
RMCP: Remote Music Control Protocol
Design and Applications

Masataka Goto Ryo Neyama Yoichi Muraoka

School of Science and Engineering, Waseda University
3-4-1 Ohkubo Shinjuku-ku, Tokyo 169, JAPAN.

�goto, ryo, muraoka�@muraoka.info.waseda.ac.jp

Abstract
This paper describes the design and various applications of a communication protocol in a distributed
music system that integrates MIDI and computer networks. We designed this protocol, called RMCP
(Remote Music Control Protocol), to share symbolized musical information through the networks. Most
previous related protocols were connection-oriented and did not emphasize efficient information sharing
among processes. Since the RMCP is a UDP/IP-based connection-less protocol, it supports broadcast-
based information sharing without the overhead of multiple transmission. To enable real-time MIDI
handling, it also supports time scheduling using time stamps. RMCP has been used in various applications
such as a music-controlled virtual dancer, a virtual jazz session system, and a remote session system.

1 Introduction
Computer-network protocols for symbolized musical in-
formation such as MIDI information have been taking on
importance with the popularity of network computing be-
cause of various applications. Integrating MIDI and com-
puter networks such as LANs (local area networks) and
WANs (wide area networks), for example, enables net-
work musical applications such as live MIDI broadcasts
and remote sessions via network, computer supported
sessions such as human-computer improvisation with
various interactive-graphics displays, and distributed im-
plementation of music-related software to achieve good
load-balancing and to exploit various facilities connected
with different computers. Such applications require effi-
cient information sharing over the network.

Most previous MIDI-based network protocols [1,
2, 3, 9] were connection-oriented and did not empha-
size low-latency information sharing among multiple dis-
tributed processes. MIDI is also weak in efficient in-
formation sharing among multiple devices, although it
is somehow possible to achieve all-to-all communication
among those devices. In addition, its bandwidth is very
limited and it was designed just for local communication.
Although non-MIDI-based music protocols [8] have been
proposed, most of them presuppose the use of special de-
vices.

In this paper we propose a music protocol, called
RMCP (Remote Music Control Protocol), which was
designed for sharing symbolized musical information
through computer networks. This is a communication
protocol in a distributed cooperative system that inte-
grates MIDI and computer networks such as the Ether-
net. Since it is a connection-less protocol on the UDP/IP,
it naturally supports broadcast-based information sharing
without the overhead of multiple transmission. Although
it was initially designed for use on a reliable LAN, it has

been extended to support WANs such as the Internet by
using a gateway program that can relay RMCP packets
over a WAN. It also supports time scheduling using a time
stamp in each packet in order to enable real-time MIDI
handling.

Since 1992 we have developed not only the basic
MIDI I/O processes but also various RMCP-based ap-
plications such as (1) an interactive performance system
in which there is a music-controlled computer-graphics
dancer that two musicians can choreograph by their im-
provisation in real time; (2) a virtual jazz session sys-
tem in which a human pianist can interplay with a vir-
tual bassist and a virtual drummer who have computer-
graphics bodies for playing their instruments and making
gestures; (3) a networked session in which multiple musi-
cians play together via the Ethernet with the assistance of
visualization programs; (4) Improvision, with which un-
trained people can improvise music and interact with each
other; and (5) RemoteGIG, an innovative remote session
over the Internet that has a long delay, in which each mu-
sician improvises while listening to other players’ perfor-
mances that are delayed for the constant period of a repet-
itive chord progression under a fixed tempo.

We have implemented RMCP programming libraries
in both C and Java languages and have used the pro-
tocol on various operating systems, such as IRIX-5.3,
IRIX-6.2, Solaris-2.5, SunOS-4.1.3, HP-UX, Windows-
95, Windows-NT, and Linux-2.0. RMCP has already
been utilized for various purposes in several laboratories.

2 RMCP
RMCP transmits various musical information in the form
of RMCP packets, which are shared by multiple processes
on distributed computers. For example, each MIDI mes-
sage such as note-on and note-off is packed in a packet
and sent to other processes via a LAN.

446 P R O C E E D I N G S I C M C 9 7



RMCP Display Server

RMCP MIDI Receiver

RMCP Animation ServerRMCP Sound Server

RMCP SMF Player
MIDI

MIDI

RMCP MIDI Station

Ethernet

Table 1: The basic RMCP servers and clients.

RMCP Server Description
RMCP Sound Server send MIDI messages of received pack-

ets to a MIDI instrument
RMCP Display Server visualize MIDI messages of received

packets in the form of a piano keyboard
RMCP Animation Server generate music-driven real-time com-

puter graphics corresponding to re-
ceived packets

RMCP Recorder record all received packets, with the re-
ceived time stamps, in an RMCP Packet
Record File

RMCP Client Description
RMCP MIDI Receiver receive MIDI messages from MIDI

instruments
RMCP MIDI Station substitute a computer keyboard and

mouse for a MIDI keyboard instrument
RMCP SMF Player play a Standard MIDI File
RMCP Player play an RMCP Packet Record File

RMCP is based on the server-client model in which
multiple servers receive requests from various clients.
All RMCP-based processes are therefore categorized into
RMCP clients and RMCP servers, which can be consid-
ered input and output devices, respectively. An RMCP
client generates RMCP packets such as those including
MIDI messages received from a MIDI device (MIDI IN)
and including messages corresponding to user’s interac-
tions, and it broadcasts the packets to all RMCP servers.
Since this broadcast is a connection-less one-directional
transmission, there is no acknowledgement packet from
the servers. Each RMCP server, on the other hand, re-
ceives all the broadcast packets and utilizes them in vari-
ous ways, such as controlling MIDI devices (MIDI OUT)
for outputting sounds, visualizing musical information,
and producing music-driven computer graphics. RMCP
servers can thus share all the broadcast packets without
the overhead of multiple transmission. Moreover, it is
also possible to add various servers such as a visualizing
server without any extra packets.

2.1 RMCP Servers and RMCP Clients
The design policy in developing RMCP servers and
clients is to implement necessary functions as small dif-
ferent processes so that they can be reusable. This pol-
icy facilitates system implementation and expansion and
enables those servers and clients to be allocated on dis-
tributed computers to achieve good load-balancing.

We have developed the basic servers and clients
listed in Table 1. Figure 1 shows an example of using
these servers and clients. A user plays on a MIDI in-
strument with an RMCP MIDI Receiver or on a computer
keyboard with an RMCP MIDI Station. When a MIDI in-
strument is used, MIDI messages from the instrument are
received and broadcast as RMCP packets. When a com-
puter keyboard is used, each key is assigned to a different
note (pitch) and the corresponding MIDI message is gen-
erated and broadcast. A user can also play a Standard
MIDI File using an RMCP SMF Player, which broad-

Figure 1: An example of using RMCP servers and clients.

casts the contents of the file as RMCP packets. If RMCP
packets broadcast by these clients are received by RMCP
Sound Servers, included MIDI messages are sent to MIDI
instruments according to their time stamps as described
in Section 2.2. Those packets can also be visualized by
RMCP Display Servers in the form of a piano keyboard
and can be utilized simultaneously by various RMCP An-
imation Servers to generate music-driven real-time com-
puter graphics such as virtual dancers and musicians.

2.2 Time Scheduling
RMCP supports time scheduling using time stamps for
real-time packet processing. There are two kinds of
RMCP packets: those with a time stamp and those with-
out a time stamp. The time-stamped packets received be-
fore their time stamps are kept in each server till the time
of their time stamps and are then processed on time and
in order. This processing compensates for variations in
network latency. The time-stamped packets received af-
ter their time stamps and the packets without time stamps
are processed immediately.

This time scheduling requires time synchronization
among distributed computers because it is necessary for
RMCP servers on different computers to process packets
with the same time stamp at the same time. We therefore
introduced, on each computer, an RMCP Time Synchro-
nization Server (RMCPtss) that enables all RMCP servers
to handle the time stamps of received packets as if all the
internal clocks of the different computers were synchro-
nized.1 RMCP server developers thus need not care about
the time synchronization.

Each RMCPtss makes an offset table of temporal dif-
ferences between its internal clock and the internal clocks
of other computers and periodically broadcasts a packet
including the table with the transmitted time stamp (its
current internal clock time). When an RMCPtss receives
the table from another RMCPtss, it updates the corre-
sponding offset (temporal difference) in its own table by
calculating the difference between the transmitted time
stamp of the received table and its received time measured

1There are other solutions, such as NTP (Network Time Protocol)
[RFC-1119] that synchronizes the internal clocks using administrative
authority. On the other hand, our solution does not require administra-
tive authority because it does not directly adjust the internal clocks.

P R O C E E D I N G S I C M C 9 7 447



by its own internal clock.
Each RMCP server, on the other hand, receives the

table from the RMCPtss on the same computer. Every
time each server receives an RMCP packet with a time
stamp, it adjusts the time stamp by using the sender’s off-
set in the table so that it can compensate for the internal
clocks’ difference.

3 Implementation of RMCP
We designed the communication protocol RMCP and
have implemented RMCP programming libraries and var-
ious servers and clients. Under the assumption that the
RMCP will be used on a reliable low-latency network
such as an Ethernet LAN, RMCP uses the UDP/IP (which
is an unreliable connection-less protocol) as its transport
protocol and does not ensure the reliability of commu-
nication except for remote communication over a WAN
such as the Internet.

3.1 RMCP Packets
Each RMCP packet consists of a message header and
body. The header specifies the message type, time
stamp (with millisecond resolution), target server iden-
tifier, sender identifier, and message length. Some of the
basic message types are MIDI information for transmit-
ting MIDI messages, beat information for beat synchro-
nization, chord information for broadcasting chord name
and voicing, and animation information for controlling
computer graphics.

3.2 RMCP over the Internet
Since RMCP was initially designed for use on a reliable
LAN, it was hard to use on an unreliable WAN such as the
Internet. We have therefore introduced RMCP Gateways
that can provide the bidirectional relay of RMCP pack-
ets over the Internet by using the TCP/IP, which is a reli-
able connection-oriented protocol. A pair of RMCP Gate-
ways connects two remote LANs: each gateway relays
the RMCP packets broadcast on its LAN to the gateway
on the other side of connection and also broadcasts the
packets relayed from the other gateway.2 RMCP servers
and clients can thus communicate as if the different LANs
connected by the gateways were the same network with
the exception of the network latency.

It is impossible to avoid the network latency over the
Internet: even signals traveling at the speed of light need
more than 66 ms to reach halfway around the globe. We
therefore consider that the RMCP should provide a cer-
tain constant latency with very small deviation. A pair of
gateways measures and reports the network latency at the
start so that we can specify enough large constant latency
to avoid the latency deviation. The pair then punctually
relays the packets with the specified latency. This enables
live MIDI broadcasts and an original remote session Re-
moteGIG (described in Section 4.5).

2Note that the relayed packets should be marked for the RMCP Gate-
ways in order to avoid a possible infinite loop of the relay.

3.3 Experimental Results
We have implemented RMCP programming libraries in
both C and Java languages and have tested the proto-
col on various computers and operating systems, such as
IRIX-5.3, IRIX-6.2, Solaris-2.5, SunOS-4.1.3, HP-UX,
Windows-95, Windows-NT, and Linux-2.0. We found
that RMCP facilitated the implementation and expansion
of distributed music applications, especially real-time and
interactive applications.

We measured the communication delay when RMCP
packets traveled from a client to a server on different com-
puters. We tested the C-based RMCP libraries on two
different SGI Indigo2s (IRIX-5.3) connected via the 10
Mbps Ethernet, The delay ranged from 0.28 to 1.24 ms,
and the average delay was 0.30 ms (standard deviation =
0.06 ms). This result shows that RMCP is fast enough
compared with the MIDI data transmission rate (31.25
Kbits/sec).

4 Applications
Various RMCP-based applications have been developed,
and this section introduces five of them.

4.1 Virtual Dancer “Cindy”
We have developed an interactive performance system in
which two players, a drummer and a guitarist or pianist,
can together choreograph a virtual dancer called Cindy3

by their musical improvisation in real time [7] (Figure 2).
This system enables the players to communicate using
both auditory and visual information. Because the play-
ers not only improvise together as in a conventional jam
session but also observe the virtual dancer whose motion
is changed according to their musical performance, they
can interact with each other not only through music but
also through 3-D computer animation.

This application consists of an RMCP Animation
Server for Cindy, an RMCP Music Analyzer (application-
specific server) to analyze the guitarist’s improvisation,
an RMCP MIDI Receiver, and an RMCP Sound Server.

4.2 VirJa Session
We have proposed a virtual jazz session system called
VirJa Session in which a human player and computer
players can communicate not only by listening to each
others’ performances but also by seeing each others’ bod-
ies and gestures [5]. The human player sees the bod-
ies and gestures of other computer players shown on 3-D
real-time computer graphics, and can feel their presence
as if they were actually playing together. In addition, each
computer player reacts to the gestures of the human player
by using a video camera. We can thus achieve multimodal
interaction among all players.

The current implementation of this system deals with
a jazz piano trio consisting of a human pianist, a computer

3Cindy can also dance in time to music by using our beat-tracking
system [6].

448 P R O C E E D I N G S I C M C 9 7



time

Player A

Player B

Site A

Site B

A-1

A-1

A-2 A-3

A-2

B-1 B-2 B-3

B-1 B-2

1 period 1 period 1 period

Figure 2: Virtual Dancer “Cindy”. Figure 3: VirJa Session. Figure 4: RemoteGIG.

bassist, and a computer drummer (Figure 3). It consists
of an RMCP MIDI Receiver, an RMCP Sound Server,
and four kinds of application-specific RMCP servers and
clients described in [5].

4.3 Networked session
The RMCP has been used in a local networked session in
which several players perform music together via the Eth-
ernet [4]. The players can not only listen to other players’
performances but can also see visualized performances
that facilitate musical cooperation. This application re-
quires RMCP MIDI Receivers or RMCP MIDI Stations,
RMCP Sound Servers, and RMCP Display Servers. An
RMCP SMF Player is useful for background accompani-
ment. An RMCP Recorder and an RMCP Player are also
available for recording and playing back the performance.

4.4 Improvision
We have developed a musical-instrument interface, called
Improvision, which enables an untrained novice to impro-
vise unconventional music easily by clicking and drag-
ging a computer mouse [4]. Multiple players can in-
teract with each other by playing RMCP Improvisions
(application-specific clients) instead of RMCP MIDI
Stations and can see other players’ performances on
RMCP Improvision Display Servers (application-specific
servers) instead of RMCP Display Servers.

4.5 RemoteGIG
RemoteGIG is an innovative remote session over the In-
ternet that has a long delay. RemoteGIG overcomes the
network latency and offers a new possibility for future
remote sessions. It assumes that the tempo is constant
and the chord progression is repetitive, like the 12-bar
blues chord progression. Figure 4 illustrates how remote
players interact with each other over the network. Re-
moteGIG turns the network latency to its advantage: each
player improvises while listening to other players’ per-
formances that are delayed for the constant period of the
repetitive chord progression. Because the progression is
repetitive, the delayed performances can fit the chords.
RemoteGIG requires RMCP Gateways in addition to the
servers and clients described in Section 4.3. In particular,
an RMCP SMF Player is needed for playing background
drums to keep the constant tempo.

5 Conclusion
We have described a network protocol called RMCP that
enables multiple distributed processes to share symbol-
ized musical information such as MIDI information. It
supports efficient broadcast-based information sharing
over a LAN and time-scheduling using time stamps to
enable real-time MIDI processing, and it also enables
live MIDI transmission over a WAN such as the Inter-
net. RMCP has been implemented on various operating
systems and has been utilized for various purposes.

We plan to distribute our RMCP software package on
our WWW page “http://www.info.waseda.ac.jp/muraoka
/members/goto/RMCP/” and to provide an API to make
RMCP and MIDI usable in Java applets.

Acknowledgments
We thank the SALA (Science Art Laboratory), which enabled
the first author to originate this project. In particular, we thank
Yuji Hashimoto, Shigeru Chiba, and Shin Miyakawa for their
support in the early stages of the project. We also thank Yoshi-
aki Kikuchi, Isao Hidaka, Tetsuya Abe, Hideaki Matsumoto,
Yosuke Kuroda, Mitsukazu Washisaka, Keiji Hirata, and Yoichi
Nagashima for their helpful comments and cooperation.

References
[1] T. Aoyagi and K. Hirata. Music server system� distributed music

system on local area network �. Journal of Information Process-
ing, 15(1):1�9, 1992.

[2] D. Fober. Real-time Midi data flow on Ethernet and the software ar-
chitecture of MidiShare. In Proc. of ICMC 1994, pages 447�450,
1994.

[3] D. Fober, S. Letz, and Y. Orlarey. Recent developments of
MidiShare. In Proc. of ICMC 1996, pages 40�42, 1996.

[4] M. Goto and Y. Hashimoto. A distributed cooperative system to
play MIDI instruments� toward a remote session� (in Japanese).
IPSJ SIG Notes, 93(109):1�8, 1993.

[5] M. Goto, I. Hidaka, H. Matsumoto, Y. Kuroda, and Y. Muraoka. A
jazz session system for interplay among all players�VirJa Session
�. In Proc. of ICMC 1996, pages 346�349, 1996.

[6] M. Goto and Y. Muraoka. Beat tracking based on multiple-agent
architecture � a real-time beat tracking system for audio signals
�. In Proc. of ICMAS 1996, pages 103�110, 1996.

[7] M. Goto and Y. Muraoka. A virtual dancer "Cindy" � interactive
performance of a music-controlled CG dancer �. In Proc. of the
Lifelike Computer Characters ’96, page 65, 1996.

[8] K. McMillen, D. Simon, and M. Wright. A summary of the ZIPI
network. CMJ, 18(4):74�80, 1994.

[9] O. Nielsen. MIDI and audio via ISDN. In Proc. of ICMC 1994,
pages 451�454, 1994.

P R O C E E D I N G S I C M C 9 7 449


