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ABSTRACT

This paper describes a novel method for estimating the emo-
tions elicited by a piece of music from its acoustic signals.
Previous research in this field has centered on finding effec-
tive acoustic features and regression methods to relate fea-
tures to emotions. The state-of-the-art method is based on a
multi-stage regression, which aggregates the results from dif-
ferent regressors trained with training data. However, after
training, the aggregation happens in a fixed way and cannot
be adapted to acoustic signals with different musical prop-
erties. We propose a method that adapts the aggregation by
taking into account new acoustic signal inputs. Since we can-
not know the emotions elicited by new inputs beforehand, we
need a way of adapting the aggregation weights. We do so
by exploiting the deviation observed in the training data us-
ing Gaussian process regressions. We confirmed with an ex-
periment comparing different aggregation approaches that our
adaptive aggregation is effective in improving recognition ac-
curacy.

Index Terms— Music emotion recognition, Gaussian
process regression, Adaptive aggregation, Multi-level regres-
sion

1. INTRODUCTION

Music emotion recognition is a task to estimate how a piece
of music affects the emotions of a listener. It works by ex-
tracting features from music audio and applying a regression
model or classification model to map those features into an
emotion representation. Psychological studies have proposed
two-dimensional values in the Arousal-Valence (AV) plane
for representing emotion [1]. The task we focus on in this re-
search is to estimate the AV value from the musical audio in-
put. Specifically, the AV values are estimated for segments of
music lasting 30 seconds. This problem setting is the same as
that of the Emotion in Music Task at MediaEval Workshops,
which is the leading evaluation campaign on music emotion
recognition [2, 3].

Previous methods have used carefully selected features to
estimate emotions. Linear regression methods such as multi-
variate regression analysis have been used to map those fea-
tures to emotions [4, 5]. Feature selection algorithms are
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Fig. 1. Fixed aggregation vs. proposed adaptive aggregation
of Gaussian process regressors for music emotion recogni-
tion.

also applied to find important features to improve the esti-
mation [6]. Recently, emotion recognition has been improved
by automatically tuning the importance of each feature in-
stead of carefully choosing useful ones. One approach is
multi-level regression which creates individual regressors us-
ing each feature and then aggregates the results from those re-
gressors with another regressor [7, 8]. Another approach is to
apply non-linear regression methods and make use of the non-
linear dimensionality reduction. Powerful regressors such as
neural networks [9, 10, 11], support vector regressions [12],
and Gaussian process regressions [13] have been used.

Although state-of-the-art methods have significantly im-
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proved performance, they cannot change the importance of
each feature once it has been trained using training data. It
is not clear whether all kinds of emotions on the AV plane
can be estimated from a fixed importance for each feature. As
we show in our research, the importance of features differs
when estimating low-arousal and high-arousal areas. How-
ever, there is as yet no method that can adaptively change the
importance of each feature depending on what emotion we
want to estimate.

We propose a novel method of emotion estimation that
can adjust the importance of each feature depending on the
audio input. The technical difficulty here is the estimation
of the importance before knowing the emotion of the audio
input. If we know the emotion of the audio beforehand, one
strategy is to adjust the importance by optimizing it to match
the result to that emotion. However, in our case, the emotion
can be known only once the estimation has been performed;
hence, this strategy cannot be taken.

We overcome this difficulty by using Gaussian process
(GP) regression. The overview and novelty of our method are
shown in Figure 1. GP regression can predict the mean and
variance of an estimated AV value from a new audio input.
By preparing multiple GP regressors wherein each is trained
with a different feature, we obtain the means and variances of
the estimated AV values considering each feature. The fea-
ture is not important when the feature values in the training
data take various values for similar AV values, and this leads
to a large variance when an AV value is estimated with GP re-
gression from a new piece of audio. Thus, we can obtain the
importance of each feature by calculating the variance of AV
values with individual GP regressors. Since the importance
of each feature varies depending on the audio input, we ag-
gregate the results from the individual regressors adaptively
to estimate the emotion. The mathematical formulation for
this procedure is described in Section 3, and in Section 4 we
show that it can improve the performance of music emotion
recognition.

2. RELATED WORK

Our research can be related to previous music emotion recog-
nition methods from two viewpoints: selecting features and
regression methods. In this section, we summarize some im-
portant insights from the review papers [14, 15, 16].

2.1. Features for emotion recognition

It is usually argued that AV values are related to the mu-
sical content, such as tempo, pitch, loudness, timbre for
arousal, and mode and harmony for valence [17]. In partic-
ular, audio features, such as mel-frequency cepstral coeffi-
cients (MFCCs), chroma (i.e., pitch class profile), spectral
descriptors (e.g., spectral contrast, centroid, flux, rolloff, and
flatness) are used [6]. Text information is often combined

with audio features [14]. For example, lyric and metadata
such as genre tags and social media tags can be used [16, 18].

2.2. Regression methods

Emotion recognition is usually seen as a problem of regres-
sion between features and AV values. The regression can
be linear or non-linear. Multivariate regression is a power-
ful linear method used in emotion recognition [4]. Non-linear
regressors include support vector regression [12], deep recur-
rent neural networks [19, 10], continuous conditional random
fields [11], conditional random field [20], k-nearest neigh-
bors [21] and Gaussian process [13].

Multi-level regression is used to gather information from
individual regressors which are trained with individual fea-
ture. Schmidt et al. proposed fusing results from individual
regressors to improve performance [7]. They attempted two
different fusion topologies: in one case, the secondary regres-
sors receive only AV estimates respectively; in the other, the
secondary regressors receive both arousal and valence values
from the first-level regressors.

3. ADAPTIVE AGGREGATION OF
GAUSSIAN PROCESS REGRESSORS

Given an excerpt of music audio with a fixed length, we want
to estimate the AV values by aggregating the predictions of
N different features x1, . . . ,xN. Since the same discussion
applies to estimating the arousal and the valence, we will only
discuss the case of estimating one of them, and will represent
its value as y. The prediction from the nth feature is yn, and
our goal is to find an appropriate weight wn for this feature.

3.1. Quantifying the importance of features

Let us think of a transform which maps the nth feature xn

into an emotion yn. If we know that the ground truth of emo-
tion for the given audio is y∗, the estimation error εn for this
feature can be defined as εn = y∗ − yn.

Suppose we have two different estimates for emotion, yn
and ym, from the nth and mth features, respectively. If εn is
more likely to take a value closer to 0 compared with εm, we
can say the nth feature is more important than the mth feature
in estimating the true value y∗. To quantify the importance of
features, we assume that every εn follows a Gaussian distri-
bution: εn ∼ N

(
0, σ2

n

)
. The nth feature is more important

in estimation than the mth feature when σ2
n < σ2

m.

3.2. Adaptive aggregation

Now we will show how to aggregate the estimation results
obtained from N different features. From the assumption that
each estimation error εn, (n = 1, . . . , N) follows a Gaussian
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distribution, we can derive N probability distributions:

Pn (y) = N
(
yn, σ

2
n

)
, n = 1, . . . , N (1)

The maximum likelihood estimation of y can be understood
to be a value that maximizes the joint probability PJ, which
is calculated by multiplying Pn (y) for all n = 1, . . . , N [22].
We get

PJ (y) =

N∏
n=1

Pn (y) ∝ 1

σ1 · · ·σN
exp

(
−1

2
ξ2

)
(2)

where

ξ2 =

N∑
n=1

(y − yn)
2

σ2
n

. (3)

To maximize PJ (y) with respect to y, we need to mini-

mize ξ2. By solving dξ2

dy = 0, we obtain the maximum likeli-
hood estimation of y:

y =
1

W

N∑
n=1

wnyn, wn =
1

σ2
n

, (4)

whereW =
∑N

n=1 wn.We have thus estimated the emotion y
as a weighted average wherein the weights are the normalized
inversed squares of the variances.

3.3. Gaussian process regressors

The discussion so far indicates that if we can get Gaussian
distributions Pn (y) , n = 1, . . . , N as equation (1), we can
calculate the optimal estimation of y. This final subsection
describes how we can obtain those distributions from training
data by using Gaussian process regression.

Let {x(1)
n . . .x

(K)
n , y

(1)
n . . . y

(K)
n } be the training data hav-

ing K data points for the nth feature. Moreover, let yn be a

vector containing the training data, yn =
(
y
(1)
n . . . y

(K)
n

)T

,

where T denotes the transpose of a vector. According to the
derivation of GP regression [13], we get a Gaussian distribu-
tion Pn (y) = N (

yn, σ
2
n

)
where the mean yn and the vari-

ance σ2
n are

yn = kT
∗
(
K+ σ2

obsI
)−1

yn, (5)

σ2
n = k (xn,xn) + σ2

obs − kT
∗
(
K+ σ2

obsI
)−1

k∗. (6)

Here, k (·, ·) is a squared-exponential covariance function:

k
(
x(i)
n ,x(j)

n

)
= σ2

fexp

(
− 1

2l2

(
x(i)
n − x(j)

n

)2
)
, (7)

where I denotes the identity matrix,

and k∗ =
(
k
(
xn,x

(1)
n

)
. . . k

(
xn,x

(K)
n

))
, K = Kij =

k
(
x
(i)
n ,x

(j)
n

)
. The parameters σobs, σf and l are optimized

through training to maximize the log-likelihood of the train-
ing data.

4. EXPERIMENT ON MUSIC EMOTION
RECOGNITION

We conducted an experiment to verify the effectiveness of our
method. We estimated the AV values from fixed lengths (30
seconds) of music audio. We compared the emotion recogni-
tion accuracies obtained with different methods.

4.1. Compared methods

There were two points of comparison. First, we compared the
performance of our proposed adaptive aggregation approach
to that of an existing multi-level regression approach [7, 8].
Second, we compared both of these to a baseline which does
not use aggregation. All three methods tested were based on
GP regression. They are:

(1) Adaptive aggregation of results from GP regressors (the
proposed method)

(2) Fixed aggregation of results from GP regressors using
multivariate regression, and

(3) GP regression using all features as a single feature (no
aggregation).

4.2. Experiment procedure

We followed three steps in our experiment. First, low-level
audio descriptors related to emotion were extracted from the
audio. Specifically, we used a set of descriptors from the
state-of-the-art method that came in first place at the Medi-
aEval Emotion in Music task in 2014 [10]. This is the official
set of descriptors used in the 2013 INTERSPEECH Computa-
tional Paralinguistics Challenge (ComPareE) [23]. It contains
65 types of descriptors, their first-order derivatives, and statis-
tics (mean, standard deviation, skewness, max., min.) calcu-
lated from an audio clip. As a result, we obtained a 6373-
dimensional vector describing the content of the audio.

Second, we generated features and constructed GP regres-
sors. We created 3 different feature sets by dividing the orig-
inal 6373-dimensional vector into three, collecting those de-
scriptors related to the spectral descriptors, MFCCs, and oth-
ers, respectively. To construct the GP regressors, we used the
Emotion in Music Database as training data, which consists of
744 audio clips and annotations of AV values on a scale from
1 to 9 [24], and we normalized them to a scale from −1.0 to
1.0. We used 619 randomly chosen clips as training data and
the rest (125 clips) as evaluation data. The Constrained Opti-
mization BY Linear Approximation (COBYLA) method [25]
was used to optimize the GP parameters.

Finally, the results from the regressors were aggregated to
obtain the AV value estimate. We calculated the AV value as a
weighted average of the means of the estimated Gaussian dis-
tributions from the GP regressors, wherein the weights were
set to the normalized inversed square of the variances. When
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arousal valence
method R2 RMSE R2 RMSE

(1) adaptive aggregation of GP regressors 0.636 ± 0.040 0.206 ± 0.014 0.413 ± 0.043 0.230 ± 0.011
(2) fixed aggregation of GP regressors 0.619 ± 0.042 0.211 ± 0.014 0.397 ± 0.064 0.234 ± 0.013

(3) GP regression 0.488 ± 0.027 0.238 ± 0.053 0.399 ± 0.073 0.233 ± 0.012

Table 1. Comparison of methods of estimating emotion from audio in the MediaEval 2013 Emotion in Music development set
and 10-fold cross-validation. The proposed adaptive method, evaluated with the R-squared value (official score in MediaEval
task), outperformed the fixed aggregation method by 2.7% for estimating arousal and 4.0% for valence.

conducting the fixed aggregation, we split the training data
(619 clips) into 309 clips and 310 clips and used the former
clips to construct the GP regressors and the latter ones for
the multivariate regression between the results from the GP
regressors and ground-truth.

4.3. Evaluation metrics

We calculated the R-squared value (R2) and the root mean
squared error (RMSE) by following the official evaluation
scheme used in the MediaEval Emotion in Music task. Since
R2 has several definitions, we chose the one which was used
in the previous music emotion recognition research [13]:

R2 = 1 −
∑

k(y
∗(k)−y(k))

2

∑
k(y∗(k)−ȳ∗)

2 , where y∗(k) is the ground truth

for the kth audio clip, and ȳ∗ is the mean of the ground truth
values. The estimated values are close to the ground truth
data when R2 is close to 1.0, and RMSE is close to 0.0. Both
these measures were calculated with 10 different combina-
tions of training data and evaluation data, and the means and
standard deviations of the values were used to measure the
performance (10-fold cross-validation).

4.4. Results

The results shown in Table 1 indicate that adaptive aggrega-
tion of regressors improved accuracy. For both arousal and
valence estimations, adaptive aggregation of GP regressors
performed the best out of the three methods. Comparing
adaptive aggregation with fixed aggregation, we can see the
R-squared value for adaptive aggregation had a 2.7% im-
provement for arousal and a 4.0% improvement for valence.
For arousal, both aggregation approaches performed better
than the GP regression using all features as a single fea-
ture, but for valence, only the proposed adaptive aggregation
method gave an improvement.

5. DISCUSSION

We confirmed that adaptive aggregation of regressors can im-
prove the performance of music emotion recognition. GP re-
gression was suitable for our aggregation methodology since
it can predict not only the estimation values but also the vari-
ances.

The results imply that the importance of each feature set
can differ depending on the emotion that we are estimating.
We actually found that the feature set most important for
estimating arousal value around 0.425 was the MFCC-related
feature set (weight 0.52), whereas for estimating arousal
value around −0.5, the spectral-related feature set had the
biggest importance (weight 0.60). Although we could not
find a simple explanation for which is the most important
feature set in which part of the AV plane, we confirmed
that using fixed weights for aggregating the regressors is too
coarse an approximation to reflect the relative importance of
each feature set at all points in the plane.

Our method matched the performance of one state-of-the-
art approach, but did not outperform it. The best performance
using the same dataset reported so far is R2 = 0.704 for esti-
mating arousal by using deep recurrent neural networks [19].
However, considering that the highest performance using a
single GP regressor nearly matches that one (R2 = 0.695 ±
0.046) with a novel selection of features and kernel func-
tions [13], trying various features and kernel functions may
eventually yield even higher estimation performance.

The way of determining the optimal number of feature
sets for aggregation remains to be investigated. Although
adding new feature sets can increase the adaptiveness of our
method, adding too many feature sets by dividing a feature set
into too many sets can decrease the benefit of the non-linearity
of GP regression.

6. CONCLUSION

We proposed a music emotion recognition method based on
a novel aggregation of Gaussian process regressors. The
method exploits the variance of the training data and adapts
the weights for aggregating the results depending on the input
audio. Experimental results showed that our method could
actually improve the estimation performance. Our future
work includes investigating the effect of varying the number
of feature sets.
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