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ABSTRACT

Retrieving the lyrics of a sung recording from a database of
text documents is a research topic that has not received much
attention so far. Such a retrieval system has many practi-
cal applications, e.g. for karaoke applications or for index-
ing large song databases by their lyric content. We present
a new method for lyrics retrieval. An acoustic model trained
on singing is used to obtain phoneme probabilities from sung
queries, which are then mapped to phoneme sequences. These
are compared against lines of textual lyrics in a large corpus
in order to retrieve the best-matching song.
The approach is tested on three sung datasets. Lyrics are
retrieved from a set of 300 possible songs (12,000 lines of
lyrics). The results are highly encouraging and could be used
further to perform automatic lyrics alignment and keyword
spotting for large databases of songs, or for retrieving lyrics
from the internet.

Index Terms— Lyrics, Text retrieval, Singing, Automatic
Speech Recognition, Music Information Retrieval

1. INTRODUCTION

Automatic Speech Recognition for singing is a topic that has
started to receive more and more attention [1]. The research
so far shows that most tasks are notoriously harder than on
speech [2]. The reason for this is a multitude of differences
between speech and singing, with most characteristics being
much more varied in singing than in speech. Examples in-
clude pitch range, phoneme durations, pronunciation variants,
semantic content, and many more.
Tasks like phoneme recognition, keyword spotting, or lyrics
transcription therefore only achieve relatively low results so
far [3, 4]. But there is one factor that could be beneficial to
all of these tasks: The wide availability of textual lyrics on
the internet. In contrast with the mentioned tasks, automatic
alignment of lyrics to singing has already produced satisfac-
tory results [2, 5]. Therefore, if the lyrics of a song can be
found and then aligned, many other applications could profit.
In this paper, we present an approach to the task of automati-
cally retrieving the lyrics for a sung recording from a corpus
of known textual lyrics. In order to do this, we first generate
phoneme posteriorgrams using an acoustic model trained on

singing, and then map the results to symbolic representations
(= phoneme sequences). These sequences are then compared
against a database of lyrics using a modified Levenshtein
distance.

2. STATE OF THE ART

Examples of research targeting singing without musical ac-
companiment include an automatic music-transcription sys-
tem with lyrics recognition for a solo singing voice [6] , a
robust speech modeling method applicable to even high-pitch
signals such as those in singing [7], query-by-humming mu-
sic retrieval using not only pitch (melody) but also lyrics [8],
and a method that exploits the fact that the lyrics of pop-
ular songs are often repeated in a chorus [9]. However,
research on singing that includes musical accompaniment is
rare, though research has been done on the recognition of
phonemes in singing under the limited conditions of known
phoneme boundaries [10]. Additionally, while not strictly
lyrics recognition, research has been reported on identifying
the sung language [11] [12]. One topic that has received a
lot of attention is the automatic alignment of lyrics to au-
dio [13–22].
On the task of lyrics retrieval, Hosoya et al. developed a sys-
tem that employs monophone HMMs trained on read speech
for acoustic modeling (2005) [23]. These models are adapted
to singing voices using the Maximum Likelihood Linear
Regression (MLLR) technique [24]. Language modeling is
performed with a Finite State Automaton (FSA) specific to
the Japanese language. On a dataset of 238 children’s songs,
they obtain a recognition rate of .86 for the Top 1 result, and
of .91 for the Top 10 results. In [25] and [8], more exper-
iments are conducted. As a starting point, the number of
words in the queries is fixed at 5, resulting in a recognition
rate of .9 (Top 1 result). Then, a melody recognition is used
to verify the matches proposed by the speech reognition step,
raising the recognition rate to .93. The influence of the num-
ber of words in the query is also evaluated, confirming that
retrieval becomes easier the longer the query is. However,
even at a length of just three words, the recognition rate is .87
(vs. .81 without melody verification).
Similarly, Wang et al. presented a query-by-singing system
in 2010 [26]. The difference here is that melody and lyrics
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Fig. 1: Overview of the lyrics retrieval process.

information are weighted equally in the distance calculation.
Lyrics are recognized here with a bigram HMM model trained
on speech. The results are interpreted as syllables. A syllable
similarity matrix is employed for calculating phoneme variety
in the query, which is used for singing vs. humming discrimi-
nation. Assuming that only the beginning of each song is used
as the starting point for queries, the first 30 syllables of each
song are transformed into an FSM language model and used
for scoring queries against each song in the database. The
algorithm is tested on a database of 2154 Mandarin-language
songs, of which 23 were annotated and the remainder are used
as “noise” songs. For the Top 1 result, a recognition rate of
.91 is achieved for the system combining melody and lyrics
information, compared to .88 for the melody-only system.
Fujihara et al. presented a method that employs keyword
spotting in singing to link text lyrics to sung lyrics [27]. Their
approach employs a phoneme recognition step first, which is
again based on the vocal re-synthesis method first described
in [28]. Viterbi decoding using keyword-filler HMM is per-
formed on the output of a phoneme model to detect candidate
segments where keywords may occur. The link success rate
for detecting the keywords is .3.
In 2009, Mesaros et al. picked Hosoya’s approach back
up by using MFCC features and GMM-HMMs for acous-
tic modeling, and also employing various MLLR techniques
for adapting these models to singing [29]. These models
are trained on the CMU ARCTIC speech corpus1. In [30]
and [31], language modeling is added to the presented ap-
proach. Phoneme-level language models are trained on the
CMU ARCTIC corpus as unigrams, bigrams, and trigrams,
while word-level bigram and trigram models are trained on
actual song lyrics in order to match the application case. The
output from the acoustic models is then refined using these
language models, and then also used for lyrics retrieval. This
is the only purely lyrics-based system in literature. Retrieval
is performed by recognizing words in queries with the full
system, including language modeling, and then ranking each
lyrics segment by the number of matching words (bag-of-
words approach). The lyrics database is constructed from 149
song segments (between 9 and 40 seconds in the correspond-
ing recordings). Out of these segments, recordings of 49 are
used as queries to test the system. The Top 1 recognition rate
is .57 (.71 for the Top 10).

1http://festvox.org/cmu_arctic/

3. DATA

In this work, the DAMP data set, which is freely available
from Stanford University2 [32], was used. This data set con-
tains more than 34,000 recordings of amateur singing of full
songs with no background music, which were obtained from
the Smule Sing! karaoke app. Each performance is labeled
with metadata such as the gender of the singer, the region of
origin, the song title, etc. The singers performed 300 English
language pop songs. The recordings have good sound qual-
ity with (usually) little background noise, but come from a lot
of different recording conditions. We randomly selected 20
recordings per song to balance the data, resulting in a corpus
of about 6000 songs, both male and female.
No lyrics annotations are available for this data set, but we
obtained the textual lyrics from the Smule Sing! website3.
These were, however, not aligned in any way. We performed
such an alignment on the word and phoneme levels automat-
ically using Viterbi alignment with models trained on speech
(the TIMIT [33] corpus). This approach is described in [34].
This corpus of text lyrics is also used to test our approach. In
a pre-processing step, each set of song lyrics was split into
lines and converted into its constituting phonemes using the
CMU Pronouncing Dictionary4 with some manual additions
of unusual words. This dictionary has a phoneme set of 39
phonemes. Splitting the lyrics for these 300 songs into lines
results in a database of around 12,000 phoneme sequences.
For testing, we selected 20 female and 20 male song snippets
corresponding to one line of lyrics (referred to as “Female”
and “Male”). This selection was done based on the number
of phonemes in the snippet and the clarity of pronunciation
(in the sense that incomprehensible recordings were not se-
lected). These test snippets were not included in the large
training data set previously described.
In addition to this, the author performed 90 sung queries of
lyrics included in the corpus, recorded with a mobile device
(referred to as “Author”).

4. PROPOSED APPROACH

For our new approach, we considered ways to improve upon
the DTW-based method described in section 2. As shown in
figure 1, we still start by extracting phoneme posteriorgrams.
Then, we attempt to compress them down to a plausible se-
quence of phonemes, which can then be used to search di-
rectly on a textual lyrics database. Text comparison is much
cheaper than the previous comparison strategy, and enables us
to quickly expand the lyrics database.
Phoneme recognition is performed with Deep Neural Net-
works trained on the DAMP data set; the whole process is
described in detail in [34]. The lyrics database is prepared
by converting it into phoneme sequences as described in sec-

2https://ccrma.stanford.edu/damp/
3http://www.smule.com/songs
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 2: Example of a phoneme posteriorgram.

tion 3. The key algorithms are (a) how to generate plausible
phoneme sequences from the posteriorgrams, and (b) how to
compare these against the sequences in the database. These
parts will be described in more detail in the following.

4.1. Symbolic mapping
Starting from the sung recording used as a query, MFCC fea-
tures are extracted and run through the acoustic model trained
on singing to recognize the contained phonemes. This pro-
duces a phoneme posteriorgram, such as the one shown in fig-
ure 2; i.e., probabilities of each phone over each time frame.
These probabilities contain some noise, both due to inaccura-
cies in the model and due to ambiguities or actual noise in the
performance. Obtaining a phoneme sequence from these pos-
teriorgrams could be solved with a HMM approach, but there
is not enough reliable training data. Instead, we undertake
the following steps, which also allows us to take linguistic
knowledge into account:
Smoothing We first smooth the posteriorgram along the time

axis with a window of length 3 in order to remove small
blips in the phoneme posteriorgrams.

Maximum selection and grouping Then, we select the
maximum bin (i.e. phoneme) per frame and group con-
secutive results. This yields a first sequence of phonemes,
each with duration and sum probability information, which
is usually too long and noisy. In particular, we notice a lot
of fluctuations between similar phonemes. An example is
given in figure 3a.

Grouping by blocks and filtering through confusion matrix
We attempt to solve this problem by first grouping the
detected phonemes into blocks, in this case vowel and
consonant blocks (shown in figure 3b). Then, we need to
figure out which elements of these blocks are the “true”
phonemes and which ones are noise. This is done by taking
each phoneme’s probability as well as the confusion be-
tween phonemes into account. The confusion is calculated
in advance by running the classifier on an annotated test
set; the result covers both the confusion by inaccuracies in

(a) Original phoneme sequence (b) Grouped into blocks (with probabili-
ties in italics)

(c) Filtered result

Fig. 3: Example of the block grouping of the phoneme se-
quence and subsequent filtering by probabilities and confu-
sions.

the classifier as well as perceptual or performance-based
confusions (e.g. transforming a long [ay] sound into [aa
- ay - iy] during singing). An example is shown in figure
4. The product of the probabilities and the confusions
are calculated for the highest combinations up to a certain
threshold, and all other detected phonemes are discarded.
This results in a shorter, more plausible phoneme sequence
(figure 3c).

4.2. Distance calculation
We then need to calculate the distances between the ex-
tracted phoneme sequence and the ones provided in the lyrics
database.
We first introduce an optional step to speed up the process.
We count each sequence’s number of vowels in advance, and
do the same for the query sequence. Then, we only compare
it to sequences with roughly the same amount of vowels (with
some tolerance). This slightly decreases accuracies, but dras-
tically speeds up the calculation time.
The similarity calculation itself is implemented with a mod-
ified Levenshtein distance. We again take into account the
classifier’s confusion between phonemes. These confusions
are used as the Levenshtein weights for substitutions. Sur-
prisingly, we discovered that also using them for insertion
weights improves the results as well. This probably happens
because of the effect described above: A singer will in many
cases vocalize an phoneme as multiple different ones, par-
ticularly for vowels with long durations. This will result in
an insertion in the detected phoneme sequence, which is not
necessarily a “wrong” classification by the acoustic model,
but does not correspond to the expected sequence for this
line of lyrics. For this reason, such insertions should not be
harshly penalized. For deletions, the weight is set to .5 to
balance out the lower insertion and substitution weights.
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Female Male Author
Top1 Top3 Top10 Top1 Top3 Top10 Top1 Top3 Top10

Baseline .25 .25 .35 .1 .1 .2 .1 .23 .36
Posteriorgram smoothing .65 .7 .90 .5 .65 .65 .61 .67 .76

Filtering blocks by probabilities and confusions .8 .85 .96 .75 .8 .85 .74 .78 .82
Substitution weights .9 .95 .95 .65 .8 .9 .76 .78 .83

Substitution + Insertion weights 1 1 1 .75 .85 .9 .81 .84 .9

Table 1: Results of the retrieval algorithm for three test data sets with various improvement steps.

Fig. 4: Example of a confusion matrix for an acoustic model.
([pau] confusions are set to 0 to to avoid influence by pauses).

5. EXPERIMENTS AND RESULTS

Table 1 shows an overview over our experimental results. We
tested the approach on the three test sets described in sec-
tion 3 and report the retrieval rates for the Top 1 result (i.e.
the one with the lowest Levenshtein distance), the Top 3, and
the Top 10 results. Queries were allowed to be one to three
consecutive lines of songs, increasing the number of “virtual”
database entries to around 36,000 (12,000 lines as 1-, 2-, and
3-grams). It should be noted that a result counts as correct
when the correct song (out of 300) was detected; this was
done as a simplification because the same line of lyrics is of-
ten repeated in songs. For possible applications, users are
most probably interested in obtaining the correct full song
lyrics, rather than a specific line. Picking random results
would therefore result in a retrieval rate of .003.
We then tested the various improvement steps of the algorithm
as follows:
Baseline As a baseline system, we used the most straightfor-

ward approach: Directly pick the phonemes with the high-
est probabilities for each frame from the posteriorgram,
group them by consecutive phonemes, and use the result of
that for searching the lyrics database with a standard Lev-
enshtein implementation. This results in retrieval rates of

.25, .1, and .23 for the Female, Male, and Author test sets
respectively. (The female test set generally produces higher
results because the performance quality is somewhat bet-
ter).

Posteriorgram smoothing This is the same as the baseline
approach, but we smooth the posteriorgram along the time
axis as described in section 4.1. This already improves the
result by around .4 for each test set.

Filtering blocks by probabilities and confusions This in-
cludes the last step described in section 4.1. The result is
improved further by .13 to .25.

Substitution and insertion weights Finally, we use the
modified Levenshtein distance as described in section 4.2.
When using the confusion weights for phoneme substitu-
tions only, the result increases further, and even more so
when they are also used for the insertion weights. The final
Top 1 retrieval rates are 1, .75, and .81 for the three test
sets respectively.

6. CONCLUSION

In this paper, we presented a new approach for retrieving tex-
tual lyrics from single lines of sung queries. To this end, we
first extract phoneme posteriorgrams from the audio record-
ing with acoustic models trained on a large singing database.
Then, we employ a new algorithm to map the result to a
symbolic representation (i.e. a phoneme sequence). This
sequence is then compared to the ones in the lyrics database
using a modified Levenshtein distance.
We found several improvements to this basic algorithm. First,
we noticed that smoothing the posteriorgram along the time
axis with a short window removes spurious probability fluctu-
ations. The mapping from the posteriorgram to the symbolic
representation can be improved by filtering the phonemes
with the highest probabilities with the known phoneme con-
fusions. Finally, we modified the Levenshtein distance by
also utilizing these confusions for substitution and insertion
weights. The final results range between .75 and 1 for the
Top 1 result, and between .9 and 1 for the Top 10.
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