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ABSTRACT

This paper presents a new probabilistic formulation of linear predic-
tion (LP) for jointly estimating the spectral envelope and fundamen-
tal frequency (F0) of a speech signal. A main problem of classical LP
is that the peaks of the estimated envelope are highly biased toward
the harmonic partials of a speech spectrum. To solve this problem,
we propose a nonparametric Bayesian model called infinite kernel
linear prediction (IKLP) based on a Gaussian process with multiple
kernel learning. Our model can represent the periodicity of a speech
signal by using a weighted sum of infinitely many periodic kernels
that correspond to different F0s. We put a gamma process prior on
the positive weights of those kernels and perform sparse learning to
determine a predominant kernel indicating the F0 at the same time of
spectral envelope estimation. The experimental results showed that
our model can estimate spectral envelopes and F0s of speech and
singing signals while identifying pitched segments.

Index Terms— Linear prediction, source-filter model, Bayesian
nonparametrics, kernel methods, Gaussian and gamma processes.

1. INTRODUCTION

Spectral envelope estimation forms the basis for speech and singing
analysis. The speech production mechanism is considered to be well
explained by the source-filter theory, which assumes that an excita-
tion signal generated by the vocal cords is modified acoustically by
the vocal tract, i.e., the source signal is convoluted by an impulse
response of the filter. In the frequency domain, the fine structure and
spectral envelope of a speech spectrum reflect the frequency charac-
teristics of the source and filter, respectively (Fig. 1).

Linear prediction (LP) is a popular parametric approach to spec-
tral envelope estimation [1]. In general, we assume speech signals to
be autoregressive (AR), i.e., the filter response can be represented by
an all-pole transfer function. This assumption is widely accepted as
reasonable because most phonemes have no anti-resonance and the
human auditory system is sensitive to spectral peaks (formants) cor-
responding to poles. If the source signal is a white Gaussian noise,
we can correctly estimate the filter coefficients by maximum likeli-
hood estimation in a probabilistic framework [1]. When we analyze
a pitched signal, however (i.e., when the source signal is periodic),
the estimated filter (spectral envelope) unnecessarily has very sharp
peaks at the harmonic partials of the spectrum.

A lot of effort has been devoted to solving this problem. For ex-
ample, El-Jaroudi and Makhoul [2] proposed a basic approach that
fits the frequency response of an all-pole filter to a discrete set of har-
monic partials. This discrete all-pole (DAP) modeling was extended
by Badeau and David [3] for AR and moving-average (ARMA) mod-
eling. Alternatively, Oudot et al. [4] took a regularization approach
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Fig. 1. A source-filter model of the speech production mechanism.

that imposes smoothness constraints on all-pole filters. Villavicen-
cio et al. [5] applied iterative cepstral smoothing to all-pole filters.
In a wider context of spectral envelope estimation not limited to LP,
Kawahara et al. [6] proposed a speech analysis-and-synthesis sys-
tem called STRAIGHT that can decompose a speech spectrum into
the harmonic and non-harmonic spectra and the spectral envelope.
Nakano and Goto [7] aimed to avoid the bias of fundamental fre-
quencies (F0s) by averaging the spectral envelopes of neighboring
frames. Although these methods are considered to yield good esti-
mates, they all require that the F0s be known in advance.

A probabilistic approach provides a solid mathematical founda-
tion for modeling F0s (sources) and envelopes (filters). For example,
Sasou and Tanaka [8] proposed the periodicity of the source signal
could be represented by using an AR hidden Markov model (HMM)
with circularly-connected states. Toda and Tokuda [9] used a trajec-
tory HMM for capturing the temporal dynamics of harmonic com-
ponents derived from the source signal, although F0 information is
required. Kameoka et al. [10,11] pioneered probabilistic models for
joint F0 and spectral-envelope estimation. In [10] they formulated
multiple kernel LP (MKLP) based on a Gaussian process (GP) that
is specified by a fixed number of periodic kernels corresponding to
different F0s. To determine a predominant kernel, the maximum-a-
posteriori (MAP) estimate of kernel weights is computed (F0 esti-
mation) at the same time the all-pole filter is estimated. Our study is
situated as the state of the art in this thread of research.

In this paper we propose a more sophisticated model called infi-
nite kernel LP (IKLP) that combines the strengths of Bayesian non-
parametrics and kernel methods in a principled manner. We take the
limit of the MKLP model [10] as the number of kernels diverges
to infinity, and put a gamma process (GaP) prior on the weights of
those kernels. As a result of variational Bayesian (VB) inference, we
can obtain a sparse estimate of infinitely many weights. We believe
that our study could contribute not only to the field of signal pro-
cessing by revealing the underlying probabilistic assumptions of LP,
but also to the field of machine learning by providing a new efficient
and convergence-guaranteed algorithm as a general solution to the
problem of multiple kernel learning (MKL) [12].
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2. LINEAR PREDICTION

This section introduces relevant probabilistic models for estimating
spectral envelopes (coefficients of AR filters) of speech and singing
signals. First we revisit a classical AR model based on a strong
assumption that excitation signals are white Gaussian noise. We then
explain kernelized models that can perform robust estimation even
when excitation signals have a periodic nature.

2.1. Probabilistic Formulation

We review a standard formulation that assumes a target audio signal
to locally follow an AR process. Let x = (x1, x2, · · · , xM )T be M
consecutive samples contained in a short segment (shifting window).
If the local signal x follows a P -order AR process, we can write

xm =
∑P

p=1 apxm−p + εm, (1)

where a = (a1, · · · , aP )
T is a set of P coefficients of the AR filter

called predictor coefficients, and ε = (ε1, · · · , εM )T is a noise term.
In the source-filter modeling of speech signals, ε represents an exci-
tation signal generated by the vocal cords and a represents the res-
onance characteristics of the vocal tract. This AR model can be re-
garded as a linear system that takes εm as input and then outputs xm

according to an all-pole transfer function given by A(z) = 1/(1 −
a1z

−1 · · · − aP z
−P ), i.e., X(z) = E(z)A(z), where X(z) and

E(z) are z transforms of x and ε. The frequency response of the all-
pole filter (spectral envelope) is therefore given by |A(e2πim/M )|2,
where m here is the index of a frequency bin (Fig. 1).

Given the observed audio signal x, our objective is to estimate
the coefficients a in a probabilistic framework. To do this, we need
to specify the characteristics of the excitation signal ε. A standard
assumption is that ε is a white Gaussian noise given by

ε ∼ N (0, νI), (2)

where ν is a noise variance and I an identity matrix. This means that
M elements of ε are independent and identically distributed accord-
ing to a Gaussian N (0, ν). We let Ψ be an M -by-M approximate
circulant matrix and X be an M -by-P matrix as follows:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−a1
. . . 0

...
. . .

. . .
−aP

. . .
. . .

. . .0 −aP · · · −a1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

x1

. . .
...

...
. . . 0

... x1

...
...

xM−1 · · · xM−P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

We can compactly rewrite Eq. (1) as ε = Ψx, which means

x = Ψ−1ε. (4)

Using Eqs. (2) and (4) gives a likelihood function of x as follows:

x ∼ N (0, νΨ−1Ψ−T ). (5)

This is a standard probabilistic model of LP. In maximum-likelihood
(ML) estimation, the optimal values of a are obtained by solving a
normal equation given by XTXa = XTx.

This model works well when the excitation signal ε is well ap-
proximated by an isotropic Gaussian defined as Eq. (2). Speech and
singing signals, however, exhibit a clear periodicity that is derived
from the periodic vibration of the vocal cords (source).

2.2. Kernelization based on a Gaussian Process

Kameoka et al. [10] generalized the probabilistic model specified as
Eq. (5) in terms of Gaussian process (GP) regression. In Section 2.1,
we assumed that ε is a white Gaussian noise given by Eq. (2). Here

we instead discuss a linear regression problem that aims to model
an excitation signal (continuous function) ε(t) over time t. Let t =
{tm}Mm=1 be a set of times at which {εm}Mm=1 are sampled from
ε(t). Our goal is to approximate ε(t) by the weighted sum of J basis
functions {φj(t)}Jj=1 as follows:

ε(t) =
∑J

j=1wjφj(t) + η(t) = φ(t)Tw + η(t), (6)

where η(t) is an error function and φ(t) = (φ1(t), · · · , φJ (t))
T .

Let η = (η1, · · · , ηM )T be a set of values sampled from η(t) at t
and let Φ = (φ(t1), · · · ,φ(tM ))T be an M -by-J design matrix.
Then, we can write the “marginal” of Eq. (6) on t as follows:

ε = Φw + η. (7)

We assume that both ω and η are Gaussian distributed as follows:

w ∼ N (0, νwI), η ∼ N (0, νeI), (8)

where νw and νe are scales of Gaussian variance. Then, we get

ε ∼ N (0, νwΦΦT + νeI). (9)

This is indeed a GP [13] because any marginal ε sampled from ε(t) is
Gaussian distributed with a positive semidefinite covariance matrix
specified by a term K = ΦΦT called a kernel matrix. Each element
of K is given by the inner product of basis functions as follows:

Km,m′ = φ(tm)Tφ(tm′). (10)

Instead, any positive semidefinite matrix can be used as a kernel ma-
trix. This enables the kernel trick; we can directly calculate K with-
out explicitly specifying basis functions as Km,m′ = k(tm, tm′),
where k(tm, tm′) is a kernel function. From this kernelization and
Eq. (4), we derive a likelihood function of x as follows:

x ∼ N (0,Ψ−1(νwK + νeI)Ψ
−T ). (11)

This is a GP regression model [10], and it includes Eq. (5) as a spe-
cial case. In fact, when ΦΦT = I , i.e., when J basis functions are
independent of each other like a series of Dirac delta functions, we
can recover Eq. (5) by assuming ν = νw + νe.

2.3. Multiple Kernel Learning

We discuss how to design a kernel matrix K that reflects the charac-
teristics of the excitation signal ε. If the observation x is a pitched
signal having the F0, a natural choice is using a periodic kernel. For
example, k(t, t′) = exp(−2 sin2(π t−t′

T
)/l2) is a well-known ker-

nel having the period T . This means that all basis functions are
implicitly assumed to have the period T (the F0 is given by 1/T ).
Alternatively, Kameoka et al. [10] designed a basis function having
H harmonic components with equal power as follows:

φj(t) =
∑H

h=1 sin
(
2πh

t−cj
T

)
(cj is a phase) (12)

and used a kernel matrix K calculated using Eq. (10). A problem is
that the true period T of the excitation signal ε is unknown. Given
the observation x, one must therefore estimate K itself.

Multiple kernel learning (MKL) [12] is a powerful solution to
this problem. More specifically, the kernel matrix K is defined as
the weighted sum of I kernel matrices as follows:

K =
∑I

i=1θiKi, (13)

where θ = {θ1, · · · , θI} is a set of kernel weights to be estimated
from the observed signal x and Ki is a periodic kernel having the
period Ti. The value of θi indicates a degree of the predominance
of period Ti in x (the F0 is given by 1/Ti). Plugging Eq. (13) into
Eq. (11) gives a likelihood function of x as follows:

x ∼ N
(
0,Ψ−1

(
νw

∑I
i=1θiKi + νeI

)
Ψ−T

)
. (14)
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The parameters a and θ can be estimated by using the expectation-
maximization (EM) algorithm. In [10], several hundreds of kernels
having different periods T = {T1, · · · , TI} are prepared, and MAP
estimation is then performed by putting a generalized Gaussian dis-
tribution on each θi as a prior distribution. However, the values of θ
do not become truly sparse in MAP estimation.

3. INFINITE KERNEL LINEAR PREDICTION

This section proposes a nonparametric Bayesian model, called infi-
nite kernel linear prediction (IKLP), for jointly estimating the spec-
tral envelope and F0 of a speech signal in a principled manner. First
we take the limit of Eq. (14) as the number of kernels goes to infinity,
i.e., I → ∞, in the framework of Bayesian nonparametrics. Then
we put appropriate priors on unknown variables for a full Bayesian
treatment. To approximate a posterior distribution of those variables,
we derive an efficient and convergence-guaranteed algorithm.

3.1. Nonparametric Bayesian Formulation

A likelihood function of the observed signal x is given by

x ∼ N
(
0,Ψ−1

(
νw

∑I→∞
i=1 θiKi + νeI

)
Ψ−T

)
. (15)

We here put a gamma process (GaP) prior on the infinite-dimensional
vector θ. More specifically, we introduce independent gamma priors
on elements of θ as follows:

θi ∼ Gamma(α/I, α). (16)

As the truncation level I diverges to infinity, the vector θ approxi-
mates an infinite sequence drawn from a GaP with shape parameter
α. It is proven that the effective number of elements, I+, such that
θi > ε for some number ε > 0 is almost surely finite. If I is suffi-
ciently larger than α, we can expect that only a few of the I elements
of θ will be substantially greater than zero. This property gives a
theoretical basis to sparse learning in an infinite space.

To complete the Bayesian formulation, we put gamma priors on
the positive weights νw and νe as follows:

νw ∼ Gamma(aw, bw), νe ∼ Gamma(ae, be), (17)

where a∗ and b∗ are hyperparameters indicating the shape and rate
parameters of the gamma distribution. We also put a Gaussian prior
on a thusly: a ∼ N (0, λI), where λ is a hyperparameter.

The F0 is given by identifying a predominant kernel Ki with the
highest value of E[θi] (the F0 is 1/Ti). The spectral envelope is spec-
ified by the filter coefficients E[a]. In addition, our model can distin-
guish whether the target signal x is pitched or unpitched according
to a degree of periodicity E[νw]/E[νw + νe] as in MKLP [10].

3.2. Variational Bayesian Inference

Given an observed signal x, our goal is to compute a posterior distri-
bution over random variables p(θ,a, νw, νe|x) by using the Bayes
rule p(θ,a, νw, νe|x) = p(x,θ,a, νw, νe)/p(x). Since analytical
calculation of p(x) is infeasible, we use a variational Bayesian (VB)
method for approximating p(θ,a, νw, νe|x) by a variational distri-
bution that can be factorized into four posteriors as follows:

q(θ,a, νw, νe) = q(a)q(νw)q(νe)
∏

i
q(θi). (18)

Each posterior is then iteratively updated such that an evidence lower
bound (ELBO) L is monotonically increased, where L is given by

log p(x) ≥ E[log p(x|θ,a, νw, νe)] (19)

+ E[log p(θ)] + E[log p(a)] + E[log p(νw)] + E[log p(νe)]

− E[log q(θ)]− E[log q(a)]− E[log q(νw)]− E[log q(νe)] ≡ L.

However, the first term is is still intractable. We therefore take a fur-
ther lower bound L′ such that L ≥ L′. Note that L can be indirectly
maximized by maximizing L′. The updating formulas are

q(θ) ∝ p(θ) exp(Eq(a,νw,νe)[log q(x|θ,a, νw, νe)]),
q(νw) ∝ p(νw) exp(Eq(θ,a,νe)[log q(x|θ,a, νw, νe)]),
q(νe) ∝ p(νe) exp(Eq(θ,a,νw)[log q(x|θ,a, νw, νe)]), (20)

where q(x|θ,a, νw, νe) is a lower bound of p(x|θ,a, νw, νe) (see
Eq. (23)). For tractability we assume q(a) = δa∗(a), where δa∗ is
a Dirac delta function taking infinity at a MAP point estimate a∗.

3.2.1. Deriving Matrix-variate Inequalities

To derive the tractable lower bound L′, we need to use some inequal-
ities. We start with the following definitions:
Definition 1 (Positive semidefinite matrix). We say a symmetric ma-
trix A is positive semidefinite iff zTAz ≥ 0 for any vector z or iff
A = ZTZ for some real matrix Z.
Definition 2 (Convex/concave matrix functions). We say a matrix-
variate function f(·) is convex iff λf(A)+(1−λ)f(B) ≥ f(λA+
(1 − λ)B) for any number 0 ≤ λ ≤ 1. Conversely, we say f(·) is
concave iff λf(A) + (1− λ)f(B) ≤ f(λA+ (1− λ)B).
Let V be a positive semidefinite (PSD) matrix and z be any vector.
Using these two definitions, we can derive the following lemmas (we
omit the proofs because of space limitations):
Lemma 1. A matrix-variate function f(V ) = log |V | is concave.

Lemma 2. A matrix-variate function g(V ) = zTV −1z is convex.
These lemmas lead to useful inequalities of matrix-variate functions.
First, we can apply first-order Taylor expansion to f(V ) around an
arbitrary PSD matrix Ω as follows:

log |V | ≤ log |Ω|+ tr(Ω−1V )−M, (21)

where M is the size of V . Second, we can apply a matrix inequality
proposed by Sawada et al. [14] to g(V ) as follows:

zT
(∑I

i=1 V i

)−1

z ≤ ∑I
i=1 z

TΥT
i V

−1
i Υiz, (22)

where {V i}Ii=1 is a set of PSD matrices and {Υi}Ii=1 is a set of
auxiliary matrices that sum to the identity matrix.

3.2.2. Deriving Evidence Lower Bound and Updating Formulas

We derive updating formulas by computing the tractable ELBO L′.
Let K be K = νw

∑
i θiKi + νeI . Using Eqs. (21) and (22)

enables us to compute the lower bound of E[log p(x|θ,a, νw, νe)]
(the first term of L given by Eq. (19)) as follows:

E[log p(x|·)] = −M

2
log(2π)− 1

2
E[log |K|]− 1

2
E[xTΨTK−1Ψx]

≥ −1

2
log |Ω| − 1

2

∑
iE[νwθi] tr(Ω−1Ki)− 1

2
E[νe] tr(Ω−1) + const.

− 1

2

∑
iE

[
1

νwθi

]
xTΨTΥT

i K−1
i ΥiΨx− 1

2
E

[
1
νe

]
xTΨTΥT

0 Υ0Ψx,

(23)

where Ω is a PSD matrix and Υ= {Υi}I→∞
i=0 is a set of auxiliary

matrices that sum to unity. By setting the partial derivatives equal to
zero, we obtain the following optimal values of Ω and Υ:

Ω = E[νw]
∑

iE[θi]Ki + E[νe]I, (24)

Υi=E
[

1
νwθi

]−1
KiS

−1, Υ0=E
[

1
νe

]−1
S−1, (25)

where S =
∑

i E
[

1
νwθi

]−1
Ki + E[ 1

νe
]−1I . Note that Eq. (23)

involves the expectations both of the parameters and of their recip-
rocals, i.e., the sufficient statistics are x and 1/x. Since the sufficient
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Fig. 2. Estimation results for a male-singing signal.

statistics of the gamma priors are log(x) and x, the generalized in-
verse Gaussian (GIG) distribution is a convenient choice as the func-
tional form of posteriors [15]. We thus assume

q(θi) = GIG(θi|γi, ρi, τi),
q(νw) = GIG(νw|γw, ρw, τw), q(νe) = GIG(νe|γe, ρe, τe), (26)

where GIG(x|γ, ρ, τ) = (ρ/τ)γ/2

2Kγ(
√
ρτ)

xγ−1e−(ρx+τ/x)/2. The updat-
ing formulas are given by

γi = α/I, ρi = 2α+ E[νw] tr(Ω−1Ki),

τi = E

[
1
νw

]
xTΨTΥT

i K
−1
i ΥiΨx

γw = aw, ρw = 2bw +
∑

i E[θi] tr(Ω−1Ki),

τw =
∑

i E

[
1
θi

]
xTΨTΥT

i K
−1
i ΥiΨx

γe = ae, ρe = 2be + tr(Ω−1), τe = xTΨTΥT
0 Υ0Ψx.(27)

The MAP estimate of a is determined such that the partial derivative
of L′ is equal to zero. More specifically, a∗ is a solution of the
regularized normal equation (XTΣ−1X + λI)a = XTΣ−1x,
where Σ−1 =

∑
i E

[
1

νwθi

]
ΥT

i K
−1
i Υi + E

[
1
νe

]
ΥT

0 Υ0.

4. EXPERIMENTS

This section reports experiments that were conducted to evaluate the
basic performance of the proposed model called IKLP.

4.1. Experimental Conditions
We used two audio signals sampled at 16 [kHz]; One is an unaccom-
panied solo of a male singer (RWC-MDB-G-2001 No.91) excerpted
from the RWC Music Database [16]. We analyzed and resynthesized
the signal with STRAIGHT [6] by using ground-truth F0s. The other
is a female speech (FSUSA101) excerpted from the ATR Japanese
speech database [17]. Since these signals have high F0s over 300Hz,
higher-order LP is more difficult. We applied IKLP on a frame-by-
frame basis with a window size of 2048 samples (M = 2048) and
a shifting interval of 160 samples. The hyperparameters were set as
α = 1.0, aw = bw = ae = be = 1.0, P = 30, and λ = 0.1. We
prepared sufficiently many periodic kernels {Ki}Ii=1 that represent
different F0s ranging from 100 [Hz] to 400 [Hz] at 6-cent intervals,
i.e., the truncation level was set as I = 400 	 α.

4s3s2s1s

Estimated F0s (predominant kernels)

Detected pitched frames (indicated by                            )

400Hz

1.0

Observations

Estimated spectral envelopes

8kHz

8kHz

Reconstructions

8kHz

Fig. 3. Estimation results for a female-speech signal.

4.2. Experimental Results
The experimental results (Fig. 2 and Fig. 3) showed the potential of
IKLP not only for joint spectral-envelope and F0 estimation but also
for detection of pitched segments. We conjecture that speech signals
can be analyzed more correctly than singing signals. In Fig. 2, IKLP
failed to detect pitched segments around 4.2s–4.6s because of rela-
tively weak harmonic partials. The F0s were estimated accurately in
the pitched segments of both signals, even in vibrato around 6.0s in
Fig. 2. The estimated filter spectra (envelopes) were little skewed by
harmonic partials because the source spectra were explicitly mod-
eled, as shown in the second and third rows of Fig. 2 and Fig. 3.

Although the IKLP model itself is theoretically sound, we found
that half pitch errors tend to occur because the optimization method
easily gets stuck in bad local optima when using periodic kernels.
The likelihood function given by Eq. (15) imposes a larger penalty
when the model variance Ψ−1KΨ−T underestimates the observed
variance xxT , resulting in false (overestimated) harmonic partials
with a smaller penalty. This implies a deep connection of Eq. (15)
to the Itakura-Saito divergence (ISD), which in fact acts as a cost
function when we restrict K to an identity matrix (IKLP reduces to
ISD-based AR modeling [1]). It is known that the ISD is harder to
optimize because of its nonconvexity than the Kullback-Leibler di-
vergence (KLD) [18]. This problem could be solved by representing
the temporal dynamics of F0s and/or learning multiple models with
different initializations based on rough F0 estimates.

5. CONCLUSION

We presented a nonparametric Bayesian model for joint spectral-
envelope and F0 estimation in the solid framework of multiple kernel
learning. The experimental results showed that our model is robust to
high-pitched signals and can detect unpitched segments. We plan to
conduct more comprehensive experiments for comparison. There are
several interesting directions of this research. One possibility would
be to use more precise models of the source signal ε [19–21] when
designing basis functions Φ. The kernel parameters T could be op-
timized with type-II ML estimation (empirical Bayes). In addition,
the deep connection of IKLP to classical ISD-based LP [1] opens up
a door to the fundamental generalization of ISD-based nonnegative
matrix factorization [15, 22] (known as useful for music signal sep-
aration) in that the covariance structure within the elements of each
basis vector can be considered by using various kernels as in [23].
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