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ABSTRACT

This paper describes HarmonyMixer, a method that en-

ables a user without musical expertise to personalize the

mood of existing polyphonic musical recordings by mod-

ifying their chord sequences. Our method lets the user

choose a reference song with a character that the user wants

reflected in chords of a target song. It is, however, diffi-

cult to modify chords in existing complex sound mixtures

since technologies of sound source separation and multi-

pitch analysis are not yet accurate enough for those mix-

tures. To overcome this difficulty, HarmonyMixer does

not rely on those technologies and instead modifies chords

by leveraging chromagrams. It first analyzes a chroma-

gram feature matrix by using Bayesian non-parametric

Non-negative Matrix Factorization, and then interpolates

basis matrices obtained from reference and target songs
to convert the chromagram of the target song. It finally

modifies the spectrogram of the target song by reflecting

the difference between the original and converted chroma-

grams while considering relations between frequency bins

and chroma bins. Listening to the output from our method

confirmed that modification of chords had been derived.

1. INTRODUCTION

While Active Music Listening Interfaces [1] allow content-

based manipulations of audio signals, the personalization

of chords in polyphonic audio has not yet been addressed.

We introduce a method that enables users to direct chord

sequence modifications in recordings of popular songs

without musical expertise. The proposed method mixes

up the character of chord sequences in two or more audio

signals, which led us to name the method HarmonyMixer.

Editing the chords in a musical recording of popular

songs is particularly a challenging task, especially for a

user without musical expertise, since it requires significant

musical knowledge to recognize the existing chords and

how they may be altered without causing undesired disso-

nances. On the implementation side, it also requires tech-

niques for extracting and altering the audio corresponding

to the chords in polyphonic and multi-instrument audio.

Having separate tracks of multi-track audio recordings is
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Figure 1. Process flow of HarmonyMixer mixing the char-

acter of chords among polyphonic audio. The method

factorizes a matrix consisting of chroma vectors, interpo-

lates the bases obtained through the factorization, and con-

verts the spectrum to create an audible modification in the

chords.

preferable when editing a chord sequence, but such tracks

are often not available.

There are methods which aim to overcome difficulties of

applying music-theoretical knowledge and enable users to

modify music easily. Drumix [2], an active music listening

interface for editing drum tracks, enables a user to mod-

ify drums in audio music signals. Concatenative synthesis

approaches [3, 4, 5] were proposed to combine audio frag-

ments in music database and enable the user to create or

edit music easily by only choosing the audio fragments.

AutoMashUpper [6], provided a powerful interactive tool

to create mush-ups or arranging the mood of a song by

converting and synchronizing songs. ChordSequenceFac-
tory [7], which is our previous system sharing the motiva-

tion, can modify chord sequence described in chord sym-

bols, but cannot be applied to acoustic music signals.

Developments in signal processing techniques seems to

solve the problem on the implementation side of our task:

modification of the polyphonic audio. In fact, as related

works, multi-pitch analysis [8, 9, 10] and sound source

separation techniques [11, 12, 13] have been proposed.

Source separation techniques are also used for enhance-

ment, suppression and re-panning of stereo mixtures [14].

A method for adaptive harmonization and pitch correction

of polyphonic audio have been conducted by using multi-

pitch analysis method [15]. However they only provide

limited accuracies in estimating the pitches and separat-

ing sources where many tracks are mixed. Audio pitch-
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shifting using the constant-Q transform [16] has been pro-

posed for key modulation of music audio. Phase vocoder

based approach to pitch-shifting and harmonizing audio

has also been conducted [17]. However they cannot be

used to modify chord sequences in polyphonic and multi-

instrument audio.

In this paper, we propose a method that enables a user

to edit a target song by changing its chord sequence re-

ferring to a reference song. The target song is the song

whose character of chords the user wants to modify. The

reference song is the song which has the mood that the

user wants to reflect in the target song. With our approach,

users can edit the chord sequence in the target song by sim-

ply choosing a reference song and a mixture weight. The

chord sequences of the target song and the reference song
are analyzed automatically, and the chord sequence of the

target song is edited reflecting the analyzed result of the

reference song. Furthermore, the audio signal of the tar-
get song is converted in order to modify chords audibly,

without using multi-pitch analysis methods. This method

enables a user without musical expertise to modify a chord

sequence since it is relatively easy for a user to choose a

favorite song compared to analyzing and describing what

kind of chord sequence that the user actually likes. In ad-

dition, the user can try various reference songs until he or

she is satisfied with the result.

To achieve these functionality, we construct an analysis

and synthesis framework of chords which can be applied

to polyphonic music signals. The flow of our method is

shown in Fig. 1.

In the analysis phase, audio signals of the target song and

the reference song are converted into chromagrams (matri-

ces which consist of chroma vectors). Extraction of the fre-

quently observed pattern of pitch set in songs is mathemat-

ically formulated as Non-negative Matrix Factorization [8]

of a chromagram matrices. Since we do not know exactly

how many patterns exist in songs, the number of the pat-

terns and the patterns themselves are simultaneously esti-

mated by applying Bayesian non-parametric Non-negative

Matrix Factorization (BNMF) [18] to our task.

In the synthesis phase, characters of chords which are ex-

tracted from the target song and the reference song are

mixed up by the linear interpolation of bases. A chro-

magram is re-generated through multiplication of the in-

terpolated bases and the original activations of the target
song. Finally, the audio signal is converted to create au-

dible modifications. This audio conversion is not exploit-

ing multi-pitch analysis or source-separation techniques,

but adding and reducing the sound by searching the op-

timal note sequence by using dynamic programming. The

note sequence achieves modification with similar harmonic

structure observed in the target song.

The structure of this paper is as follows: the discussions

on how the analysis phase and the synthesis phase can be

formalized are described in Section 2 and 3 respectively.

Experiments are described in Section 4 and 5 for validating

the analysis phase and synthesis phase of our method, and

we report the result of the generated audio and discuss the

further perspectives. Section 6 summarizes our findings.
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Figure 2. Example of chromagram and its circular shifted

chromagram. It is created by a circular shift as whose max-

imum value within a chroma vector to be the first element

(interval=0). With this feature, typical chord types are ob-

served removing the transposition of chord driven by the

change of the root note.

2. ANALYSIS OF CHORDS

2.1 Acoustic feature for chord characteristics

A chroma vector is an acoustic feature which has been

shown to be effective in analyzing pitch content [6], and

especially chords [19] in acoustic signals. We can obtain

chroma vectors by summing up the frequency spectral am-

plitude in analysis frames, ignoring the octave differences

but corresponding to the notes in chromatic scale (C, C#,

... , A, A#, B). Chroma vectors are effectively used in the

audio chord recognition research [20, 21, 22].

When chroma vector analysis is conducted over a short

time frame of the music, a set of pitches observed in the

frame includes frequently observed pitches such as major

third, minor third triad and dominant 7th. In addition, 9th

and 11th notes of chord tones, and non-chord notes in the

vocal melodies are also simultaneously observed.

The modification of relative intervals between the notes

contained in a chord can achieve changes in character of it.

We wish to represent these aspects of chord character with

an acoustic feature vector, but a chroma vector with the

original definition is insufficient, since the feature changes

depending on the transposition of keys even the relative

intervals between the notes are the same. We would like to

find a feature that is robust to the difference derived from

the transposition of chords.

Therefore, we apply a circular shift of the chroma vec-

tor so that the first element of the vector has the maxi-

mum value. The example of a chromagram and the cir-

cular shifted chormagram is shown in Fig. 2. We expect

that ordinary chord types, such as major 3rd or diminished

7th, will appear in this shifted chroma vector as the peak

values.
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Figure 3. Overview of our analysis and synthesis framework of chords based on Non-negative Matrix Factorization of

circular shifted chromagram: character of chords used in the target song and the reference song are extracted as frequently

observed patterns of pitch set with two step of matrix factorization. The first step extracts the universal bases which are

common in songs in the database, and the second step extracts bases adapted to each target song and reference song. To

reflect the character of chords in the reference song to the target song, the extracted bases are linearly interpolated, and the

chromagram is re-generated by adding the modification derived from the interpolation of the bases.

2.2 Convex representation of the chroma vector

The circular shifted chromagram can be represented as

a convex combination of frequently observed patterns of

notes, with time varying non-negative weights. This

can be understood by considering that there are common

notes within chords with different chord types. For in-

stance, triad notes are common in major chord and 7th

chord. Let the chroma vector for each analysis frame

cn = (c1 · · · c12)T ∈ R
12, n = 1, · · · , N , with analy-

sis frame (n − 1)λ ≤ t < nλ whose length is λ. In

addition, let the frequently observed patterns of pitch set

wk = (w1 · · ·w12)
T ∈ R

12, where k = 1, · · · ,K are

the indices of patterns. xT denotes the transposition of a

vector x. These patterns can be represented with the same

dimension and property as the chroma vector. The chroma

vector is represented with the convex combination as fol-

lows:

cn =
K∑

k=1

hknwk, (1)

where hkn is the non-negative weight for adding the pat-

tern wk at analysis frame n.

2.3 Obtaining patterns from a chromagram

To discover the frequently observed patterns of the pitch

set from a chromagram, we can apply matrix factorization

techniques. Let the matrix collecting the circular shifted

chroma vectors of the ith song in the database be C(i) =

[c
(i)
1 · · · c(i)

N(i) ], where the length of the sequence is denoted

as N (i). The factorization is:

C(i) � W (i)H(i) (2)

=
[
w

(i)
1 · · ·w(i)

K

]⎡⎢⎢⎣
h
(i)
11 · · · h

(i)

1N(i)

...
. . .

...

h
(i)
K1 · · · h

(i)

KN(i)

⎤⎥⎥⎦(3)

where W (i) is the matrix collecting the patterns obtain

from the ith song (i = 1, · · · , I), and H(i) is the matrix

collecting the weights (h
(i)
1n · · ·h(i)

Kn) for adding the pat-

terns at each analyzing frame as

H(i) = [(h
(i)
11 · · ·h(i)

K1)
T · · · (h(i)

1N(i) · · ·h(i)

KN(i))
T]. (4)

The factorization of Eq. 2 is possible with Non-negative

Matrix Factorization (NMF) [8, 12], since the components

in the matrices are all non-negative. NMF techniques tend

to factorize into bases containing the patterns that are ob-

served frequently in the data. Through this property, we

expect typical combination of notes in chords to be ob-

tained by applying NMF to the shifted chromagram. In the

NMF context, the patterns and the weights given above are

called bases and activations, respectively.

2.4 Comparing the character of chords

We can compare the character of chords among songs in

the database by looking at the difference in bases that rep-

resent the character of chords. The difference in tension
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notes, for example can be observed as the different loca-

tion of peaks in the corresponding chroma vector in a pair

of bases. However, if NMF is applied to a song individu-

ally, the chord type represented by w
(i)
k is not always the

same as the type represented by w
(j)
k . We need to align the

order of bases with a common order among all the songs

to compare them to each other.

To do this, we can utilize the NMF property that the fac-

torization result depends on the initial values set for the

iterative solution. The overview of the process is shown

in Fig. 3. We first obtain the universal bases W ∗ =
[w∗1 · · ·w∗K ], which are the bases obtained from all songs

in the database, with an appropriate number of bases to

capture the characteristic patterns. We then decompose the

chromagram of each song, with the initial value for the

bases equal to the universal bases, with the fixed number

of bases. Through the NMF property that the result largely

depend on settings of initial value before the decomposi-

tion, we expect the bases that each base in W (i) to be sim-

ilar and aligned to the ones in W ∗, but adjusted for each

song.

We can obtain universal bases by concatenating the

shifted chromagrams for the whole songs in the database

(index i = 1, · · · , I , the corresponding shifted chroma-

gram C(i)), and factorizing it as:[
C(1) · · ·C(I)

]
� [w∗1 · · ·w∗K ]

[
H(1) · · ·H(I)

]
. (5)

To adjust the number of bases with a probabilistic prior, we

use Bayesian non-parametric Non-negative Matrix Factor-

ization [18] to factorize the concatenated chromagram.

2.5 Use of bases as features for genre classification

With the method described above, we can extract the fre-

quently observed pattern of pitch set of a song. This means

that we can analyze the character of a song in respect to

the chord types. If we assume that the chord types are im-

portant to distinguish the genre of a song, we can use the

obtained bases as features for classifying songs into gen-

res. We investigate this point in the evaluation section with

genre classification task by using the obtained bases as fea-

tures.

3. SYNTHESIS OF CHORDS

3.1 Mixing the character of chords

With the bases obtained through the analysis described

in Section 2.4, we can modify the character of the circu-

lar shifted chromagram by switching or interpolating the

bases. The overview of the process is shown in Fig. 3.

Let the bases obtained from the target song be W tar, and

the activations be Htar. We linearly interpolate between

W tar and W ref via:

W̃ = αW tar + (1− α)W ref (6)

where α ∈ [0, 1] is the interpolation factor.

Furthermore, let the bases obtained from the reference
song be W ref . We can re-generate the new shifted chro-

magram C̃ that reflects the character of the reference song,

by multiplying the interpolated bases W̃ with the original

activation matrix. The reconstruction of the shifted chro-

magram is calculated as:

C̃ = Ctar +
(
W̃ −W tar

)
Htar. (7)

By inversely shifting the chroma vectors in C̃ using the

preserved index of the maximum value in each chroma

vector, we obtain the converted chromagram that reflects

the character of the reference song.

3.2 Generating audio from a chromagram

The inverse problem of generating an audio signal when

given a converted chromagram cannot be solved uniquely.

This is because the chromagram representation lacks the

octave differences and it is difficult to determine the oc-

taves to reflect the modification of the converted chroma-

gram. For instance, adding energy equally to the every

octave in the energy spectrum will not result in sounding

like note being added to the music signal. On the other

hand, concentrating energy in specific octave will result in

generating sine wave, which is not adequate for converting

the music signal.

Considering that there are certain degree of freedom in

transferring the modification of chromagram to the spec-

trum, we need constraints on the property of the adding

and reducing sounds. We put constraints on the property

of the audio signal generation so that the generated signal

has an audible modifications in chord sequence and is not

unnatural as a music signal.

3.3 Constraints on adding and reducing sounds to
achieve chord modifications

The adding or reducing sounds for achieving the modifica-

tion of chromagram should satisfy the following four con-

straints:

3.3.1 Constraint 1: similarity in chromagram

When the added or reduced sound is converted into a chro-

magram, it should be similar to the difference between be-

fore and after of the conversion of the chromagram by the

multiplication of interpolated bases and the activation.

We introduce the positive component Δc+n and negative

component Δc−n of the difference between the converted

chroma vector c∗n and the original chroma vector cn at

analysis frame n:

c∗n − cn = Δc+n −Δc−n , (8)

where all elements in Δc+n and Δc−n are constrained to be

positive. Each Δc+n and Δc−n correspond to the chroma

vector for adding and reducing sounds, respectively.

Let Δĉn be a chroma vector calculated from the gener-

ated audio of adding and reducing notes. We can define a

measure for evaluating the difference between the newly

generated Δĉn and the modification components of the

chroma vector Δc+n or Δc−n by calculating the L2 norm:

D
(
Δĉn|Δc+n

)
=

∣∣Δĉn −Δc+n
∣∣2 , (9)
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D
(
Δĉn|Δc−n

)
=

∣∣Δĉn −Δc−n
∣∣2 . (10)

By minimizing the value of this measure, we can obtain

audio that is similar to the difference of the chromagram.

3.3.2 Constraint 2: harmonic structure

The adding or reducing sound should hold a harmonic

structure similar to the one in the target song. We ex-

ploit the pitch-shifted audio signals as sources to obtain

harmonic structures for the adding or reducing sounds. We

first apply wavelet transform to the pitch-shifted audio sig-

nals to analyze the power of each semitone in the chromatic

scales. The harmonic structure can be extracted by using a

harmonic comb filter.

3.3.3 Constraint 3: pitch range

The pitch range of the adding or reducing sound should

be the medium voice range, in order not to result in disso-

nances with the melody lines (typically the vocal parts) and

the bass lines. To impose a constraint, we use a function r
which takes a larger value for the sound with the medium

pitch range:

r ((f, s)n) = log

[
1√
2πσ2

exp

(
− 1

2σ2
(f − fc)

2

)]
,

(11)

where (f, s)n represent the audio fragment with the length

of the analyzing frame in pitch f in Hz obtained from the

sth pitch transposed source at the nth analyzing frame. fc
and σ are the mean frequency and the frequency deviation

of the adding or reducing sounds, respectively. We left

the parameters fc and σ as user parameters to change the

generated result. In the experiment, these parameters were

set heuristically as fc = 220 and σ = 0.1.

3.3.4 Constraint 4: sustained notes

The adding or reducing sound should not change rapidly

in time, since they should be the consisting notes of edited

chords. We can put constraint on the length of the sounds

by imposing costs on rapidly changing ones. We introduce

the cost function q:

q
(
(f, s)n−1 → (f, s)n

)
=

{
0

(
(f, s)n−1 = (f, s)n

)
a otherwise

(12)

where→ represents the transition between two sounds (i.e.

notes). The parameter a ∈ [0, 1] controls the smoothness

of note sequences, which in our experiments we varied be-

tween 0.0 (no smoothness) to 0.7 (more smoothness).

3.4 Searching the optimal note sequences for
modifying chords

To obtain the series of sound, we can search for the sounds

which minimize the cost function J+, in which all three

constraints are combined:

J+
(
(f, s)n−1 → (f, s)n

)
= λdD

(
Δĉn|Δc+

)
+λrr ((f, s)n) + λqq

(
(f, s)n−1 → (f, s)n

)
, (13)

Figure 4. Bases obtained from a chromagram of all 100

songs by BNMF on the left. Normalized bases by dividing

the values with the maximum value in each base are shown

on the right. Typical chord types can be observed (minor

in k = 3, major in k = 6).

Figure 5. Bases obtained from three songs by NMF: the

difference corresponding to the character of chords in each

song can be observed.

where λd, λr, λq are parameters to control the weights of

the constraints, which are heuristically set in the experi-

ment. Searching for the adding or reducing sounds under

these constraints can be formalized as:

{(f, s)∗n}Nn=1 = argmin
{(f,s)n}Nn=1

N∑
n=1

J+
(
(f, s)n−1 → (f, s)n

)
,

(14)

where

J+ ((f, s)0 → (f, s)1)

=
1

λd + λr

(
λdD

(
Δĉ1|Δc+1

)
+ λrr ((f, s)1)

)
.(15)

Since the sum of J+ can be calculated recursively, we

can use dynamic programming [23] to effectively search

the optimal series of sound {(f, s)∗n}Nn=1.

4. EXPERIMENTS WITH THE ANALYSIS
FRAMEWORK

We evaluated whether our approach using Non-negative

Matrix Factorization can extract character of chord se-

quences from the chromagrams. First, we verify that chord

notes with typical intervals such as major 3rd, minor 3rd

are observed in the obtained bases. Furthermore, we check
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the differences in patterns for each song which are obtained

by factorizing the chromagram. Second, we investigate

whether the bases obtained with our method hold infor-

mation regarding the genre of a song. The investigation is

done in the context of genre classification.

4.1 Evaluation of extracting character of chords

Experiments were conducted with 100 songs of the

RWC Music Database (RWC-MDB-P-2001 No. 01 -

No. 100) [24]. The songs in the database all included vocal

components and most include drum tracks. The audio sig-

nals were monophonic, sampled at 44.1 kHz with 16-bit

encoding. The chromagrams were calculated with short-

time Fourier transform using a Hamming window 0.8 s in

length with 0.4 s overlap.

First, the chromagrams of 100 songs were concatenated

into a single chromagram which was then factorized using

BNMF. The initial number of bases was 50, which con-

verged into 9 after 100 algorithmic iterations. The obtained

9 bases are shown in Fig. 4. Second, chromagrams for each

of the songs were factorized by NMF with the initial bases

set as those obtained by BNMF. We observed changes in

the values of the bases after the NMF iterations. Selected

examples of the bases obtained with the method are shown

in Fig. 5. Distance measures for both BNMF and NMF

were KL-divergences.

In the bases obtained when BNMF was applied to 100

songs, the consisting notes of the major 3rd chord, mi-

nor 3rd chord and the diminished chord were observed.

This indicates that typical chord types can be learned with-

out prior knowledge by applying BNMF to chromagrams.

Changes on 7th or 9th notes were observed in the bases ob-

tained on individual songs, which indicates that our meth-

ods are able to capture the character of chords.

4.2 Evaluation with genre classification

As explained in Section 2.5, we can expect the result of

genre classification by using chroma vector patterns ob-

tained with our method as features to be reasonably accu-

rate.

We used 100 songs from RWC Music Database (RWC-

MDB-G-2001 No. 1 - No. 100) with a genre label as

ground truth for each song. The database consists of 33
clusters of genres. Each cluster contains 3 songs.

After converting the audio signals into 16-bit encoded,

44.1-kHz sampling, monaural signals, we applied short-

time Fourier transform (frame length: 0.8 s, frame shift

length 0.4 s, Hamming window) to them to obtain a time-

frequency representation. The chroma vector patterns ob-

tained from each song were used as features for genre clas-

sification. Hierarchical clustering was conducted from the

distance matrix [25]. The method used for the clustering

was the Ward method, which minimizes the squared sum of

distances within a cluster. We chose the five largest clus-

ters in the result and calculated a histogram of the genre

labels in each cluster.

The classification results are shown in Fig. 6. In clusters

1, 3 and 5, the major genre labels observed were ”dance”,

”vocal” and ”classical”, respectively. The labels ”vocal”

and ”dance” were especially condensed in particular clus-

ters and rarely appeared in the other clusters.

These results indicate that the features we used in mix-

ing the character of the chord sequence hold information

related to genre, and they potentially can be used to edit

the character of a chord sequence. Chroma vectors are al-

ready often used in genre classification tasks, and it is not

surprising that a feature derived from a chroma vector is

effective as shown in our experiment. However it was not

obvious that the bases extracted from the chromagram still

hold information of genre and suitable for editing the au-

dio. We confirmed that the extracted features from chroma

vectors hold information about the genre of each reference
song.

5. EXPERIMENTS WITH SYNTHESIS
FRAMEWORK

5.1 Preliminary experiment for modifying chords

We first conducted a preliminary experiment to find

whether we can edit chords in polyphonic audio with our

method by manually converting the chromagram. We

prepared audio of an organ playing a major triad chord.

The chromagram of this audio was manually converted

to achieve the chord modification from a major triad

chord to a seventh chord. The added seventh note was

clearly generated with our method. The audio sam-

ples are available at http://staff.aist.go.jp/
s.fukayama/ICMCSMC2014/.

These results indicate, in very simple condition of audio

source (only one instrument played, and no drums or vo-

cal) and with the correct modification on chromagram, our

proposed method can modify chords in polyphonic audio

signal. We confirmed audible changes in the generated au-

dio. The converted sound shows the proof of our concept,

although the quality of the added sounds were not satisfac-

tory compared to that of the original instrument sounds.

5.2 Experiments with a song database

We then conducted experiments in a more realistic situa-

tion using audio including drums and a vocal part. The fol-

lowing generated audio are available at http://staff.
aist.go.jp/s.fukayama/ICMCSMC2014/. We

used RWC-MDB-P-2001 No. 63 from the RWC Music

Database as the target song [24]. We chose RWC-MDB-

G-2001 No. 32 as the reference song whose genre label is

”jazz”. The chromagram was converted through our pro-

posed method by executing interpolation of obtained NMF

bases.

Tuning parameter a in Eq. (12) to control the smoothness

of adding sounds was varied from 0.0 to 0.7. With the

variation of a, we obtained rapidly changing adding notes

when a = 0.0, and stable notes but not corresponding to

the chord modifications when a = 0.7.

As shown in Fig. 7, the differences of power in chroma-

gram were approximately reproduced with the sound gen-

erated by our proposed method in both positive and nega-

tive components.
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Figure 6. The result of hierarchical clustering (ward method, L2norm) using bases obtained with factorization of chroma-

gram as features. Dendrogram of the cluster (above) and histogram of number of songs for each genre in clusters (below).

The database contained 3 songs per every 33 midium-large genre clusters and 1 a cappella song (100 songs as a whole).

Number of songs for each genre is shown in the brackets of each legend. We found 5 relatively large clusters containing

songs with similar genre labels.

6. CONCLUSION

We have described a method for modifying the chords of

existing polyphonic music recordings. Our main contribu-

tions are:

• By simply choosing a reference song, user can re-

flect its character of chords in the target song by con-

verting the chromagram by applying Non-negative

Matrix Factorization,

• Polyphonic music signals of the target song can be

converted to achieve the modification in the chroma-

gram, by searching the sequence of pitches to add or

reduce in the music signal of the target song.

We plan to put constraints on the harmonic structure of

the adding sound to refine the sound quality. We aim to

emphasize the more characteristic features derived from

the reference song. The heuristic parameters for generat-

ing sounds from chromagrams are also planned to be in-

vestigated further via music theoretical discussions. We

focused on mixing up the character of chords within two

songs, but our theory can be applied to mixing among sev-

eral songs or clusters of songs corresponding to the genre

labels.
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