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ABSTRACT

We address an issue of separating singing voices from poly-
phonic music signals regardless of sound level variance of the
mixture input. Using a standard separation quality assessment
tool BSS Eval 4.0, we found that the separation quality of a
singing voice separation (SVS) system based on a dilatable
Convolutional Neural Network (CNN) decreases under dif-
ferent sound levels. Even if this SVS system is comparable
to state-of-the-art SVS systems, it is vulnerable to the issue
of sound level variance. We therefore investigate four meth-
ods of making the CNN-based SVS system invariant to dif-
ferent sound levels — two types of data augmentation, frame
normalization, and zero-mean convolution. By testing all 15
combinations of the four methods, we found that all combi-
nations can improve the sound level invariance and analyzed
the best combinations. To the best of our knowledge, this is
the first SVS work systematically investigating sound level
variance.

Index Terms— singing voice separation, sound level in-
variance, Convolutional Neural Network (CNN), zero-mean
convolutions, data augmentation

1. INTRODUCTION

Given the audio signal of a musical piece with a singer and
instrumental accompaniment, a Singing Voice Separation
(SVS) system automatically separates the voice and its ac-
companiment. There are many potential applications of SVS
systems: melody extraction/annotation [1], singing skill eval-
uation [2], automatic lyrics recognition [3,4], automatic lyrics
alignment [5, 6], singer identification [7, 8] and style visual-
ization [9]. Since SVS is important, various SVS-related
articles [10–17] have been published and two evaluation
frameworks MIREX and SiSEC [18] have been established.

Despite the good performance of the state-of-the-art SVS
systems, they may be vulnerable to variations of sound level
in the mixture inputs (i.e., different input volumes and differ-
ent mixing balances). Stoller et al. [19] investigated the sound
level of datasets commonly used for SVS and Singing Voice
Detection (SVD) [20]. They found that datasets are different
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+3 24.18 19.25 14.65 10.55 6.83 11.63 12.60 13.82 15.54 18.24
+6 28.78 24.18 19.25 14.65 10.55 10.37 11.63 12.60 13.82 15.54

(a) Singing Voice Quality (b) Accompaniment Quality

Table 1. Separation quality (dB) of Ideal Ratio Mask (IRM).

from each other in term of the balance (mixing ratio) between
the singing voice and its accompaniment, and also the entire
sound level of them. They concluded that SVS models trained
on a single dataset may not generalize enough but did not pro-
pose solutions to mitigate this issue. Schlüter et al. [20], on
the other hand, showed that the state-of-the-art SVD systems
based on Convolutional Neural Network (CNN) are vulnera-
ble to the sound level variance issue and proposed a simple
but useful technique called first-layer zero-mean convolutions
to mitigate this issue. In this paper, we further investigate this
issue with a focus on SVS rather than SVD.

1.1. Illustration of Sound Level Invariance Problem

We propose a task of separating singing voices under dif-
ferent sound levels of the input sound mixtures. First, we
show that the upper-bound baseline with an Ideal Ratio Mask
(IRM) [21], which is the ratio of the ground-truth source spec-
trogram to the mixture spectrogram, is sound level invari-
ant (i.e., separation quality does not decrease under differ-
ent sound levels). We adjust the sound levels and balance
of the singing voice and its accompaniment in the standard
SVS dataset called DSD100 [22] at gains of ±3 and ±6 dB
(see Section 2.2 for adjusting procedures). Together with the
original sound level, we test 25 sets of different sound level
mixture inputs by using BSS Eval 4.0 [18], a standard qual-
ity assessment tool used in evaluating SVS systems (see Sec-
tion 3.2 for evaluation procedures). The separation qualities
of the baseline with an IRM are shown in Table 1. We found
that sets with the same sound level difference between the
singing voice and its accompaniment have the same separa-
tion qualities. For example, the 0-dB difference sets (-6,-6),
(-3,-3), (0,0), (+3,+3), and (+6,+6) have the same separation
quality at diagonal bold values. The 3-dB difference sets (-3,-
6), (0,-3), (+3,0), and (+6,+3) also have the same separation
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+3 13.72 11.84 8.86 4.07 -2.46 1.68 5.32 8.21 9.29 9.06
+6 14.75 13.58 11.39 7.95 2.91 -3.77 1.23 5.04 7.30 8.19

(a) Singing Voice Quality (b) Accompaniment Quality

Table 2. Separation quality (dB) of the CNN baseline.

quality. This ideal invariance with IRM is the goal of en-
abling SVS systems to be sound level invariant. We can also
conclude that this tool and procedure is reliable enough to in-
vestigate the issue of sound level variance.

Second, we show that a simple dilatable Convolutional
Neural Network (CNN) for SVS (see Section 2.1) is vulnera-
ble to this sound level variance issue. We carry out the same
procedures mentioned above to evaluate this CNN baseline.
Table 2 shows the separation qualities of the CNN baseline.
The results in Table 2 are far from the ideal invariant re-
sults in Table 1: sets with the same sound level difference
between the singing voice and its accompaniment have dif-
ferent separation qualities. For example, although the singing
voice quality at (0,0) is 5.21 dB, the quality at (6,6) drops
to 2.91 dB. These dB drops suggest that the state-of-the-art
SVS systems trained with deep learning would also be vul-
nerable to the sound level variance issue. Note that our CNN
baseline without data augmentation and model blending [23]
achieved good separation qualities for the singing voice and
its accompaniment at 5.21 dB and 10.24 dB, respectively, at
the original sound level (0,0). Our CNN is thus comparable
to the state-of-the-art system [23], which uses data augmenta-
tion and model blending to achieve the best results (5.59 dB,
11.40 dB) in SiSEC 2016 [22].
1.2. Research Approach
We investigate four methods of improving the CNN baseline
to achieve sound level invariance. We first need to quantify
how much invariance each CNN-based SVS system has. Due
to large computational costs, it is impractical to evaluate all
possible sound level differences between the singing voice
and its accompaniment. As a workaround, this paper focuses
on the 0-dB sound level difference corresponding to the diag-
onal bold values in the above tables. Since we want those val-
ues to be closer, we simply evaluate their differences by calcu-
lating the Average Squared Differences (ASD) among all 10
pairs of those values (i.e., the average of square differences
of (-6,-6)-(-3,-3) pair, (-6,-6)-(0,0) pair, (-6,-6)-(+3,+3) pair,
..., (+3,+3)-(+6,+6) pair). The smaller the ASD is, the more
ideal the sound level invariance is. Moreover, we also need to
make sure the proposed sound-level-invariant SVS system is
still able to maintain a good separation quality. We therefore
evaluate the separation quality maintenance by calculating
both the average and the standard deviation of those values.
Based on these quantitative evaluation measures, we evalu-
ate all combinations of the four methods to find out the best
combinations and examine the effectiveness of each method.

2. METHODS
2.1. CNN Baseline
We adopt our previous CNN [24] proposed for SVS. Its per-
formance is further improved to maintain its competitiveness
with the current state-of-the-art systems. Given stereo mix-
ture signals, we apply Short-Time Fourier Transform (STFT)
on each mixture signal to obtain the magnitude and phase
spectrograms (with Hann windowing size of 1024 samples,
hop size of 256 samples, sampling rate of 22.05 kHz). Our
CNN takes a 25-continuous-frames excerpt with their fre-
quency capped at 8 kHz (keeping 372 bins) as the network
input X . As the signals are stereo, the size of X is then
(2×372×25). The input is then followed by 2 convolutional
layers, each of which has 64 (3×3) filters with no padding;
a non-overlap (3×3) max-pooling; 2 convolutional layers
again, each of which has 64 (3×3) filters with no padding;
and a non-overlap (3×3) max-pooling again. The excerpt size
is now reduced to (64×39×1). By applying 64 (39×1) filters,
the excerpt can be further processed by 3 fully-convolutional
dense layers [25] each of which has 744 units and has 50%
dropout [26] applied to their inputs. The activation function
in each convolutional and dense layer is a rectified linear
function, except for the final layer, which uses a sigmoid
function. The network output Y is reshaped to (2×372×1)
and is assumed to be a mask for separating the singing voice
of the central frame of X .

2.2. Data Augmentation
Uhlich et al. [23] propose 3 types of data augmentation,
namely Sound Level Adjusting (SLA), Left/Right Channel
Swapping (CS), and Instrument Tracks Chunking and Mix-
ing. As we are concerned here with the sound level variance
issue, we adopt only SLA and CS and leave the other for
future work. We adjust the sound level as follows. We first
calculate the magnitude spectrograms of the ground truth
singing voice and its accompaniment as described in Sec-
tion 2.1. Then we scale these magnitude spectrograms at
gains of ±3 and ±6 dB. As BSS Eval 4.0 [18] needs the sig-
nals of the ground truth singing voice and its accompaniment
for the evaluation, we calculate the inverse STFT (iSTFT) of
the scaled magnitude spectrograms using their corresponding
phase spectrogram to synthesize these ground truth signals.
As our CNN needs the spectrogram excerpt of the mixture
signal as the input, we can simply first add these synthesized
singing voice and its accompaniment signals to form their
mixture signals, and then we calculate the magnitude spectro-
grams of these mixture signals as described in Section 2.1. As
the gains are applied to the signals expressed as floating-point
numbers, positive gains cannot result in clipping.

2.3. Frame Normalization
As we assume the network output is a mask for separating
the singing voice of the central frame of the mixture input,
we carry out frame normalization instead of batch normaliza-
tion [27] or instance normalization [28]. We use Welford’s
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algorithm [29] to update the normalization parameters. First,
we set the frame mean x̄ to be a zero vector of size 372; one
for each channel. Then we subtract each frame from each
spectrogram excerpt in a training mini-batch with x̄. Then
we update the frame mean x̄ and variance x̂ by calculating
the mean and variance of these subtracted frames respectively.
While we test our CNN, we do not update x̄ and x̂. This nor-
malization is expected to remove sound level information and
still maintain the harmonic structure. Finally, the normalized
network input is concatenated [30] with the original network
input as we also strive to maintain the separation quality.

2.4. First Layer Zero Mean Convolution

Schlüter et al. [20] mathematically show that any cross-
correlation with a zero-mean filter will remove a global offset
from a log-magnitude spectrogram. They also empirically
show when the input is log-magnitude mel spectrogram and
the learnable filter of the first convolutional layer is zero-
mean, then the global offset could be accountable for the
sound level variance in the context of SVD. Since we did
not succeed in training a CNN using log-magnitude spectro-
gram in the context of SVS, we only adopt their technique to
magnitude spectrogram. Although the global offset cannot be
theoretically canceled in our case, as this paper was greatly
inspired by Schlüter et al. [20], we would still like to see how
effective this zero-mean filter is used with non-log magnitude
spectrogram in the context of SVS.

3. EXPERIMENTS
3.1. Training

The DSD100 dataset [22] is a public dataset created for eval-
uating SVS systems. 100 songs feature different artists and
genres. 50 songs are for the development (Dev) set and the
other 50 songs are for a test (Test) set. We leave a more ad-
vanced dataset called MUSDB18 [18] for future work.

Networks are initialized by random orthogonal matri-
ces [31] and are trained with mini-batches of B=207 excerpts
(∼ 60.08 secs). The Tensorflow1 ADAM [32] optimizer with
its default values is used to minimize the loss function below:

1

BF

B−1∑
b=0

F−1∑
f=0

{(
V [b, 0, f, 0]− Y [b, 0, f, 0]×X[b, 0, f, 12]

)2
+(

V [b, 1, f, 0]− Y [b, 1, f, 0]×X[b, 1, f, 12]
)2
}

(1)
where F=372 is the number of bins, V is the magnitude spec-
trogram of the ground truth singing voice, Y is the network
output and X is the network input. V , Y and X are expressed
in the [Batch, Left/Right Channel, Frequency, Time] format.
Note that we need only the central frame of X to calculate the
above loss function. All 16 CNNs are trained with all possible
spectrogram excerpts found in the Dev set. In case of SLA,
we can store the augmented datasets in advance, so that we
can simply randomly pick the excerpts from these datasets.

1https://www.tensorflow.org/

Fig. 1. Loss functions for each method at 0 dB gain.

This speeds up the training process because we do not need
to augment the data on-the-fly. Given the 3 hrs 35 mins of
songs in the Dev set, we have 5415 updates in each epoch.
We train each CNN with 20 epochs. At each epoch, all ex-
cerpts are shuffled. Figure 1 shows the loss functions of each
CNN at the original sound level. We see that all 16 CNNs are
properly trained without over-fitting and under-fitting. Note
that, for each CNN, the loss values at each epoch are the av-
erage of the loss values of each song. We are able to calculate
such values because we dilate our CNNs as described in [33]
to accept an arbitrary number of frames. Although we calcu-
late and record the loss value after each epoch, this does not
affect much the training time. The training time for each CNN
is within 5 hrs using a single GPU. It is much faster than the
training time of the latest system [16], which takes 79 hrs.

3.2. Evaluation
We calculate the iSTFT of the element-wise multiplication of
Y and X with the mixture phase spectrogram to synthesize
the separated signals. As our CNN is dilatable, we can syn-
thesize the signals per song. It takes about 30 mins for 50
songs. We use BSS Eval 4.0 [18] instead of BSS Eval 3.0
because it is much faster and has similar performance [18].
As the rejections of the interference, noise and artifacts are
assumed to be equally important [34], all measurement val-
ues are in terms of Source-to-Distortion Ratio (SDR). Each
song is evaluated based on the average SDR of a set of 30
sec music clips with 15 sec overlap. Following the evaluation
scheme of SiSEC 2016 [22], we also exclude the clips which
are smaller than 30 sec and yield Not-a-Number (NaN) SDR
values for the singing voice under the IRM scheme. The NaN
values mostly occur at the start and end of the song, where
there is no singing voice. Each method is evaluated based on
the median of the Test song SDRs.

3.3. Results
Based on the calculation method described in Section 1, the
sound level variances and separation quality maintenance of
each method are shown in Table 3. First, we see all meth-
ods achieve an ASD smaller than the CNN baseline does,
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S. Lvl. Variances Sep. Quality Maintenance
Meth S.Lvl. Ch. Fr. Z. Voice Accomp. Voice Accomp.
-od Adj. Swap Nor. M. ASD ASD Ave. S.D. Ave. S.D
IRM 0.000 0.000 10.548 0.000 15.542 0.000
(1) X 0.090 0.071 4.834 0.212 10.267 0.188
(2) X 1.637 1.839 4.391 0.905 9.966 0.959
(3) X 1.099 1.498 4.418 0.741 9.828 0.865
(4) X 1.212 1.808 4.340 0.778 9.810 0.951
(5) X X 0.074 0.131 4.946 0.192 10.307 0.256
(6) X X 0.576 0.565 4.321 0.537 9.838 0.532
(7) X X 0.443 0.172 4.746 0.470 10.249 0.293
(8) X X 1.429 1.621 4.366 0.845 9.776 0.900
(9) X X 1.393 1.571 4.555 0.835 10.078 0.886

(10) X X 1.189 1.419 4.399 0.771 9.834 0.842
(11) X X X 0.389 0.296 4.305 0.441 9.749 0.385
(12) X X X 0.227 0.125 4.932 0.337 10.532 0.250
(13) X X X 1.057 0.752 4.139 0.727 9.777 0.613
(14) X X X 0.769 0.929 4.542 0.620 9.946 0.682
(15) X X X X 0.919 0.651 4.087 0.678 9.576 0.571
CNN 1.727 1.991 4.329 0.929 9.727 0.998

Table 3. Sound level variances and separation quality maintenance
of each method at gains of ±3 and ±6 dB. The smaller the ASD, the
smaller (better) the variances. The larger the average and the smaller
the standard deviation, the better the maintenance.

suggesting all methods can improve the sound level invari-
ance of deep-learning-based SVS systems. Next, we see that
method (5) achieves the best variances and maintenance for
the singing voice; and method (12) achieves the second best
variances and best maintenance for the music accompani-
ment. Method (12) has slightly lower singing voice mainte-
nance than method (5). The separation quality of method (12)
is shown in Table 4. Method (12) has much better invariances
improvement than the CNN baseline shown in Table 2. Since
±3 and±6 would be too loud or too soft, we further carry out
the same experiment for methods (5) and (12) with the gains
of ±1 and ±2, and the result is shown in Table 5. Now, the
result of Table 5 contradicts with Table 3 as method (12) has
slightly better singing voice maintenance than method (5).

In this way, we confirmed that methods (5) and (12) are
more effective than the other combinations. However, we
cannot conclude that method (12) with zero-mean convolu-
tion technique is better than method (5) without it, though we
used ”zero-mean convolutional network” in the title of this
paper. This is because the original zero-mean convolution
technique [20] was designed for log-magnitude mel spectro-
gram and, theoretically speaking, the global offset (i.e., sound
level variance) can be removed only when it is applied to log-
magnitude (mel) spectrogram. In the future we plan to inves-
tigate how to successfully train a CNN with log-magnitude
spectrogram so that the potential of the zero-mean convolu-
tion technique can be unleashed.

Another dissatisfying aspect of this evaluation is that the
range and the interval of the sound level adjustment need to
be set in advance. This introduces a bias in the evaluation.
For example, as we know which ranges of sound levels we
test, there is a strong bias towards SLA method. Moreover,
beside average squared differences, other candidates like the
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+6 14.33 13.40 11.13 8.59 5.25 -4.91 0.34 4.81 8.25 10.71
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Table 4. Separation quality (dB) of the method (12).

Sound Level Variances Separation Quality Maintenance
Singing Voice Music Accomp. Singing Voice Music Accomp.

ASD ASD Ave. S.D. Ave. S.D.
IRM 0.0000 0.0000 10.5479 0.0000 15.5417 0.0000
(5) 0.0148 0.0053 5.3247 0.0862 10.7862 0.0516
(12) 0.0308 0.0018 5.3363 0.1242 10.8523 0.0296
CNN 0.2065 0.2807 5.0280 0.3214 10.1896 0.3747

Table 5. Sound level variances and separation quality maintenance
of method (5) and (12) at gains of ±1,±2 dB. At 0 dB gain, method
(12) achieves 5.34 dB for the singing voice and 10.87 dB for its
accompaniment.

sum of squared difference may also be suitable for measuring
the sound level invariance. As future work, we investigate the
relationships between the sound level invariance and the net-
work input and architecture so that we do not have to set the
range and interval of the sound level adjustment in advance.

We can investigate the usefulness of each four method
by further examining Table 3 from the viewpoint of ablation
tests. By comparing methods (9) and (12), for example, we
can see that the sound level variances and the maintenance be-
come worse if we remove the SLA method. After carrying out
all similar comparisons, we have the following observations.
(i) Although each of four methods improves the sound level
variances and maintenance, the combination of all of them is
not the best. This indicates each method has their own way
to tackle the sound level invariance issue, and they may inter-
fere with each other. (ii) SLA is the most effective method.
(iii) Although CS is not directly related to sound level invari-
ance, its data augmentation doubles the dataset size and thus
improves the model generalization. (iv) FN contradicts with
SLA very much. However, if we do not know how to adjust
the sound level properly, FN could be useful. (v) ZM slightly
interferes with SLA, but it works well with CS to maintain
separation quality of the music accompaniment.

4. CONCLUSION

We investigated how sound level variances of the mixture in-
put affect the SVS system. By giving systematical evalua-
tion procedures, we not only showed that the current state-of-
the-art systems are vulnerable to this sound level variance is-
sue, but also showed that all combinations of all four methods
eased this issue, and the combination of sound level adjusting
and left/right channel swapping can be used with zero-mean
convolution, but should not be used with frame normalization.
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[18] F-R Stöter, A. Liutkus, and N. Ito, “The 2018 signal separation
evaluation campaign,” in LVA/ICA. Springer, 2018.

[19] Daniel Stoller, Sebastian Ewert, and Simon Dixon, “Jointly de-
tecting and separating singing voice: A multi-task approach,”
in LVA/ICA. Springer, 2018.
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