
Beat Tracking based on Multiple-agent Architecture
A Real-time Beat Tracking System for Audio Signals

Masataka Goto and Yoichi Muraoka
School of Science and Engineering, Waseda University

3-4-1 Ohkubo Shinjuku-ku, Tokyo 169, JAPAN.
�goto, muraoka�@muraoka.info.waseda.ac.jp

Abstract
This paper presents an application of multiple-agent architec-
ture to beat tracking for musical acoustic signals. Beat track-
ing is an important initial step in computer understanding of
music and is useful in various multimedia applications. Most
previous beat-tracking systems dealt with MIDI signals and
were not based on a multiple-agent architecture. Our sys-
tem can recognize, in real time, temporal positions of beats
in real-world audio signals that contain sounds of various in-
struments. Our application of multiple-agent architecture en-
ables the system to handle ambiguous situations in interpret-
ing real-world input signals and to examine multiple hypothe-
ses of beat positions in parallel. Even if some agents lose
track of the beat, other agents will maintain the correct hy-
pothesis. Each agent is able to interact with other agents to
track beats cooperatively, and self-evaluate the reliability of
its hypothesis on the basis of the current input situation, and
adapt to the current situation in order to maintain the correct
hypothesis. These agents have been implemented on different
processing elements in a parallel computer. Our experimental
results show that the system is robust enough to handle audio
signals sampled from commercially distributed compact discs
of popular songs.

Introduction
Multiple-agent architectures have recently been applied in
various domains. This paper describes our application
of multiple-agent architecture to beat tracking for musical
acoustic signals. In our formulation, beat tracking means
tracking the temporal positions of quarter notes, just as peo-
ple keep time to music by hand-clapping or foot-tapping.
There are various ambiguous situations that occur when a
system interprets real-world input audio signals like those
sampled from compact discs. Multiple-agent architecture
has the advantages of interpreting those signals and tracking
beats in various ways, because different agents can examine
multiple hypotheses of beat positions in parallel according
to different strategies. The main contribution of this paper is
to show that such a multiple-agent architecture is actually
useful and effective for a practical real-world application,
namely, beat tracking.

Beat tracking is an important initial step in computer em-
ulation of human music understanding, since beats are fun-
damental to the perception of Western music. A person who
cannot completely segregate and identify every sound com-
ponent can nevertheless track musical beats. It is almost im-

possible to understand music without perceiving beats, since
the beat is the basic unit of the temporal structure of music.
Moreover, musical beat tracking is itself useful in various ap-
plications, such as video editing, audio editing, stage light-
ing control, and music-synchronized CG animation (Goto &
Muraoka 1994). We therefore first build a computational
model of beat perception and then extend the model, just as
a person recognizes higher-level musical events on the basis
of beats.

Various beat-tracking related systems have been under-
taken in recent years (Dannenberg & Mont-Reynaud 1987;
Desain & Honing 1989; Allen & Dannenberg 1990; Driesse
1991; Rosenthal 1992; Desain & Honing 1994; Vercoe 1994;
Large 1995). Some previous systems (Allen & Dannenberg
1990; Rosenthal 1992) have maintained multiple hypothe-
ses to track beats, and an earlier paper (Rosenthal, Goto, &
Muraoka 1994) has presented the advantages of the strat-
egy of pursuing multiple hypotheses. Most of the systems
maintaining multiple hypotheses, however, were not based
on a multiple-agent architecture. The one described in (Allen
& Dannenberg 1990) examined two or three hypotheses by
beam search and tracked beats in real time. It dealt only with
MIDI signals as its input and was not able to deal with au-
dio signals played on several musical instruments, however.
Another MIDI-based system (Rosenthal 1992) maintained a
number of hypotheses that were periodically ranked and se-
lected. Those hypotheses were examined sequentially and
the system did not work in real time.

We built a beat tracking system that processes real-world
audio signals that contain the sounds of various instruments
and that recognizes the temporal positions of beats in real
time. Our system is based on multiple-agent architecture in
which multiple hypotheses are maintained by programmatic
agents using different strategies for beat-tracking. Because
the input signals are examined from the viewpoints of these
various agents, various hypotheses can emerge. Agents that
pay attention to different frequency ranges, for example, may
track different beat positions. This multiple-agent architec-
ture enables the system to cope with difficult beat-tracking
situations: even if some agents lose track of beats, the sys-
tem will track beats correctly as long as other agents maintain
the correct hypothesis.

Each agent is capable of interaction, self-evaluation, and
adaptation. In making a hypothesis, the agent interacts with
other agents to track beats cooperatively. Each agent then

Goto 103

Musical
acoustic

signals

Beat times

Beat type

(quarter-note level)

(half-note level)
Strong Weak Strong Weak Strong Weak

time

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

predictinter-beat interval

predicted
next-beat time time

evaluates the reliability of its own hypothesis on the basis of
the current input situation, and the most reliable hypothesis is
considered the final output. If the reliability of a hypothesis
becomes high enough, the agent tries to adapt to the current
situation by adjusting a parameter that controls its strategy
in order to maintain the correct hypothesis.

To perform this computationally intensive task in real
time, the system has been implemented on a parallel com-
puter, the Fujitsu AP1000. Each agent and frequency-
analysis module has been implemented on a different pro-
cessing element. In our experiment with audio signals sam-
pled from compact discs, the system correctly tracked beats
in 34 out of 40 popular songs that did not include drum-
sounds. This result shows that our beat-tracking model based
on multiple-agent architecture is robust enough to handle
real-world audio signals.

Multiple-agent Architecture for Beat Tracking
In this section we specify the beat tracking problem that
we are dealing with and present the main difficulties of
tracking beats: ambiguity of interpretation and the need for
context-dependent decisions, difficulties which are common
to other real-world perceptual problems. We then describe
the multiple-agent architecture to address the beat tracking
problem, defining our agents and outlining their interaction.

Beat Tracking Problem
In our formulation, beat tracking is defined as a process that
organizes music into almost regularly spaced beats corre-
sponding to quarter notes. Our beat tracking problem is thus
to obtain an appropriate sequence of beat times (temporal
positions of beats) that corresponds to input musical audio
signals (Figure 1). This sequence of beat times is called the
quarter-note level. We also address the higher-level beat
tracking problem of determining whether a beat is strong
or weak (beat type)1 under the assumption that the time-
signature of an input song is 4/4. This is the problem of
tracking beats at the half-note level.

There are various difficulties in tracking the beats in real-
world musical acoustic signals. The simple technique of
peak-finding with a threshold is not sufficient since there are
many energy peaks that are not directly related to beats. Mul-
tiple interpretations of beats are possible at any given point

1In this paper, a strong beat is either the first or third quarter
note in a measure; a weak beat is the second or fourth.

Figure 1: Beat tracking problem.

because there is not necessarily a single specific sound that
directly indicates the beat position; the beat is a perceptual
concept that a human feels in music. There are various am-
biguous situations, such as ones where several events ob-
tained by frequency analysis may correspond to a beat and
where different inter-beat intervals (the temporal difference
between two successive beats) seem plausible. In addition,
higher-level processing using musical knowledge is neces-
sary for making context-dependent decisions, such as de-
termining whether a beat is strong or weak and evaluating
which is the best interpretation in an ambiguous situation.

Our solution to the problem of handling ambiguous sit-
uations is to maintain multiple hypotheses, each of which
corresponds to a provisional or hypothetical interpretation
of the input. A real-time system using only a single hypoth-
esis is subject to garden-path errors. A multiple-hypothesis
system can pursue several paths simultaneously, and later de-
cide which one was correct. In other words, in real-time beat
tracking these hypotheses represent the results of predicting
the next beat in different ways and it is impossible to know in
advance which one will be correct (because the future events
are not available).

Multiple-agent Architecture
To examine multiple hypotheses in parallel, we use a
multiple-agent architecture in which agents with different
strategies interact through cooperation and competition to
track beats (Figure 2). Several definitions of the term agent
have been proposed (Minsky 1986; Maes 1990; Shoham
1993; CACM 1994; Nakatani, Okuno, & Kawabata 1994;
ICMAS 1995); in our terminology, the term agent means
a software component that satisfies the following three re-
quirements:

1. the agent interacts with other agents to perform a given
task.

2. the agent evaluates its own behavior on the basis of the
input.

3. the agent adapts to the input by adjusting its own behavior.

Each agent maintains a beat-position hypothesis, which
consists of a predicted next-beat time, its beat type (strong

Figure 2: Multiple hypotheses maintained by multiple
agents.

104 ICMAS-96

Agent 1-1

Agent 1-2

time
prediction

field

inhibitpair

now

Onset-time vectorizers

t

f

A/D Conversion Beat Prediction Beat Information
Transmission

Frequency
Analysis

Musical
 audio signals

Beat information

Frequency spectrum
Onset components

Compact disc

Agents

Manager

Onset-time finders

Higher-level
checkers

Tempo: 61-120 M.M.

A/D Conversion

Beat
 Prediction

Frequency
 Analysis

most reliable hypothesis

Time-signature: 4 / 4

BI Transmission

Beat Information
Beat time, Beat type,
Current tempo

vectors
onset-time

Manager

Fast Fourier Transform

Agents

Onset-time vectorizers
Onset-time finders

Extracting onset components

Higher-level
checkers

hypotheses

Musical Audio Signals

Figure 3: Interaction between agents through a prediction
field.

or weak), and the current inter-beat interval. In making the
hypothesis, the agent interacts with other agents to perform
the beat-tracking task (the first requirement). All agents
are grouped into pairs that have different strategies for beat
tracking. Each agent in the pair examines the same inter-
beat interval using the same frequency-analysis results. To
predict the next beat times cooperatively, one agent interacts
with the other agent in the same pair through a prediction
field. The prediction field is an expectancy curve2 that repre-
sents when the next beat is expected to occur (Figure 3). The
height of each local peak in the prediction field can be inter-
preted as the next beat-position possibility. The two agents
interact with each other by inhibiting the prediction field in
the other agent. The beat time of each hypothesis inhibits the
temporally corresponding neighborhood in the other’s field
(Figure 3). This enables one agent to track the correct beats
even if the other agent tracks the middle of the two succes-
sive correct beats (which compensates for one of the typical
tracking errors).

Each agent is able to evaluate its own hypothesis, using
musical knowledge, according to the input acoustic signals
(the second requirement). We call the quantitative result of
this self-evaluation the reliability of the hypothesis. The final
beat-tracking result is determined on the basis of the most
reliable hypothesis that is selected from the hypotheses of
all agents.

Each agent also adapts to the current input by adjusting
its own strategy parameter (the third requirement). If the
reliability of a hypothesis becomes high enough, the agent
tunes a parameter to narrow the range of possible inter-beat
intervals so that it examines only a neighborhood of the cur-
rent appropriate one. This enables the agent to maintain the
hypothesis that has the inter-beat interval appropriate to the
current input.

System Description
The system for musical audio signals without drum-sounds3

assumes that the time-signature of an input song is 4/4
and that its tempo is constrained to be between 61 M.M.

2Other systems (Desain 1992; Desain & Honing 1994; Vercoe
1994) have used a similar concept of expectancy curve for pre-
dicting future events, but not as a means for managing interaction
among agents.

3A detailed description of our beat-tracking system for audio
signals that include drum-sounds is presented in (Goto & Muraoka
1995a; 1995b).

Figure 4: Processing model.

Figure 5: Overview of our beat tracking system.

(Mälzel’s Metronome: the number of quarter notes per
minute) and 120 M.M., and is roughly constant. The em-
phasis in our system is on finding the temporal positions of
quarter notes in audio signals rather than on tracking tempo
changes. The system maintains, as the real-time output, a
description called beat information (BI) that consists of the
beat time, its beat type, and the current tempo.

Figure 4 is a sketch of the processing model of our beat
tracking system, and Figure 5 shows an overview of the sys-
tem. The two main stages of processing are Frequency Anal-
ysis, in which several cues used by agents are detected, and
Beat Prediction, in which multiple hypotheses of beat posi-
tions are examined by multiple agents. Since accurate onset

Goto 105

times are indispensable for tracking beats, in the Frequency
Analysis stage, the system uses multiple onset-time finders
that detect onset times in several different frequency ranges.
Those results are transformed into vectorial representation
(called onset-time vectors) by several onset-time vectorizers.
In the Beat Prediction stage, the system manages multiple
agents that, according to different strategies, make parallel
hypotheses based on these onset-time vectors. Each agent
first calculates the inter-beat interval and predicts the next
beat time; it then infers the beat type by communicating with
a higher-level checker (described later), and evaluates the re-
liability of its own hypothesis. The manager gathers all hy-
potheses and then determines the final output on the basis
of the most reliable one. Finally, the system transmits BI to
other application programs via a computer network.

The following describe the main stages of Frequency
Analysis and Beat Prediction.

Frequency Analysis
In the Frequency Analysis stage, the frequency spectrum and
several sequences of n-dimensional onset-time vectors are
obtained for later processing (Figure 6). The full frequency
band is split into several frequency ranges, and each dimen-
sion of the onset-time vectors corresponds to a different fre-
quency range. This representation makes it possible to con-
sider onset times of all the frequency ranges at the same time.
Each sequence of onset-time vectors is obtained using a dif-
ferent set of weights for frequency ranges. One sequence, for
example, focuses on middle frequency ranges, and another
sequence focuses on low frequency ranges.

Fast Fourier Transform (FFT) The frequency spectrum
(the power spectrum) is calculated with the FFT using the
Hanning window. Each time the FFT is applied to the digi-
tized audio signal, the window is shifted to the next frame.

Figure 6: An example of frequency spectrum and an onset-
time vector sequence.

In our current implementation, the input signal is digitized
at 16bit/22.05kHz, and two kinds of FFT are calculated. One
FFT, for extracting onset components in the Frequency Anal-
ysis stage, is calculated with a window size of 1024 samples
(46.44 ms), and the window is shifted by 256 samples (11.61
ms). The frequency resolution is consequently 21.53 Hz and
the time resolution (1 frame-time) is 11.61 ms. The frame-
time is the unit of time used in our system, and the term time
in this paper is defined as the time measured in units of the
frame-time. The other FFT, for examining chord changes in
the Beat Prediction stage, is simultaneously calculated in au-
dio down-sampled at 16bit/11.025kHz with a window size of
1024 samples (92.88 ms), and the window is shifted by 128
samples (11.61 ms). The frequency and time resolution are
consequently 10.77 Hz and 1 frame-time.

Extracting Onset Components Frequency components
whose power has been rapidly increasing are extracted as
onset components. The onset components and their degree
of onset (rapidity of increase in power) are obtained from the
frequency spectrum by a process that takes into account the
power present in nearby time-frequency regions. More de-
tails on the method of extracting onset components can be
found in (Goto & Muraoka 1995a).

Onset-time Finders Multiple onset-time finders (seven in
our current implementation) detect onset times in several dif-
ferent frequency ranges (0-125 Hz, 125-250 Hz, 250-500 Hz,
500 Hz-1 kHz, 1-2 kHz, 2-6 kHz, and 6-11 kHz). Each onset
time is given by the peak time found by peak-picking in �(�)
along the time axis, where �(�) =

�
� �(�� �), and �(�� �) is

the degree of onset of frequency � at time �. Limiting the
range of frequency for the summation of �(�) makes it pos-
sible to find onset times in the different frequency ranges.

Onset-time Vectorizers Each onset-time vectorizer trans-
forms the results of all onset-time finders into sequences of
onset-time vectors: the same onset times in all the frequency
ranges are put together into a vector. In the current system,
three vectorizers transform onset times from seven finders
into three sequences of seven-dimensional onset-time vec-
tors with the different sets of frequency weights (focusing
on all/low/middle frequency ranges). These results are sent
to agents in the Beat Prediction stage.

Beat Prediction
Multiple agents interpret the sequences of onset-time vectors
according to different strategies and maintain their own hy-
potheses. Musical knowledge is necessary to determine the
beat type (strong or weak) and to evaluate which hypothe-
sis is best. For the audio signals without drum-sounds, the
system utilizes the following musical knowledge:

1. Sounds are likely to occur on beats. In other words, the
correct beat times tend to coincide with onset times.

2. Chords are more likely to change at the beginning of mea-
sures than at other positions.

3. Chords are more likely to change on beats (quarter-notes)
than on other positions between two successive correct
beats.

106 ICMAS-96

Agents

Hypothesis Hypothesis

Onset-time
vectorizers Parameter

frequency focus type

Higher-level
checkers

Parameters
frequency focus type

inter-beat interval range
initial peak selection

autocorrelation period

Next beat time
Beat type

Next beat time
Beat type
Inter-beat intervalInter-beat interval

Figure 7: Relations between onset-time vectorizers, agents,
and higher-level checkers.

To utilize the second and third kinds of knowledge, each
agent communicates with a corresponding higher-level
checker, which is a module to provide higher-level informa-
tion, such as the results of examining the possibility of chord
changes according to the current hypothesis (Figure 7). The
agent utilizes this information to determine the beat type and
to evaluate the reliability of the hypothesis.

Each agent has four parameters that determine its strat-
egy for making the hypothesis (Figure 7), and the settings of
these parameters vary from agent to agent. The first param-
eter, frequency focus type, determines which vectorizer the
agent receives onset-time vectors from. This value is cho-
sen from among type-all, type-low, and type-middle, respec-
tively corresponding to vectorizers focusing on all frequency
ranges, low frequency ranges, and middle frequency ranges.
The second parameter, autocorrelation period, determines
the window size for calculating vectorial autocorrelation of
the sequence of onset-time vectors to determine the inter-
beat interval. The greater this value, the older the onset-time
information considered. The third parameter, inter-beat in-
terval range, controls the range of possible inter-beat inter-
vals. As described later, this limits the range of selecting a
peak in the result of the vectorial autocorrelation. The fourth
parameter, initial peak selection, takes a value of either pri-
mary or secondary. When the value is primary, the largest
peak in the prediction field is initially selected, and the peak
is considered as the next beat time; when the value is sec-
ondary, the second largest peak is selected. This helps to
obtain a variety of hypotheses.

In our current implementation there are twelve agents
grouped into six agent-pairs, and twelve higher-level check-
ers corresponding to these agents. Initial settings of the strat-
egy parameters are listed in Table 1. As explained in Section
Multiple-agent Architecture, the parameter inter-beat inter-
val range is adjusted as the processing goes on.

The following sections describe the formation and man-
agement of hypotheses. First, each agent determines the
inter-beat interval using autocorrelation; it then interacts
with its paired agent through the prediction field that is

Table 1: Initial settings of the strategy parameters.
pair frequency auto- inter-beat initial

-agent focus type correlation interval peak
period range selection

1-1 type-all 500 f.t. 43-85 f.t. primary
1-2 type-all 500 f.t. 43-85 f.t. secondary
2-1 type-all 1000 f.t. 43-85 f.t. primary
2-2 type-all 1000 f.t. 43-85 f.t. secondary
3-1 type-low 500 f.t. 43-85 f.t. primary
3-2 type-low 500 f.t. 43-85 f.t. secondary
4-1 type-low 1000 f.t. 43-85 f.t. primary
4-2 type-low 1000 f.t. 43-85 f.t. secondary
5-1 type-middle 500 f.t. 43-85 f.t. primary
5-2 type-middle 500 f.t. 43-85 f.t. secondary
6-1 type-middle 1000 f.t. 43-85 f.t. primary
6-2 type-middle 1000 f.t. 43-85 f.t. secondary

�“f.t.” is the abbreviation of frame-time (11.61 ms).

formed using cross-correlation, and predicts the next beat
time. Second, the agent communicates with the higher-level
checker to infer the beat type and evaluates its own relia-
bility. The checker examines possibilities of chord changes
by analyzing the frequency spectrum on the basis of the cur-
rent hypothesis received from the agent. Finally, the man-
ager gathers all the hypotheses, and the most reliable one is
considered as the output.

Beat-predicting Agents In our formulation, beats are
characterized by two properties: period (inter-beat interval)
and phase. The phase of a beat is the beat position relative to
a reference point, usually the previous beat time. We mea-
sure phase in radians; for a quarter-note beat, for example,
an eighth-note displacement corresponds to a phase-shift of
� radians.

Each agent first determines the current inter-beat inter-
val (period) (Figure 8). The agent receives the sequence of
onset-time vectors and calculates their vectorial autocorrela-
tion4. The windowed and normalized vectorial autocorrela-
tion function ��() is defined as

��() =

��

�=��� (
�(�) �
�(��)) �(� � �)
��

�=��� (
�(�) �
�(�)) �(� � �)
� (1)

where
�(�) is the n-dimensional onset-time vector at time �,
� is the current time, and
 is the strategy parameter auto-
correlation period. The window function �(�) is given by

�(�) = 1�0 � 0�5
�

� (2)

The inter-beat interval is given by the 	 with the maximum
height in ��() within the range limited by the parameter
inter-beat interval range.

To determine the beat phase, the agent then forms the pre-
diction field (Figure 8). The prediction field is the result
of calculating the cross-correlation function between the se-
quence of the onset-time vectors and the sequence of beat

4The paper (Vercoe 1994) also proposed using a variant of au-
tocorrelation for rhythmic analysis.

Goto 107

(by cross-correlation)
prediction field

Beat times

(by autocorrelation)
inter-beat interval

extrapolate evaluate
how coincide

Strong Weak Strong Weak Strong

Quarter-note
chord change
possibility

time

eighth-note displacement
positions

Eighth-note
chord change
possibility

Figure 8: Predicting the next beat.

times whose interval is the inter-beat interval. As mentioned
in Section Multiple-agent Architecture, the two agents in the
same pair interact with each other by inhibiting the predic-
tion field in the other agent. Each local peak in the prediction
field is considered as a possible beat phase. When the reli-
ability of a hypothesis is low, the agent initially selects the
peak in the prediction field according to the parameter initial
peak selection, and then tries to pursue the peak equivalent
to the previously selected one. This calculation corresponds
to evaluating all possibilities of the beat phase under the cur-
rent inter-beat interval. The next beat time is thus predicted
on the basis of the inter-beat interval and the current beat
phase.

The agent receives the two kinds of possibilities of chord
changes, at the quarter-note level and at the eighth-note level,
by communicating with the higher-level checker. We call
the former the quarter-note chord change possibility and the
latter the eighth-note chord change possibility. The quarter-
note (eighth-note) chord change possibility represents how a
chord is likely to change on each quarter-note (eighth-note)
position under the current hypothesis.

To infer the beat type, we use the second kind of musical
knowledge, which means that the quarter-note chord change
possibility is higher on a strong beat than on a weak beat.
If the quarter-note chord change possibility is high enough,
its time is considered to indicate the position of the strong
beat. The following beat type is then determined under the
assumption that strong and weak beats alternate (Figure 8).

The agent finally evaluates the reliability of its own hy-
pothesis by using the first and third kinds of musical knowl-
edge. According to the first kind, the reliability is determined
according to how the next beat time predicted on the basis
of the onset times coincides with the time extrapolated from
the past two beat times (Figure 8). If they coincide, the re-
liability is increased; otherwise, the reliability is decreased.
According to the third kind of knowledge, if the eighth-note
chord change possibility is higher on beats than on eighth-
note displacement positions, the reliability is increased; oth-
erwise, the reliability is decreased.

Higher-level Checkers For the audio signals without
drum-sounds, each higher-level checker examines two kinds
of chord change possibilities according to the hypotheses re-

(a) Examining quarter-note chord change possibility

(b) Examining eighth-note chord change possibility

Figure 9: Examples of peaks in sliced frequency spectrum
and chord change possibility.

ceived from the corresponding agent.
The checker first slices the frequency spectrum into strips

at the quarter-note times (beat times) for examining the
quarter-note chord change possibility, and slices at the
eighth-note times interpolated from beat times for examin-
ing the eighth-note chord change possibility (Figure 9). The
checker then finds peaks along the frequency axis in a his-
togram summed up along the time axis in each strip. These
peaks can be considered as the dominant tones’ pitches in
each strip. Some peaks may be components of a chord, and
others may be components of a melody. Our current imple-
mentation considers only peaks whose frequency is less than
1 kHz.

The checker evaluates the chord change possibilities by
comparing these peaks between adjacent strips. The more
and the louder the peaks occur compared with the previ-
ous strip, the higher the chord change possibilities. For
the quarter-note (eighth-note) chord change possibility, the
checker compares the strips whose period corresponds to the
quarter-note (eighth-note) duration under the current hypoth-
esis.

Figure 9 shows examples of two kinds of chord change
possibilities. The horizontal lines above represent peaks in
each strip’s histogram. The thick vertical lines below repre-
sent the chord change possibility. The beginning of measure
comes at every four quarter-notes from the extreme left in
(a), and the beat comes at every two eighth-notes from the
extreme left in (b).

108 ICMAS-96

Task
complexity Toy

system
Intelligent
system

Useful system

 Domain size
(closeness to the real-world)

Systems that
pay-off

Scalability
problem

Hypotheses Manager The manager classifies all agent-
generated hypotheses into groups according to beat time and
inter-beat interval. Each group has an overall reliability
given by the sum of the reliabilities of the group’s hypothe-
ses. The manager then selects the dominant group that has
the highest reliability. Since a wrong group could be selected
if temporarily unstable beat times split the appropriate domi-
nant group, the manager repeats grouping and selecting three
times while narrowing the allowable margin of beat times
for becoming the same group. The reliable hypothesis in the
most dominant group is thus selected as the output and sent
to the BI Transmission stage.

The manager updates the beat type in the output using only
the beat type that was labeled when the quarter-note chord
change possibility was high compared with the recent maxi-
mum possibility. When the possibility was not high enough,
the updated beat type is determined from the previous reli-
able beat type based on the alternation of strong and weak
beats. This enables the system to disregard an incorrect beat
type that is caused by a local irregularity of chord changes.

Implementation on a Parallel Computer

Parallel processing provides a practical and feasible solution
to the problem of performing a computationally intensive
task, such as processing and understanding complex audio
signals, in real time. Our system has been implemented on
a distributed-memory parallel computer, the Fujitsu AP1000
that consists of 64 processing elements(Ishihata et al. 1991).
A different element or group of elements is assigned to each
module, such as FFT, the onset-time finder, the onset-time
vectorizer, the agent, the higher-level checker, and the man-
ager. These modules run concurrently and communicate
with others by passing messages between processing ele-
ments.

We use four kinds of parallelizing techniques in order to
execute the heterogeneous processes simultaneously (Goto
& Muraoka 1996). The processes are first pipelined, and then
each stage of the pipeline is implemented with data/control
parallel processing, pipeline processing, and distributed co-
operative processing. This implementation makes it possible
to analyze audio signals in various ways and to manage mul-
tiple agents in real time.

Experiments and Results

We tested the system for audio without drum-sounds on 40
songs performed by 28 artists. The initial one or two min-
utes of those songs were used as the inputs. The inputs were
monaural audio signals sampled from commercial compact
discs of the popular music genre. Their tempi ranged from 62
M.M. to 116 M.M. and were roughly constant. It is usually
more difficult to track beats in songs without drum-sounds
than in songs with drum-sounds, because they tend to have
fewer sounds which fall on the beat and musical knowledge
is difficult to apply in general.

In our experiment, the system correctly tracked beats (i.e.,
obtained the beat time and type) in 34 out of the 40 songs in

real time5. In each song where the beat was eventually deter-
mined correctly, the system initially had trouble determining
the beat type, even though the beat time was correct. Within
at most fifteen measures of the beginning of the song, how-
ever, both the beat time and type had been determined cor-
rectly. In most of the mistaken songs, beat times were not
obtained correctly since onset times were very few or the
tempo fluctuated temporarily. In other songs, the beat type
was not determined correctly because of irregularity of chord
changes.

These results show that the system is robust enough to deal
with real-world musical signals. We have also developed an
application with the system that displays a computer graph-
ics dancer whose motion changes with musical beats in real
time (Goto & Muraoka 1994). This application has shown
that our system is also useful in multimedia applications in
which human-like hearing ability is desirable.

Discussion
Our goal is to build a system that can understand musical
audio signals in a human-like fashion. We believe that an
important initial step is to build a system which, even in its
preliminary implementation, can deal with real-world acous-
tic signals like those sampled from compact discs. Most
previous beat tracking systems had great difficulty work-
ing in real-world acoustic environments, however. Most of
these systems (Dannenberg & Mont-Reynaud 1987; Desain
& Honing 1989; Allen & Dannenberg 1990; Driesse 1991;
Rosenthal 1992) have dealt with MIDI signals as their in-
put. Since it is quite difficult to obtain complete MIDI repre-
sentations from audio data, MIDI-based systems are limited
in their application. Although some systems (Schloss 1985;
Katayose et al. 1989) dealt with audio signals, they had dif-
ficulty processing music played on ensembles containing a
variety of instruments and did not work in real time.

Our strategy of first building a real-time system that works
in real-world complex environments and then upgrading
the ability of the system is related to the scaling-up prob-
lem (Kitano 1993) in the domain of artificial intelligence
(Figure 10). As Hiroaki Kitano stated:

experiences in expert systems, machine translation sys-
tems, and other knowledge-based systems indicate that

5Our other beat-tracking system for audio signals that include
drum-sounds, which is based on a similar multiple-agent architec-
ture, correctly tracked beats in 42 out of the 44 songs that included
drum-sounds(Goto & Muraoka 1995b).

Figure 10: Scaling-up problem (Kitano 1993).

Goto 109

scaling up is extremely difficult for many of the proto-
types. (Kitano 1993)

In other words, it is hard to scale-up a system whose prelimi-
nary implementation works only in laboratory environments.
We think that our strategy addresses this issue and that the
application of multiple-agent architecture makes the system
robust enough to work in real-world environments.

Some researchers might regard as agents several modules
in our system, such as the onset-time finders, the onset-time
vectorizers, the higher-level checkers, and the manager. In
our terminology, however, we define the term agent as a soft-
ware component of distributed artificial intelligence that sat-
isfies the three requirements presented in Section Multiple-
agent Architecture. We therefore do not consider those mod-
ules agents: they are simply concurrent objects.

Conclusion
We have presented a multiple-agent architecture for beat
tracking and have described the configuration and imple-
mentation of our real-time beat tracking system. Our sys-
tem tracks beats in audio signals containing sounds of vari-
ous instruments and reports beat information in time to input
music. The experimental results show that the system is ro-
bust enough to handle real-world audio signals sampled from
compact discs of popular music.

The system manages multiple agents that track beats ac-
cording to different strategies in order to examine multiple
hypotheses in parallel. This enables the system to follow
beats without losing track of them, even if some hypotheses
become wrong. Each agent can interact with other agents to
track beats cooperatively and can evaluate its own hypoth-
esis according to musical knowledge. Each agent also can
adapt to the current input by adjusting its own strategy. These
abilities make it possible for the system to handle ambiguous
situations by maintaining various hypotheses, and they make
the system robust and stable.

We plan to upgrade the system to make use of other
higher-level musical structure, and to generalize to other mu-
sical genres. Future work will include application of the
multiple-agent architecture to other perceptual problems and
will also include a study of more sophisticated interaction
among agents and more dynamic multiple-agent architecture
in which the total number of agents is not fixed.

Acknowledgments
We thank David Rosenthal for his helpful comments on ear-
lier drafts of this paper. We also thank Fujitsu Laboratories
Ltd. for use of the AP1000.

References
Allen, P. E., and Dannenberg, R. B. 1990. Tracking musical beats
in real time. In Proc. of the 1990 Intl. Computer Music Conf.,
140�143.
CACM. 1994. Special issue on intelligent agents. Communications
of the ACM 37(7):18�147.
Dannenberg, R. B., and Mont-Reynaud, B. 1987. Following an
improvisation in real time. In Proc. of the 1987 Intl. Computer
Music Conf., 241�248.

Desain, P., and Honing, H. 1989. The quantization of musical time:
A connectionist approach. Computer Music Journal 13(3):56�66.
Desain, P., and Honing, H. 1994. Advanced issues in beat induction
modeling: syncopation, tempo and timing. In Proc. of the 1994 Intl.
Computer Music Conf., 92�94.
Desain, P. 1992. Can computer music benefit from cognitive mod-
els of rhythm perception? In Proc. of the 1992 Intl. Computer
Music Conf., 42�45.
Driesse, A. 1991. Real-time tempo tracking using rules to analyze
rhythmic qualities. In Proc. of the 1991 Intl. Computer Music Conf.,
578�581.
Goto, M., and Muraoka, Y. 1994. A beat tracking system for acous-
tic signals of music. In Proc. of the Second ACM Intl. Conf. on
Multimedia, 365�372.
Goto, M., and Muraoka, Y. 1995a. Music understanding at the beat
level � real-time beat tracking for audio signals �. In Working
Notes of the IJCAI-95 Workshop on Computational Auditory Scene
Analysis, 68�75.
Goto, M., and Muraoka, Y. 1995b. A real-time beat tracking system
for audio signals. In Proc. of the 1995 Intl. Computer Music Conf.,
171�174.
Goto, M., and Muraoka, Y. 1996. Parallel implementation of a
beat tracking system� real-time musical information processing on
AP1000 � (in Japanese). Transactions of Information Processing
Society of Japan 37(7):1460�1468.
ICMAS. 1995. Proc., First Intl. Conf. on Multi-Agent Systems, The
AAAI Press / The MIT Press.
Ishihata, H.; Horie, T.; Inano, S.; Shimizu, T.; and Kato, S. 1991.
An architecture of highly parallel computer AP1000. In IEEE Pa-
cific Rim Conf. on Communications, Computers, Signal Processing,
13�16.
Katayose, H.; Kato, H.; Imai, M.; and Inokuchi, S. 1989. An
approach to an artificial music expert. In Proc. of the 1989 Intl.
Computer Music Conf., 139�146.
Kitano, H. 1993. Challenges of massive parallelism. In Proc. of
IJCAI-93, 813�834.
Large, E. W. 1995. Beat tracking with a nonlinear oscillator. In
Working Notes of the IJCAI-95 Workshop on Artificial Intelligence
and Music, 24�31.
Maes, P., ed. 1990. Designing Autonomous Agents: Theory and
Practice from Biology to Engineering and Back. The MIT Press.
Minsky, M. 1986. The Society of Mind. Simon & Schuster, Inc.
Nakatani, T.; Okuno, H. G.; and Kawabata, T. 1994. Auditory
stream segregation in auditory scene analysis. In Proc. of AAAI-94,
100�107.
Rosenthal, D.; Goto, M.; and Muraoka, Y. 1994. Rhythm tracking
using multiple hypotheses. In Proc. of the 1994 Intl. Computer
Music Conf., 85�87.
Rosenthal, D. 1992. Machine Rhythm: Computer Emulation of
Human Rhythm Perception. Ph.D. Dissertation, Massachusetts In-
stitute of Technology.
Schloss, W. A. 1985. On The Automatic Transcription of Percus-
sive Music � From Acoustic Signal to High-Level Analysis. Ph.D.
Dissertation, CCRMA, Stanford University.
Shoham, Y. 1993. Agent-oriented programming. Artificial Intelli-
gence 60(1):51�92.
Vercoe, B. 1994. Perceptually-based music pattern recognition and
response. In Proc. of the Third Intl. Conf. for the Perception and
Cognition of Music, 59�60.

110 ICMAS-96

