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ABSTRACT

This paper presents a Bayesian method for temporally aligning a
music score and an audio rendition. A critical problem in audio-to-
score alignment is in dealing with the wide variety of timbre and
volume of the audio rendition. In contrast with existing works that
achieve this through ad-hoc feature design or careful training of tone
models, we propose a Bayesian audio-to-score alignment method by
modeling music performance as a Bayesian Hidden Markov Model,
each state of which emits a Bayesian signal model based on Latent
Harmonic Allocation. After attenuating reverberation, variational
Bayes method is used to iteratively adapt the alignment, instrument
tone model and the volume balance at each position of the score. The
method is evaluated using sixty works of classical music of a variety
of instrumentation ranging from solo piano to full orchestra. We
verify that our method improves the alignment accuracy compared to
dynamic time warping based on chroma vector for orchestral music,
or our method employed in a maximum likelihood setting.

Index Terms— Audio-to-score alignment, Variational Bayes in-
ference

1. INTRODUCTION
Audio-to-score alignment, the task of finding a temporal mapping
between a music score and audio signal, is a critical task in music
information retrieval. It is required whenever a system needs to coor-
dinate a music score (e.g. a standard MIDI file) and an audio signal,
such as score-informed source separation [1, 2], or score-informed
analysis of music performance [3, 4, 5, 6, 7].

Audio-to-score alignment is difficult because the music score
conveys only the sequence of instrument and pitch in which a piece
should be played – very little on the fluctuation of tempo, timbre and
balance of dynamics are conveyed. For example, an orchestra might
emphasize a particular instrument part more than the other com-
pared to another orchestra. One orchestra might have a brilliantly-
sounding brass section compared to another. One orchestra might
slow down a particular section of music, while another orchestra
might speed it up a bit. Audio-to-score alignment should absorb
such discrepancies in dynamics timbre and tempo.

Most approaches are based on designing timbre-robust feature
for alignment, using ad-hoc distance measure. We found that, while
there are basic tenets of designing features and distance measures, a
big portion of it is still an art that requires careful adjustments. A
critical problem is that of removing timbral dependence; aligning a
piece of music that is rich in timbre, such as a symphony, is difficult.

We believe that the problem of spectral mismatch could be al-
leviated only to an extent through design of timbre-robust features.
To cope with timbre, we should instead consider timbre as an un-
known quantity a priori, that we infer from the observed musical
audio. Such philosophy calls for a Bayesian treatment of timbre in
audio-to-score alignment.

In this paper, we propose an audio-to-score alignment method
by fitting a Bayesian Hidden Markov Model (HMM) based on Latent
Harmonic Allocation (LHA) signal model [8]. LHA is a Bayesian
treatment of musical signal based on fitting a superposition of his-
tograms onto the observed power spectrum. Our method is based
on three assumptions. First, we assume that the volume of each
note is different, but remains more-or-less consistent within a note
(intra-note volume consistency). Second, the timbre of each pitch /
instrument pair is unique, but remains consistent throughout a piece
(intra-music timbre consistency). Third, each position of the music
score emits a combination of pitch / instrument pairs and a stationary
noise. We evaluate the effectiveness of treating timbre and volume
as random quantities using sixty pieces of classical music.

2. EXISTINGWORKS
Audio-to-score of a piece with a wide range of timbre has been
attacked mainly using two approaches to feature selection. First
approach uses features that are robust to timbral differences. For
example, many studies use chroma vector, a timbre-robust feature
that reflects the power in a particular pitch-class [9, 10, 11, 12, 13].
Other studies use features that are reminiscent of the chroma vec-
tor, but with improved robustness against timbral variety [14, 15].
Second approach is based on a generative model of spectrograms
[16, 17]. For temporal matching, Dynamic Time Warping (DTW),
HMM, or Dynamic Bayesian Model (DBM) have been employed,
though DTW is used, by far, most frequently.

3. BAYESIAN AUDIO-TO-SCORE ALIGNMENT BASED
ON LHA-HMM

Ourmethod estimates audio-to-score alignment by modeling the mu-
sical audio signal as a Bayesian HMM, each state of which emits a
signal based on LHA model.

3.1. Preprocessing
Given an input signal o(t), its short-time Fourier Transform (STFT),
O(f, t), of size F -by-T is evaluated. Then, reverberation is attenu-
ated by modeling O(f, t) as an auto-regressive process withX(f, t)
as the source signal. This model was inspired from that used in
speech dereverberation [18]. Each frequency bin contains linear pre-
dictive coefficients G(f, i) of order P. In other words, we model the
dereverberated STFTX(f, t) as follows:

O(f, t) = X(f, t) +
P∑
i

O(f, t− i)G(f, i) (1)

G(f, i) is estimated using linear prediction.

3.2. Latent Harmonic Allocation
LHA is a generative signal model proposed by Yoshii, which inter-
prets the spectrogram as a histogram, each bin of which is considered
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to be multiple draws from various musical instrument [8]. The prob-
ability of observing the energy from a particular musical instrument
follows a Normal distribution centered around integer multiple of
its fundamental frequency. The probability of drawing a particular
overtone of a particular instrument, both of which follow multino-
mial distribution, have a conjugate prior. Variational expectation-
maximization is used for inference.

3.3. Joint Estimation of Alignment, Timbre, Pitch and Volume
We assume that power contained in each time-frequency bin of
X(f, t) originated from some combination of power originating
from different musical instruments playing at different pitch. Hence,
the source signal X(f, t) is modeled as a sum of music instrument
histograms. Assuming that a particular music contains I unique
instrument/pitch pairs, each with the fundamental frequency dis-
tributed normally with mean μi and precision λi, the model fits a
sequence of a combination of these pairs onto X(f, t).

To attain intra-music timbre consistency for each of I instru-
ment/pitch pairs, each instrument/pitch pair has a unique tone-
model, consisting of the fundamental frequency and the relative
strengths of the overtones. This tone-model is shared for all occur-
rences of the given instrument/pitch pair in a piece. Our model mod-
els intra-note volume consistency by incorporating a I-dimensional
note emission vector, ith element of which indicates the likelihood
that ith instrument/pitch pair contributes to the observation.

The model joins a sequence ofD note-emission vectors by a left-
to-right HMM, where D is the number of states of the music score.
The emission vector associated with the dth state is set such that it
is highly likely to emit pitch/instrument pairs that are notated at that
point in the music score, and highly unlike to emit others. sd(t) is a
binary vector, which is 1 if state at time t is d, and 0 otherwise.

To infer the alignment, we introduce various latent variables.
Y = {Y (f, i)} is a random variable of size I × F , each of which is
a J-dimensional multinomial variable jth element of which governs
the ratio of power the jth overtone contributes in frequency f for
ith instrument/pitch pair. Furthermore, Z = {Z(f, d)} is a random
variable of size F×D, each of which is a I-dimensional multinomial
variable, ith element of which governs the ratio of power the the ith
instrument/pitch pair contributes in frequency f .

The complete data likelihood is given as follows:
p(X,Z, Y, S,E,A, μ, λ) = p(X|S, Y, Z, μ, λ)p(Z|E,S)

× p(Y |Z, S,A)p(S|τ )p(E)p(A)p(τ )p(μ,λ) (2)
where
p(X|Y,Z, μ, λ, S) =

∏
t,i,j,f,d

N (
f |jμi, j

2λ−1
i

)X(f,t)Zi(f,d)Yj (f,i)Sd(t)

p(Z|E,S) =
∏

t,i,f,d

ei(d)
X(f,t)Zi(f,d)Sd(t)

p(Y |A,Z, S) =
∏

t,i,j,f,d

aj(i)
X(f,t)Zi(f,d)Yj(f,i)Sd(t)

sp(μ,λ; ν, b,m) =
∏
k

NG(μk, λk;mk, bk, lk, νk)

p(τ ) =
∏
j

Dir(τ (j); τ0(j)) p(S|τ ) =
∏
t

∏
j,k

τj(k)
sj (t)sk(t−1)

p(E; ε) =

D∏
d

Dir(e(d); εd) p(A;α) =
∏
k

Dir(a(k);α(k))

N (f |μ, λ−1) is a discrete distribution over f ∈ Z, in which:

N (f |μ, λ−1) =

∫ f+1/2

f−1/2

Nc(f̃ |μ, λ−1)df̃

where Nc is a Normal distribution. We approximate this N by

Fig. 1. Graphical model of our method.

N (f) ≈ ∫ f+1/2

f−1/2
Nc(f)df̃ = Nc(f). NG is a Normal-Gamma

distribution, whose probability density is given as follows:
NG(μ, λ|m, b, l, ν) =

νlλ
l−1/2
k

√
b

Γ(l)
√
2π

exp

(
−1

2
bλ(μ−m)2 − λν

)
(3)

where Γ(i) is the Gamma function. Dir(a) is the dirichlet distribu-
tion. The complete graphical model is shown in Fig. 1.

We seek to maximize the posterior p(S,Z, Y,E,A,μ, λ, τ |X),
but this is analytically intractable. Therefore, we instead maximize
an approximation of the posterior, q(S,Z, Y,E,A, μ, λ, τ ). We as-
sume the approximation is factorized into the following form:

q(S,Z, Y,E,A, μ, λ, τ ) =

qS(S)qZ(Z)qY (Y )qE(E)qA(A)qμ,λ(μ, λ)qτ (τ ) (4)
We optimize the approximate posterior by minimizing the

Kullback-Leibler divergence between it and the posterior. Such vari-
ational minimization yields in the following update [19]:

log qZi(Zi) := c+ 〈log p(X,S,Z, Y · · · τ )〉¬Zi
(5)

¬Zi means all factors of q(S,Z, Y, · · · , τ ) excluding Zi, and
〈f(x, y)〉y means to take the expectation of f(x, y) under q(y). The
iteration terminates when the following quantity has converged:

F(qx(x), θ) =

∫
qZ(Z) log p(X,Z)

qZ (Z)
dZ (6)

For convenience, we define the following quantities:

ξj(f, i) = 〈Yj(f, i)〉Y (7)
γi(f, d) = 〈Zi(f, d)〉Z (8)
lτd′(d) = 〈log τd′(d)〉τ (9)

ηd(i) = 〈sd(t)〉s (10)
lAj(i) = 〈log aj(i)〉E (11)
lEi(d) = 〈log ei(d)〉E (12)

lNf (i, j) =
〈
logN (

f |jμi, j
2λ−1

i

)〉
μ,λ

(13)

ζi(t, j) = 〈si(t)sj(t− 1)〉s (14)
where

lAj(i) = ψ(αj(i))− ψ
(∑M

l=1 αl(i)
)

(15)

lEi(d) = ψ(εi(d))− ψ
(∑K

l=1 εl(d)
)

(16)

lNf (i, j) = −1

2

(
li
νi

(
f

j
−mi

)2

+
1

bi

)
− log 2πνi + ψ(li) (17)

Here, ψ(x) is the digamma function.

3.4. Updating Note Emission
First we update the responsibility ith pitch/instrument pair has at a
given frequency f , for each state of the HMM d to the following:

qZ(Z) =
∏
i,f,d

γi(f, d)
Zi(f,d) where γi(f, d) =

ρi(f, d)∑
i ρi(f, d)

(18)
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where ρ is the following:

log ρi(f, d) =
(∑

t

X(f, t)ηd(t)
)

×
[
lEi(d) +

∑
j

ξj(f, i)
(
lNf (i, j) + lAj(i)

)]
(19)

Furthermore, the note-emission vector is updated as follows:
qE(E) =

∏
i

Dir
(
ed; εi(:) +

∑
t,f,j

η:(t)X(f, t)γi,j(f, :)
)

(20)

3.5. Updating Tone-model
First, we update the responsibility jth overtone has at a given fre-
quency f , for each note / instrument pair i:

qY (Y ) =
∏
j,i,f

ξj(i, f)
Yj (f,i) where ξj(i, j) =

φj(f, i)∑
k φk(f, i)

(21)

where φ the following:

log φj(f, i) =
(
lNf (i, j) + log aj(i)

)
×

∑
t,d

X(f, t)ηd(t)γi(f, d) (22)

The fundamental frequency and its variance is set to the following:
qμ,λ(μ, λ) =

∏
k

NG(μk, λk;mk, bk, lk, νk) (23)

with

mk :=
mkbk +Nγ,k 〈x/j〉ψk

bk +Nγ,k
(24)

bk := bk +Nγ,k (25)
lk := lk +Nγ,k (26)

νk := νk +
1

2

bkNγ,k

bk +Nγ,k

((
〈x/j〉ψ(k) −mk

)2

+N2
γ,k

〈
x/j − 〈x/j〉ψ(k)

〉2

ψ(k)

)
(27)

where ψk(f, j) is the following multinomial distribution:
ψf,j(k) =

∑
d,t

γk(f, d)ξj(f, k)η(d, t)X(f, t)/Nγ,k (28)

and
Nγ,k =

∑
f,j

∑
d,t

γk(f, d)ξj(f, k)η(d, t)X(f, t) (29)

The relative strength of each overtone is updated to the following:

qA(A)=
∏
i

Dir

⎛
⎝a(i);α(i)+∑

t,f,d

X(f, t)γi(f, d)ηd(t)ξ(f, i)

⎞
⎠ (30)

3.6. Updating HMM
The state transition probability τ is updated as follows:

qτ (τ ) =
∏
k

Dir

(
τ (k);

∑
t

ζ(t, k) + τ0(k)

)
(31)

The probability of state sequence is given as follows:

qS(S) =

T∏
t=1

∏
d,d′

( 〈log τj(i)〉Sd′ (t−1)
τ

∏
f

κd(f)
X(f,t)

)Sd(t) (32)

where
log κd(f) =∑
i

γi(f, d)
(
lEi(d) +

∑
j

ξj(f, i)
(
lNf (i, j) + lAj(i)

))
(33)

Note that this has the same functional form as a HMM, with tran-
sition probability replaced by exponent of log-expectation, and the
emission probability replaced κd(f). Hence, κd(f) can be consid-
ered as a subnormalized histogram that represents the spectrum the
dth state is likely to emit. To compute the expectation of the suf-
ficient statistics η and ξ, forward-backward algorithm is used. For-
ward probability α and backward probability β are given as the fol-
lowing recursions:

α(t, d) = p(s(t)|X(1) · · ·X(t))

=
1

Z

∑
d′

(
α(t− 1, d′)elτd′ (d)

)∏
f

κd(f)
X(f,t) (34)

β(t, d) = p(Xt+1(f) · · ·XT (f)|sd(t) = 1)

=
∑
d′

β(t+ 1, d′)
∏
f

κd′(f)
X(f,t+1)elτd(d

′) (35)

These are used to arrive at the sufficient statistics:
〈sj(t)〉s =

1

Z
α(t, j)β(t, j) (36)

〈sj(t− 1)sk(t)〉s =
α(t− 1, j)β(t, k)

Z

∏
f

κk(f)
X(f,t)elτj(k) (37)

4. EXPERIMENT
We evaluate the performance of our system against a widely-used
alignment method. Moreover, we evaluate the significance of per-
forming audio-to-score alignment in a Bayesian setting as opposed
to maximum likelihood estimation, and the effectiveness of adapting
the volume and timbre information for aligning music.

Our method is tested against three conditions. First con-
dition is alignment based on Dynamic Time-warping (DTW) of
chroma-vector, perhaps the most popular method for audio-to-score
alignment. Second, alignment based on non-adaptive, maximum-
likelihood LHA-HMM is used as a baseline for non-Bayesian frame-
work of our method. Essentially, Viterbi decoding is done on a
HMM which has 〈τ 〉qτ (τ), instead of exp 〈log τ 〉qτ (τ) for state
transition probability. Furthermore, κ is replaced with a fixed
and normalized spectral histogram κd(f) =

∑
i,j 〈εi(d)〉 〈αj(i)〉

N (f |jμi, lk/(bkvk)) ; this signal model is similar to one used in
[16]. Finally, LHA-HMM without volume/timbre adaptation is used
as a baseline for Bayesian LHA-HMM without timbre update.

For evaluation, we align sixty pieces from RWC Classical Mu-
sic Database [20], and compare them against the database’s beat data
[21]. To evaluate our method for classical music with various instru-
mentations, we divide the database into five categories: orchestral
(C001 to C010), non-orchestral ensemble (C012 to C021), solo pi-
ano (C022 to C035), solo instrumental/duo (C036-C011, C011), and
vocal music (C045 to C050). C005 is omitted because it includes a
cadenza, a freely-played section that is not notated on the score.

All signals are downsampled to 8kHz and analyzed using Han-
ning window of length 2048 with overlap of 400 samples. One per-
sistent tone with fundamental of 500Hz and variance of each Gaus-
sian set to 500Hz was used as the noise model. The prior of note
emission are set such that, all unnotated notes have hyperparameter
set to 10−6, and all notated notes and noise set to 1 (non-informative
prior). For each tone model, mk was set to the notated fundamental
frequency, and the variance to 50Hz (lk = 106, νk = 50 × 106,
bk = 50 × 106). Moreover, we consider up to the tenth overtone
(J = 10) for each tone-model, and the J-dimensional timbre model
αj(k) set to non-informative.

To optimize the posterior, we iteratively update γ, ξ, τ and η
until convergence, after which A is updated. This is repeated un-
til convergence. After convergence E was updated. μ and λ were
not updated, as we assumed the shape of harmonics do not change
significantly within a piece of music. The result is shown in Table 1.
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Table 1. Percentage of estimated alignment whose error ε is within
a given margin. “Type” indicates the category of pieces, where OR
is orchestral, EN is non-orchestral ensemble, PN is piano-solo, IN
is non-piano solo/duo, and VO is vocal music. Four conditions,
Chroma-based DTW, Maximum Likelihood of our method, our
method without timbre and volume update, and proposed method,
are labeled “C,” “ML,” “N,” and “P,” respectively.

Type ε <50ms ε <.1s ε <.5s ε < 1s
OR C 8.0% 16.3% 57.7% 70.3%
OR ML 1.2% 1.8% 4.1% 6.5%
OR N 24.4% 41.4% 65.1% 72.4%
OR P 28.2% 46.8% 70.8% 75.0%
EN C 14.7% 29.1% 69.5% 83.4%
EN ML 0.1% 0.1% 0.5% 1.1%
EN N 16.8% 36.0% 71.7% 80.7%
EN P 16.2% 35.5% 72.0% 80.9%
PN C 12.3% 26.4% 56.3% 65.4%
PN ML 0.1% 0.1% 0.5% 1.0%
PN N 6.7% 18.8% 56.3% 63.3%
PN P 6.6% 18.8% 56.9% 63.7%
IN C 11.8% 25.1% 71.1% 81.8%
IN ML 1.7% 2.6% 3.4% 4.1%
IN N 24.3% 40.4% 67.2% 73.2%
IN P 24.8% 40.7% 67.5% 73.4%
VO C 6.2% 11.9% 39.1% 54.3%
VO ML 0.1% 0.1% 0.2% 0.2%
VO N 8.3% 14.4% 40.2% 49.5%
VO P 7.9% 13.9% 39.6% 49.2%

5. DISCUSSION
Our method is capable of generating alignment whose quality is
comparable to that of well-established chroma-based DTW align-
ment. This is significant because DTW based on timbre-robust fea-
tures is still an art that requires finesse in design of features and
dissimilarity measure. On the other hand, the only ad-hoccery em-
ployed in our method was the choice of the magnitude of note-
emission vector for un-notated notes, and the initial variance of each
Normal-Gamma distribution. Otherwise, our method was initial-
ized with non-informative priors. Treating timbre and volume as
fixed quantity (“ML”) significantly degrades the alignment, suggest-
ing that it is in the Bayesian treatment of timbre and volume that
achieves the performance of our method.

The performance of our model tends to degrade slightly when
we update the timbre and volume, as seen in the results of “N” and
“P.” This is because posterior of a Dirichlet (i.e. timbre and note
emission) has smaller variance. Hence, updating timbre and volume
model makes our model more selective to musical signals that satisfy
intra-note volume consistency and intra-music timbre consistency.
In reality, these assumptions do not strictly hold, meaning that it is
better to deal with timbre and note emission as Dirichlet with a large
variance instead of coercing it into a particular multinomial. It is
important to note that both “N” and “P” are guaranteed to converge;
they are two different ways to align using LHA-HMM.

Our method performs poorly in piano solo and vocal music, as
seen from the low percentage of errors that lie within 50ms. This is
because they violate intra-note volume consistency and intra-music
timbral consistency, respectively. Intra-note volume consistency is
violated in piano music because the volume of piano decays within
a note. Intra-music timbre consistency is violated in vocal music
because a singer can produce a variety of phonemes.

On the other hand, the method is effective for orchestral pieces.
This is because orchestral music is rich in timbral content and dy-
namic range; achieving timbre robustness is hard in this situation,
but our model absorbs differences in timbre and dynamics.

6. CONCLUSION
This paper presented a Bayesian approach to audio-to-score align-
ment using LHA model and HMM. Our method, unlike most ex-
isting methods using DTW, does not require careful adjustments of
model parameters and skillful design of timbre-robust features and
dissimilarity measures. Yet, our method performed similarly to that
of DTW-based method using ad-hoc timbre-robust features.

In the future, we plan to incorporate more sophisticated model
for note duration. Moreover, we plan to explore other models for
timbre and dynamics, to better deal with piano and vocal music.
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