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Abstract
We briefly describe two rhythm-tracking systems, called, respectively, Machine Rhythm and BTS.
Given a MIDI stream as input, Machine Rhythm produces an interpretation that is essentially isomorphic to the

rhythmic information represented in normal musical notation. The output of the program defines the placement of
measures and assigns rhythmic values (half-note beats, quarter-note beats, etc.) to each note. Although Machine
Rhythm is not a real-time system, it processes the MIDI information sequentially, paving the way for possible
future real-time implementations. The program attempts to handle some of the more sophisticated rhythm-tracking
operations of which humans are capable, such as changes from duple to triple meter or changes in tempo.

BTS tracks beats using raw audio signals as input � in general, a much more difficult problem than tracking it
from MIDI data. BTS accomplishes this task by leveraging the fact that for a large corpus of music � rock and pop
songs � the beat is indicated with some reliability by the bass and snare drums. BTS’s non-reliance on MIDI data
enables it to handle a broad range of multimedia applications for which MIDI-based beat-tracking programs cannot
be used, and the fact that it works in real time enables its application in a variety of live performance situations.

Both Machine Rhythm and BTS use a similar strategy for managing uncertain or noisy input data � namely, the
strategy of pursuing multiple hypotheses.

1. Rhythm Tracking Issues
Rhythm tracking and related psychoacoustical and

psychological issues have been treated by a number of
researchers from a variety of disciplines ([Allen and Dan-

nenberg, 1990], [Bamberger, 1980], [Chung, 1989], [Dannenberg and

Mont-Reynaud,1987], [Desain and Honing,1989], [Driesse,1991],

[Goto and Muraoka,1994], [Katayose et al.,1989], [Lee,1985],

[Longuet-Higgens and Lee,1984], [Rosenthal,1992], [Schloss,1985],

[Sloboda,1983], and [Vercoe,1985])1.
One reason that building a computer rhythm-tracker

is difficult is that input data is often noisy or ambigu-
ous. At any given point in the rhythm-tracking process,
several interpretations may appear plausible; only fur-
ther on in the processing does the correct interpretation
become clear. One way of managing this situation is
to maintain a number of hypotheses, which are periodi-
cally ranked and selected.

Another problem is that human rhythm-trackers op-
erate in a much more information-rich environment
than do computer rhythm-trackers. Beat-tracking and
rhythm-parsing, in humans, are part of an array of audi-
tory information-processing methods which interact in
ways that we only partly understand. In a reasonable
model of human auditory processes, many other pro-
cesses act on the incoming auditory data. These include:
parsing the music into separate events, estimating the
power associated with each event, separating the mu-
sic into streams, noting repeated patterns, parsing the
harmonic structure, recognizing instruments, and so on.

1For the sake of brevity, we will assume that the reader is familiar
with the general problems of beat-finding, and concentrate on issues
which are specific to Machine Rhythm and BTS.

We assume that these processes interact and inform each
other and the rhythm-tracking processes.

The processes of rhythm-tracking itself is also less
unary than is assumed by previous simpler models. It
appears that humans normally track several levels of
rhythmic activity � that is, in a given situation we may
track a beat at the measure level, the half-note level, the
quarter-note level, and so on. Again, although we don’t
really understand the degree of cooperation between
these processes, a reasonable model is that they are
autonomous to some degree, yet informed enough of
each other to maintain coordination.

2. Machine Rhythm
Machine Rhythm, developed at the MIT Media Lab-

oratory as part of one of the authors’ (Rosenthal) Ph. D.
dissertation, addresses some of the issues raised in the
last section.

First of all, Machine Rhythm deals with ambiguous
input by creating a number of conjectures to cover the
range of reasonable explanations. Machine Rhythm’s
strategy amounts to beam search of a hierarchical
space of rhythmic hypotheses (see also [Allen and Dan-

nenberg,1990]).
Machine Rhythm also attempts to duplicate the

information-rich environment in which human rhythm-
tracking apparently takes place, by emulating some of
the auditory processing functions that affect rhythm
parsing. In particular, Machine Rhythm segregates
the MIDI stream into voices, and searches the result-
ing separated voices for melodic patterns. Detection
of such a pattern constitutes evidence that there is a
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beat whose period is a multiple of the length of the
pattern. Machine Rhythm also groups nearly simulta-
neous notes into chords, which can then be viewed as
unary events. Machine Rhythm’s scheme for chord-
construction is based on results from psychoacoustical
experiments reported in [Bregman,1990].

2.1 Overview of Machine Rhythm

The overall operation of Machine Rhythm may be
summarized as follows:

1. The system first preprocesses the entire performance.
During the preprocessing stage the MIDI information
is grouped into chords (notes with nearly simultaneous
onset) and voices (e.g., melody and accompaniment).

2. Machine Rhythm then selects an initial segment of
the performance � usually 2-3 seconds � called the
startup segment, and makes a number of hypotheses
about the rhythm of the initial segment.

3. The system then processes the remainder of the per-
formance sequentially, one note (or chord) at a time.
Each hypothesis is extended to account for the new
note. If the way in which hypotheses should be ex-
tended is ambiguous, Machine Rhythm will produce
several hypotheses. As a result, the number of hy-
potheses grows exponentially in the number of notes
processed.

4. When the number of hypotheses exceeds a preset
limit, the hypotheses are ranked, and the lower-ranked
hypotheses are discarded. Hypotheses are ranked ac-
cording to the following criteria:

� Stronger beats (such as the beginnings of measures
or half-measures) are more likely to occur on chords
rather than single notes.

� Stronger beats are more likely to occur on notes of
longer duration, or notes where the time-interval to
the next note is longer.

� It is preferable that the period of a beat should coin-
cide with the period of a detected melodic pattern.

�Beats which have uniform or slowly changing peri-
ods are preferable to those which do not.

A manager-module checks for informative interac-
tions among these criteria, and makes some context-
sensitive decisions as to how to apply them.

5. Machine Rhythm also incorporates a module which
detects changes in rhythmic subdivision, the most
common example of which is a triplet.

2.2 Test Results

We tested Machine Rhythm on a corpus of 92 per-
formances. Of these the largest block was taken from
55 movements from Mozart piano sonatas performed by
Mike Hawley of the MIT Media Lab. An additional data
set taken from 37 Mozart sonata movements consisted

of performances by one of the authors (Rosenthal). We
also tested the system, less formally, on a variety of
folksongs, national anthems, etc..

Each test consisted of two parts: we first checked
whether the startup module could correctly parse the
beginning of the piece. If it was successful, we then
checked whether the parser could continue without "los-
ing the beat," that is, given that it had parsed a measure
correctly, what were the chances that it would parse the
following measure correctly. The results were as fol-
lows: The startup module succeeded 62% of the time
for the Hawley performances and 65% percent of the
time for the Rosenthal performances. Given that it had
parsed a measure correctly, the program would parse the
next measure correctly 95% of the time for the Hawley
performances and 98.5% of the time in the Rosenthal
performances. More details on the tests can be found in
[Rosenthal,1992].

3. BTS (A Real-time Beat Tracking System
for Musical Acoustic Signals)

BTS, developed at the Muraoka Lab at Waseda Uni-
versity as part of one of the authors’ (Goto) M.S. thesis,
also addresses some of the issues raised in the first sec-
tion of this paper, though the approach differs from that
of Machine Rhythm.

BTS processes a monaural acoustic signal of music
and recognizes temporal positions of beats in real time.
Most previous rhythm-trackers were not able to process
acoustic signals that contain sounds of various instru-
ments, especially drums. They were able to process
only MIDI signals or acoustic signals played on a few
instruments in non-real time. BTS deals with commer-
cially distributed popular music such as rock and pop
music in which mainly drums maintain the beat.

3.1 Specifications of BTS

BTS works on assumptions that fit a large class of
popular music. The tempo of an input song is con-
strained to be between 70 M.M. and 180 M.M. and al-
most constant; popular songs have less tempo variation
than do classical works. The time signature is assumed
to be 4/4, this being the most frequent time-signature in
the repertoire we are considering.

BTS reports beat information (BI) that consists of:
the temporal position of a beat (beat time), its location
in a half-measure (beat type), and the current tempo.
BI corresponding to a quarter note is broadcast to the
Ethernet as an RMCP2 packet synchronized to the mu-
sic. This enables other computers on the Ethernet to

2RMCP stands for remote music control protocol, which is a com-
munication protocol between servers and clients in the RMCP system
[Goto and Hashimoto,1993].
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use the BI in various ways. For example, a worksta-
tion connected to a MIDI instrument may create drum
sounds or clapping sounds in time to the input music.
A workstation with a graphics engine may also create
computer graphics synchronized with music.

Beat type indicates whether a beat is a strong beat
or a weak beat � i.e., BTS can track beats at the half-
note level. To infer beat type, BTS assumes that a
bass drum (BD) mainly sounds on a strong beat (the
first or third quarter notes in a measure) and a snare
drum (SD) on a weak beat (the second or fourth). This
does not mean that all BD and SD must sound on the
strong and weak beats, respectively, but rather that that
arrangement should be the most frequent.

3.2 Main Issues and Solutions

The principle beat-tracking issues addressed by BTS
are as follows:

1. It is generally impossible to obtain precise onset times
from acoustic signals that contain sounds of various
instruments.
BTS employs sophisticated means of estimating the
onset time in the frequency analysis stage. First,
BTS finds multiple interpretations corresponding to
various time-window widths, one of which is con-
firmed by subsequent processing. Second, the reli-
ability of an onset time is calculated by a process
which takes into account such factors as the rapidity
of increase in power, and the power present in nearby
time-frequency regions. The higher the reliability of
an onset time, the greater its importance in subsequent
processing.

2. BTS should be able to recover the correct tracking
even if the current hypothesis becomes incorrect.
BTS manages multiple agents that track beats accord-
ing to different strategies and then examines multiple
hypotheses in parallel. Even if some agents lose track
of beats, BTS will track correct beats as long as other
agents have the correct hypothesis. Each agent inter-
prets onset time and makes his own hypothesis, which
consists of next beat time predicted, its beat type, its
reliability, and current inter-beat-interval. BTS gen-
erates BI on the basis of the most reliable and stable
hypothesis.

3. BTS must acquire the characteristic frequencies of BD
and SD dynamically.
BTS, like human listeners, utilizes BD and SD as prin-
ciple clues to the location of strong and weak beats.
Because the sounds of BD and SD are not known in ad-
vance, BTS automatically acquires the characteristic
frequencies of these sounds during the beat-tracking
process. Note that BTS cannot simply use the detected
BD and SD to track the beats, because this detection

process is too noisy. The detected BD and SD are
only used to determine the beat type (strong or weak)
of an already detected beat.

3.3 Overview of BTS

Figure 1 shows the overview of BTS implemented
on a distributed memory parallel computer, the Fujitsu
AP1000 which consists of 64 processing elements called
cells. The number of cells assigned to each process is
indicated at the bottom right of rectangles.

Figure 1: Overview of BTS

First, Frequency Analysis finds notes’ onset times in
an input acoustic signal digitized by A/D Conversion
and also detects BD and SD. Second, multiple agents
in Beat Prediction interpret the onset times found pre-
viously and make parallel hypotheses: each agent first
calculates the inter-beat-interval; it then predicts the
next beat time, and infers its beat type, and finally eval-
uates its own reliability. BI Generation assembles BI
on the basis of the most reliable hypothesis. Finally,
BI Transmission transmits the BI to other application
programs via the Ethernet.

3.4 Test Results

We tested BTS for 30 popular songs in the rock and
pop music genre. These songs were sampled from com-
mercial compact discs and satisfied the assumptions
stated above. Their tempi ranged from 78 M.M. to
167 M.M.

BTS correctly tracked beats in 27 songs out of 30
songs in real time. After the BD and SD had sounded
stably for a few measures, the beat type was obtained
correctly. The three failures occurred as follows: In
two songs, the beat type was reversed as if BD were
SD, because BTS could not acquire their characteristic
frequencies correctly. In the other song, BTS tracked
beats correctly, for the most part, but during about three
measures in the middle, the beat type was reversed due
to some irregular rhythm in the drums.
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