the voice database that 

we used. Second, we show subjective experimental condi-

tions and results. 

Voice database 
We used 7,500 sound samples excerpted from an original 

voice database called the ``AIST Humming Database'' 

(Goto and Nishimura, 2005) developed at the National In-

stitute of Advanced Industrial Science and Technology 

(AIST). Those samples, each about 7.0 to 12.0 seconds 

long, consist of 3,750 samples of singing voices and 3,750 

samples of speaking voices recorded from 75 subjects (37 

males, 38 females). At an arbitrary tempo without musical 

accompaniment, each subject sang two excerpts from the 

chorus and the first verses of 25 songs in different genres 

 
 

(50 sound samples) and read the lyrics of those excerpts 

(50 sound samples), resulting in a total of 100 samples per 

subject. The songs were selected from a popular music 

database,   “RWC Music Database: Popular Music” 

(RWC-MDB-P-2001) (Goto et al., 2002), which is an 

original database available to researchers around the world. 
 

Investigation of signal length necessary for 

discrimination 
We investigated the signal length necessary for human lis-

teners to discriminate between singing and speaking voices 

by conducting a subjective experiment. In the experiment, 

we used 5,000 voice signals (2,500 singing and 2,500 

speaking voices) recorded from 50 subjects (25 males, 25 

females) randomly selected from the voice database, and 

cut them into 50,000 voice signals of 10 different lengths 

(from 100 to 2,000 ms). 10 subjects listened to 430 signals 

(215 singing and 215 speaking voices) randomly extracted 

from those 50,000 voice signals (Table 1) and determined 
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whether the voice signal is singing, speaking, or impossible 

to discriminate. 

Figure 1 shows that approximately one second is enough 

for humans to discriminate between singing and speaking 

voices. Even with a 200-ms signal, discrimination accuracy 

is more than 70%. This suggests that not only temporal 

characteristics corresponding to rhythm and melody but 

also such short-term features as spectral envelopes carry 

discriminative cues between singing and speaking voices. 

Investigation of acoustic cues necessary for 

discrimination 
To compare the importance of temporal and spectral cues 

for discrimination, we conducted subjective experiments 

using two sets of stimuli whose voice quality and prosody 

were distorted by using signal processing techniques, as 

shown in Figure 2. 

 

 

Table 2. Listening samples in investigation of acoustic 

cues necessary for discrimination. 

Random Splicing technique 

Length of pieces Singing voice Speaking voice 

125 ms 40 signals   40 signals   

200 ms 40 signals   40 signals   

250 ms 20 signals   20 signals   

Total 100 signals   100 signals 

Low-pass filtering technique 

 Singing voice Speaking voice 

Total 100 signals   100 signals   

 

The first set of stimuli was generated by randomly splicing 

the waveform, i.e., dividing a signal into small pieces and 

randomly concatenating them. In the set of stimuli, the tem-

poral structure of the signal is distorted whereas short-time 

spectral features are maintained (Scherer, 1985; Friend et 

al., 1996). 

The second set of stimuli was generated by low-pass filter-

ing, i.e., eliminating frequency component higher than 800 

Hz. This set of stimuli maintains the temporal structure of 

the original signal although short-time spectral features are 

distorted (Scherer, 1985). 

In the experiment, we used 5,000 voice signals (2,500 sing-

ing and 2,500 speaking voices) recorded from the 50 sub-

jects (25 males, 25 females) used above, and obtained 

15,000 voice signals (7,500 singing and 7,500 speaking 

voices) by random splicing, which cut one-second signals 

into small pieces of three types (125, 200, and 250 ms) and 

5,000 voice signals (2,500 singing and 2,500 speaking 

voices) generated by low-pass filtering. 10 subjects listened 

to 200 signals (100 singing and 100 speaking voices) ran-

domly extracted from 15,000 voice signals by random 

splicing and 200 signals (100 singing and 100 speaking 

voices) randomly extracted from 5,000 voice signals by 

low-pass filtering (Table 2), and determined whether the 

voice signal is singing or speaking. 

Discrimination results by random splicing tech-

nique 
In Figure 3, the discrimination results of singing and speak-

ing voices are shown for one-second signals that were not 

distorted at all. They are 99.3% and 100%, respectively. 

However, the accuracy rate declines by random splicing. 

The accuracy rate of singing voices especially declines as 

the length of the pieces shortens from 250 to 125 ms.  

When the length of the pieces is 125 ms, the accuracy rate 

of the singing voice is 70.6%, which is 28.7% lower than 

the results of original voices. On the other hand, when the 

length of the pieces is 125 ms, the accuracy rate of speak-

ing voices is 95.0%, which is only 5.0% lower than the 

results of original voices. We obtained the following com-

ments from listeners after this experiment:  
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Figure 3. Accuracy rate of one-second signals by 

random splicing and low-pass filtering techniques.
 

Figure 4. Accuracy rate of one-second signals by 

random splicing and low-pass filtering techniques as a 

function of vocal person’s gender.
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• When I listened to prolonged vowel production, I 

judged it to be a singing voice.  

• I focused on the difference in voice quality between 

singing and speaking voices. 

• When the amplitude fluctuation degree of a voice sig-

nal was great, I thought it was a singing voice. 

• If the pitch varied widely, I thought it was a singing 

voice. 

• It was easier to discriminate between singing and 

speaking voices in female voices than in male voices 

because the difference in pitch between them is wider 

for female voices. 

Discrimination results by low-pass filtering 

technique 
In Figure 3, the discrimination results of singing and speak-

ing voices by low-pass filtering are 86.9% and 98.9%, re-

spectively. As in the random splicing technique, the accu-

racy rate of singing voice declines more than the speaking 

voice.  

Table 3. Analysis conditions of voice signals. 

Sampling rate 16 kHz 

Window Hamming 

Frame length 25 ms 

Frame time 10 ms 

Mel-filterbank 24 

 

We obtained the following comments from listeners after 

this experiment: 

• By focusing on differences in tempo, rate of speech, 

rhythm, and pitch fluctuation, I could discriminate be-

tween singing and speaking voices. When the ampli-

tude fluctuation degree of a voice signal was great, I 

thought it was a singing voice. 

• If a voice signal contained a constant location in pitch, 

I thought it was a singing voice. 

Discrimination results for vocal person’s gender 
Figure 4 shows discrimination results by random splicing 

and low-pass filtering techniques for vocal person's gender. 

The accuracy rate of female singing voices by random 

splicing is 80.5%, which represents a mean accuracy rate of 

125, 200 and 250 ms by length of the pieces. On the other 

hand, the accuracy rate of male singing voices is 74.0%, 

which is a decrease of 6.5% compared to female singing 

voices. The accuracy rate of male singing voices by low-

pass filtering is 83.8%, a decrease of 6.2% compared to 

female singing voices. These results show that discrimina-

tion between male singing and speaking voices is harder 

than between female singing and speaking voices. 

Discussion 
Because the temporal structure of the original singing 

voices that correspond to rhythm and melody has been dis-

torted to render them unavailable for discrimination, the 

accuracy rate of singing voices by random splicing tech-

nique declined. It is also considered that listeners confused 

singing voices with speaking voices because of the short 

vowels of singing voices divided by the random splicing 

technique. Based on the investigation of vowel length for a 

certain signal that confused singing with speaking voices, 

the vowel length of the original singing voice averaged 

146.7 ms, and vowel length by random splicing averaged 

73.3 ms: that is, half the vowel length of the original sing-

ing voice. On the other hand, in a signal that contained the 

same lyrics read by the same subject, vowel length by ran-

dom splicing averaged 60.0 ms.  This only slightly changed 

compared to the original average vowel length of 70 ms.  

Vowel length is clearly an important cue for discrimination. 

Consequently, the results clarified that a speaking voice 

generated by random splicing resembles a speaking voice; 

on the other hand, a singing voice generated by random 

splicing also resembles a speaking voice. 
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Figure 5. F0 contour of singing and speaking voices 

corresponding to identical lyrics.
 

Despite eliminating frequency component higher than 800 

Hz, a speaking voice can be distinguished from a singing 

voice by perceiving the remaining prosody and tempo. 

However, a singing voice by low-pass filtering is not al-

ways easy to distinguish from a speaking voice because the 

distinction requires short-time spectral features. Although 

the cut-off frequency of the filter is 800 Hz in this experi-

ment, by varying this value, which frequency bands are 

important for discrimination remains a matter of future 

research. 

DISCRIMINATION MEASURES 
From subjective experiments, human listeners distin-

guished between singing and speaking voices with 100% 

accuracy for one-second signals. On the other hand, even if 
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the signal length was as short-term as 200 ms, the discrimi-

nation rate was 70.0%. Moreover, it was found that not 

only temporal characteristics but also short-term spectral 

features are important for discrimination.  

Therefore, to objectively clarify how these features con-

tribute to the discrimination of the two styles, we propose 

an automatic vocal style discriminator that can discriminate 

between singing and speaking voices by using two differ-

ent measures: short-term and long-term feature measures. 

The short-term feature measure exploits the spectral enve-

lope represented by using Mel-Frequency Cepstrum Coef-

ficients (MFCC) and their derivatives (∆MFCC). The long-

term feature measure exploits the dynamics of F0 extracted 

from voice signals.  

Short-term spectral feature measure 
To measure a spectral envelope, Mel-Frequency Cepstrum 

Coefficients (MFCC) and their derivatives (∆MFCC), 

which are successfully used for envelope extraction in 

speech recognition applications, were used. As shown in 

Table 3, every 10 ms, MFCC are calculated for 25-ms 

hamming windowed frames; ∆MFCC is calculated as re-

gression parameters over five frames. 
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Figure 6. Comparing and integrating two measures 

using a spectral envelope (MFCC) and ∆F0.
 

Long-term feature measure 
Since the singing voice is generated under the constraints 

of melodic and rhythm patterns, the dynamics of prosody 

differ from the speaking voice. Therefore, the dynamics of 

prosody extracted from voice signals are expected to be 

cues for automatically discriminating between singing and 

speaking voices (Figure 5). 

F0 is estimated by using the predominant-F0 estimation 

method of Goto et al. (Goto et al., 1999) that estimates the 

relative dominance of every possible harmonic structure in 

the sound mixture and determines the F0 of the most pre-

dominant one. Relative dominance is obtained by treating 

the mixture as if it contains all possible harmonic structures 

with different weights, which are calculated by Maximum 

A  Posteriori Probability (MAP) estimation. 

Using the method, we determined the F0 value for every 10 

ms, and then a F0 trajectory was smoothed by a median 

filter of a 100-ms moving window. Furthermore, ∆F0 is 

calculated by five-point regression, as in the MFCC case. 

Training the discriminative model 
In this approach, the distribution of MFCC vectors or ∆F0 

values are represented by 16-mixture Gaussian Mixture 

Models (GMM) trained on the training set using the expec-

tation maximization algorithm for both singing and speak-

ing voice signals. The variances of distributions were mod-

eled by a diagonal covariance matrix. Discrimination was 

performed through the maximum likelihood principle: 

 

 

 

where      is the   th feature vector,     is input signal length 

and                                                  are the GMM parame-

ters for the distribution of MFCC vectors. Function    cal-

culates posterior probability by using all GMM parameters 

for both singing and speaking voices. 
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with results of subjective experiments.  

EVALUATION OF PROPOSED METHOD 
In this section, we show experimental evaluations for 

automatic discrimination between singing and speaking 

voices. In evaluating the discrimination performance using 

the spectral envelope and the dynamics of F0, 7,500 sound 

samples of singing and speaking voices from 75 subjects 

were used to train the GMMs of the feature vectors and to 

test the method. A fifteen-fold cross-validation approach 
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was used for evaluation. First, sound samples from 75 sub-

jects were divided into fifteen groups. Eight of the fifteen 

groups were used for GMM training, and the rest were 

used as a test. An average discrimination rate was obtained 

from the fifteen cross-validation tests. 

In Figure 6, discrimination results using MFCC+∆MFCC 

and ∆F0 are plotted. MFCC was used up to the 12th coeffi-

cients. In both measures absolute performance improved 

when a longer signal was available. For input signals 

shorter than one second, MFCC performed better, whereas 

∆F0 performed better for signals longer than one second. 

Finally, two measures were integrated into a 25-

dimensional vector. It can be seen from Figure 6 that dis-

crimination performance is improved by 2.6% for two-

second signals. 

DISCUSSION 
The results clarified that the two measures can effectively 

capture the signal features that discriminate between sing-

ing and speaking voices. Discrimination using MFCC and 

∆MFCC is effective for less than one-second signals. The 

difference between the spectrum envelopes of singing and 

speaking voices is a dominant cue for the discrimination of 

short signals. On the other hand, discrimination using ∆F0 

is effective for signals of one second or longer. The GMM 

of ∆F0 appropriately deals with the differences of the 

global F0 contours of singing and speaking voices by mod-

eling the local changes of F0.  

Furthermore, we compared automatic discrimination per-

formances with the results of subjective experiments. When 

the temporal structure of the signal is distorted by a random 

splicing technique, human capability for discriminating 

between singing and speaking voices decreased because the 

vowel length is shorter than the original singing voice sig-

nals. However, when the length of the pieces in the random 

splicing technique is 125 ms, human capability is 70.6%. 

Based on this result, the short-term spectral features of sig-

nals affect discrimination. When comparing the automatic 

discrimination results of 200-ms singing voices using 

MFCC and ∆MFCC with the human capability of 200-ms 

singing voices, although the automatic discrimination result 

decreased by 9.3% compared with human capability, this 

human capability is more similar to the automatic discrimi-

nation result using MFCC and ∆MFCC than any other 

automatic discrimination results in the above chart of Fig-

ure 7. Consequently, this result shows the importance of 

spectral features for automatically discriminating between 

singing and speaking voices. MFCC is successfully used to 

represent the phoneme structure in speech recognition ap-

plications; however, to discriminate between those voices, 

we need to focus on the features which can not be repre-

sented by MFCC. In the future, we plan to propose new 

measures to improve the automatic discrimination perform-

ance. 

Even though short-term spectral features are distorted by 

eliminating frequency component higher than 800 Hz, hu-

mans can distinguish between those voices by perceiving 

such temporal features of signals as melody and rhythm 

patterns. In other words, the temporal features included in 

long-term signals are important for discriminating between 

those voices. When comparing the automatic discrimina-

tion results using ∆F0 with the subjective experimental 

results, the discrimination results are low, as shown in Fig-

ure 7. In this paper, ∆F0 is calculated as regression parame-

ters over five frames (50 ms) of F0 that are estimated con-

tinuously. However, from the subjective experimental re-

sults, humans distinguish between those voices by perceiv-

ing continuous changes of F0 longer than 50 ms.  There-

fore, a longer ∆F0 calculation method that considers the F0 

interpolation of unvoiced sounds is needed to further im-

prove the performance. 

CONCLUSION 
In this paper, we discussed acoustic cues and human capa-

bility for discriminating singing and speaking voices. 

When investigating the signal length necessary for singing 

and speaking voice discrimination, we showed that humans 

can discriminate singing and speaking voices 200-ms long 

and one-second long with 70.0% and 99.7% accuracy, 

respectively. By conducting subjective experiments with 

voice signals whose voice quality and prosody were sys-

tematically distorted by signal processing techniques, we 

showed that spectral and prosodic cues complementarily 

contributed to perceptual judgments. 

Furthermore, by hypothesizing that listeners depend on 

different cues based on the length of signals, we proposed 

an automatic vocal style discriminator that can distinguish 

between singing and speaking voices by using two meas-

ures: spectral envelope (MFCC) and F0 derivative. In our 

experimental results, when voice signals longer than one 

second are discriminated, the F0-based measure outper-

forms the MFCC-based measure. On the other hand, when 

voice signals shorter than one second are discriminated, the 

MFCC-based measure outperforms the F0-based measure. 

While discrimination accuracy with the F0-based measure 

is 85.0% for two-second signals, a simple combination of 

two measures improves it by 2.3% for two-second signals. 

However, compared with human capability, discrimination 

performance is low, especially when the test signal is 

shorter than one second. In the future, we plan to clarify the 

differences of spectral features between singing and speak-

ing voices and to discuss a longer F0 contour modeling 

method. 

REFERENCES 

Sundberg, J. (1974). Articulatory interpretation of the 

‘singing formant’. J. Acoust. Soc. Amer., Vol.55, pp. 838-

844. 



ICMPC9  Proceedings 

ISBN 88-7395-155-4  ©  2006 ICMPC  

 

1837 

Saito, T., Unoki, M. and Akagi, M. (2004). Development 

of the F0 control method for singing-voices synthesis. 

Proc. SP 2004, pp. 491–494. 

Saito, T., Unoki, M. and Akagi, M. (2002). Extraction of 

F0 dynamic characteristics and development of F0 control 

model in singing voice. Proc. ICAD 2002, pp. 275–278. 

Kawahara, H. and Katayose, H. (2001). Scat singing 

generation using a versatile speech manipulation system, 

STRAIGHT. J. Acoust. Soc. Amer., Vol. 109, pp. 2425–

2426. 

Edmund Kim, Y. (2003). Singing voice analysis/Synthesis. 

PhD Thesis, MIT. 

Omori, K., Kacker, A., Carroll, L., Riley, W. and Blau-

grund, S. (1996). Singing Power Ratio: Quantitative Eva-

luation of Singing Voice Quality. Journal of Voice, Vol.  

10, No. 3, pp. 228–235. 

Brown, W. S. J., Rothman, H. B. and Sapienza, C. (2000). 

Perceptual and Acoustic Study of Professionally Trained 

Versus Untrained Voices. Journal of Voice, Vol. 14, No. 3, 

pp. 301–309. 

Watts, C., Barnes-Burroughs, K., Estis, J. and Blanton, D.  

(2006). The Singing Power Ratio as an Objective Measure 

of Singing Voice Quality in Untrained Talented and Nonta-

lented Singers. Journal of Voice, Vol. 20, No. 1, pp. 82–88. 

Nakano, T., Goto, M. and Hiraga, Y. (2006). Subjective 

Evaluation of Common Singing Skills Using the Rank Or-

dering Method. Proc. ICMPC2006. (accepted). 

Yonezawa, T., Suzuki, N., Mase, K. and Kogure, K. (2005).  

Gradually Changing Expression of Singing Voice based on 

Morphing. Proc. Eurospeech 2005, pp. 541–544. 

Rothenberg, M. (1981). The Voice Source in Singing. Re-

search Aspects of Singing, Pub., No. 33, pp. 15–31. 

Alku, P. (1992). Glottal wave analysis with Pitch Synchro-

nous Iterative Adaptive Inverse Filtering. Speech Commu-

nication, No. 11, pp. 109–118. 

Alku, P. and Vilkman, E. (1996). Amplitude domain quo-

tient for characterization of the glottal volume velocity wa-

veform estimated by inverse filtering. Speech Communica-

tion, No. 18, pp. 131–138. 

Shih, C. and Kochanski, G. (2001). Prosody control for 

speaking and singing styles. Proc. Eurospeech 2001, pp. 

669–672. 

Goto, M. and Nishimura, T. (2005). AIST Humming 

Database:Music Database for Singing Research. The 

Special Interest Group Notes of IPSJ (MUS), Vol. 2005, 

No. 82, pp. 7–12. (in Japanese). 

Goto, M., Hashiguchi, H., Nishimura, T. and Oka, R. 

(2002). RWC Music Database: Popular, Classical, and Jazz 

Music Databases. Proc. ISMIR 2002, pp. 287–288. 

Scherer, K. R. (1985). Vocal cues to deception: A compa-

rative channel approach. Journal of Psycholinguistic Rese-

arch, Vol. 14, No. 4, pp. 409–425. 

Friend, M. and Farrar, M. J. (1996). A comparison of con-

tentmasking procedures for obtaining judgments of discrete 

affective states. J. Acoust. Soc. Amer., Vol. 96, No. 3, pp. 

1283–1290. 

Goto, M., Itou, K. and Hayamizu, S. (1999). A Real-time 

Filled Pause Detection System for Spontaneous Speech 

Recognition. Proc. Eurospeech 1999, pp. 227–230. 

 

 

 

 

 


