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ABSTRACT
This paper presents a method of both separating audio mixtures
into sound sources and identifying the musical instruments of the
sources. A statistical tone model of the power spectrogram, called
an integrated model, is defined and source separation and instru-
ment identification are carried out on the basis of Bayesian inference.
Since, the parameter distributions of the integrated model depend on
each instrument, the instrument name is identified by selecting the
one that has the maximum relative instrument weight. Experimen-
tal results showed correct instrument identification enables precise
source separation even when many overtones overlap.

Index Terms— Source separation, instrument identification,
Bayesian methods, spectrogram

1. INTRODUCTION

Musical instrument identification in complex musical audio mixtures
and sound source separation of instrument sounds are challenging
problems in musical audio processing. These problems have thus
far been treated independently. For example, methods of musical
instrument identification [1, 2] have been reported based on funda-
mental frequency (F0) estimates [3, 4, 5], tempo estimates and beat
tracking [6, 7, 8]. Methods of sound source separation have also
been reported for separating harmonic sounds [9, 10] and separating
percussive ones [11, 12]. Although methods of blind source sepa-
ration and source (talker) identification have been reported [13] for
multi-channel audio signals recorded by using a microphone array,
these methods cannot be applied to musical audio signals since most
musical audio signals are monaural or stereo.

We believe that instrument identification and source separation
rely on each other, i.e., accurate instrument identification should help
source separation and high-quality source separation should simplify
instrument identification. This paper reports a method of both sep-
arating audio mixtures and identifying instruments for each sound.
The inputs are an audio mixture of instrument sounds, a number of
mixed sounds, and the rough onset time and F0 of each sound, and
the outputs are separated audio signals and the instrument name of
each sound. We solved source separation as the decomposition of
the input power spectrogram based on the responsibility for each in-
strument sound, and instrument identification as the selection of the
spectral tone model based on maximum A Posteriori approximation.
Since the distributions of the tone model parameters differ by in-
strument, we used prior distributions of the parameters, which were
trained by using a musical instrument sound database.

2. BAYESIAN SPECTRALMODELING

In this section, we define a stochastic tone model, which consists of
harmonic and inharmonic tone models, introduce prior distributions

of the tone model parameters, and describe source separation and in-
strument identification methods based on Bayesian inference. Let an
observed power spectrogram, be a histogram on the two-dimensional
area of time and frequency, (t, f). We assume that the spectro-
gram is obtained by using a short-time Fourier transform (STFT).
Since the elements of a power spectrogram are not generally inte-
gers, we approximate them as integers by multiplying a sufficiently
large number and rounding them. Let N be the number of samples
on the histogram,X = (x1, . . . , xN) be a whole set of samples, and
xn = (tn, fn) (n = 1, . . . , N) be each sample. We define separat-
ing sound sources as decomposing a power spectrogram of an audio
mixture into a power spectrogram that corresponds to each sound.

Let J be the number of musical instrument sounds performed in
the audio mixture andK be the number of candidate musical instru-
ments. Onset time, duration, and pitch of each sound are given and
the instrument which performed the sound is unknown. Our goal
is both of estimating instruments which performed each sound, i.e.,
instrument identification, and decomposing the input power spectro-
gram to each sound, i.e., source separation.

2.1. Harmonic and Inharmonic Tone Models

Let Yj(t, f) be a spectral model which represents the power spec-
trogram of j-th instrument sound. Since the instrument which per-
formed the sound is unknown, we define the power spectrogram
model of an instrument sound as the sum of K models with weight
parameter bk|j :

Yj(t, f) =

K∑
k=1

bk|jYk|j(t, f) . (1)

We also represent the power spectrogram of the audio mixture by the
sum of J models with weight parameter aj :

Y(t, f) =
J∑

j=1

ajYj(t, f) . (2)

To represent the power spectrogram of the k-th instrument of the
j-th sound ((j, k)-th sound), we use a statistical tone model, called
an integrated harmonic and inharmonic models [14]. All musical
instrument sound consists of harmonic sounds generated from a vi-
bration of strings and air column, and inharmonic (percussive) ones
after musical instrument’s excitation. Power spectrograms of vari-
ous musical instruments, e.g., clarinet and marimba which have large
harmonic and inharmonic energy, respectively, can be represented in
the same structure by using the integrated models.

The integrated model is defined as the sum of harmonic structure
model, YH|j,k(t, f), and inharmonic structure model, YI|j,k(t, f),
with weight parameters cH|j,k and cI|j,k:

Yk|j(t, f) = cH|j,kYH|j,k(t, f) + cI|j,kYI|j,k(t, f) . (3)
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The harmonic-structure tone model is defined as the constrained
two-dimensional Gaussian Mixture model (GMM), which is a prod-
uct of two constrained one-dimensional GMMs. This model is de-
signed by referring to the harmonic temporal structured clustering
(HTC) source model [2]. The inharmonic-structure tone model is
analogously defined as a constrained two-dimensional GMM. The
temporal structures of these tone models are defined in similar form
to the harmonic one, but the frequency structures are defined as dif-
ferent forms. These models are defined as:

YH|j,k(t, f) =
LH−1∑
l=0

MH∑
m=1

dl,m|j,kYl,m|j,k,H(t, f) , (4)

Yl,m|j,k,H(t, f) = N (
t; τj + lρ, ρ2

)N (
f ;mωj , σ

2
j

)
, (5)

YI|j,k(t, f) =
LI−1∑
l=0

MI∑
m=1

el,m|j,kYl,m|j,k,I(t, f) , and (6)

Yl,m|j,k,I(t, f) = N (
t; τj + l�, �2

)M(f ;m,λ, κ) , (7)

where

N (
x;μ, σ2

)
=

1√
2πσ

exp

(
− (x− μ)2

2σ2

)
and (8)

M(x;μ, β, κ) =

β√
2π(x+ κ)

exp

(
− (β log(x/κ+ 1)− μ)2

2

)
.

(9)

LH and MH are the number of Gaussian kernels that represent the
temporal and frequency parts of the harmonic model, and LI andMI

are the number of Gaussians that respectively represent those of the
inharmonic model. The parameters are described as follows:

• a = (a1, . . . , aJ ). This parameter represents the relative weight
(volume) of the j-th note. The a is in the standard (J − 1)-
simplex, i.e., a satisfies 0 ≤ aj ≤ 1 (j = 1, . . . , J) and∑

j aj = 1.
• bj = (b1|j , . . . , bK|j). This parameter represents the relative
weight of the k-th instrument of the j-th sound. Each bj is in the
(K − 1)-simplex.

• cj,k = (cH|j,k, cI|j,k). This parameter represents the relative
weight of the harmonic and inharmonic components. Each cj,k
is in the standard 1-simplex.

• dj,k = (d0,1|j,k, . . . , dLH−1,MH|j,k). This parameter represents
the time-frequency energy distribution of the harmonic compo-
nent. Each dj,k is in the standard (LH ×MH − 1)-simplex.

• ej,k = (e0,1|j,k, . . . , eLI−1,MI|j,k). This parameter represents
the time-frequency energy distribution of the inharmonic compo-
nent. Each ej,k is in the standard (LI ×MI − 1)-simplex.

• τj . This parameter represents the onset time of the j-th sound.
• ρ and �. The LHρ and LI� mean the duration of the harmonic
component and inharmonic component, respectively.

• ωj . This parameter represents the fundamental frequency.
• σj . This parameter represents the deviation in energy distribution
along the frequency axis.

• λ and κ. These parameters are coefficients that determine the
arrangement of the Gaussian kernels for the frequency structure
of the inharmonic model1.

1If λ and κ are set to 1127 and 700, respectively, λ log(f/κ+ 1) is
equivalent to the mel scale of f Hz.

Since the integrated model is defined as a hierarchical weighted
mixture of Gaussian distributions, we introduce latent variables,
which specify the element distribution which generate sample xn:
• zn = (zn1 , . . . , z

n
J ). znj = 1 means sample xn is generated from

the j-th sound.
• zn

j = (zn1|j , . . . , z
n
K|j). z

n
k|j = 1 means sample xn is generated

from the (j, k)-th sound.
• zn

j,k = (znH|j,k, z
n
I|j,k). z

n
H|j,k = 1 and znI|j,k = 1 means sample

xn is generated from the harmonic and inharmonic components
of the (j, k)-th sound, respectively.

• zn
j,k,H = (zn0,1|j,k,H, . . . , z

n
LH−1,MH|j,k,H). znl,m|j,k,H = 1

means sample xn is generated from the component whose tem-
porary and frequency indices are l and m ((l,m)-th component)
of the (j, k)-th sound’s harmonic component.

• zn
j,k,I = (zn0,1|j,k,I, . . . , z

n
LI−1,MI|j,k,I). znl,m|j,k,I = 1 means

sample xn is generated from the (l,m)-th component of the
(j, k)-th sound’s inharmonic component.

zn has a 1-of-J representation, i.e., one of znj is 1 and the others
are 0, thus zn satisfies znj ∈ {0, 1} and ∑

j z
n
j = 1. Other latent

variables have the same representation.

2.2. Prior distribution
We introduce prior distributions to prevent the model parameters
from deviating in source separation and instrument identification.
For example, the energy distribution of the inharmonic component
generally converges just after sound excitation and decreases with
time, so usually el,m|j,k > el′,m|j,k (l < l′). Since acoustic fea-
tures, e.g., relative amplitude of the harmonic components, are dif-
ferent for each musical instrument, we use different prior distribu-
tions of the model parameters for each instrument. Prior distribu-
tions are trained by estimating the model parameters for isolated mu-
sical instrument sounds from a sound database with noninformative
priors and averaging them. Let θ be a whole set of model parameters;
the prior distributions are described as:

p(θ) = p(a)
∏
j

p(cj,k) p(dj,k) p(ej,k) p(τj) p(ωj , σj) , (10)

p(a) = D(a;α) (α = (α1, . . . , αJ )), (11)
p(bj) = D(bj ;β) (β = (β1, . . . , βK)), (12)

p(cj,k) = D(cj,k;γj) (γj = (γj,H, γj,I)), (13)
p(dj,k) = D(dj,k; δj) (δj = (δj,0,1, . . . δj,LH−1,MH )), (14)
p(ej,k) = D(ej,k; εj) (εj = (εj,0,1, . . . εj,LI−1,MI)), (15)

p(τj) = N (
τj ; νk, ξ

−1
k

)
, and (16)

p(ωj , σj) = N (
ωj ;ϕk, σ

−2
j χk

)G(σ−2
j ; ηk, ζk

)
. (17)

Prior distributions are defined as a conjugate prior of the correspond-
ing parameters. Parameters without prior distributions, ρ, �, λ, and
κ, are treated as constants. The D(·) and G(·) mean Dirichlet and
gamma distributions. The probabilistic density functions of these
distributions are given as follows except for normalizing factors:

D(x1, . . . , xN ;φ1, . . . , φN ) ∝
N∏

n=1

xn
φn−1, (18)

G(x; η, ζ) ∝ xη−1 exp(−ζx) . (19)
Let Z be a whole set of latent variables; a probabilistic model

with the latent variables is described as:

p(X,Z, θ) =
N∏

n=1

p
(
xn,z

n,zn
j ,z

n
j,k,z

n
j,k,H,z

n
j,k,I|θ

)
p(θ) , (20)
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Fig. 1. Graphical model of integrated model.

p
(
xn,z

n,zn
j ,z

n
j,k,z

n
j,k,H, z

n
j,k,I|θ

)
=

J∏
j=1

(
ajp

(
xn,z

n
j , z

n
j,k, z

n
j,k,H,z

n
j,k,I|znj = 1, θ

))znj ,
(21)

p
(
xn,z

n
j ,z

n
j,k,z

n
j,k,H,z

n
j,k,I|znj = 1, θ

)
=

K∏
k=1

(
bk|jp

(
xn,z

n
j,k,z

n
j,k,H,z

n
j,k,I|znk|j = 1, θ

))znk|j ,
(22)

p
(
xn,z

n
j,k,z

n
j,k,H, z

n
j,k,I|znk|j = 1, θ

)
=(

cH|j,kp
(
xn, z

n
j,k,H|znH|j,k = 1, θ

))znH|j,k ×(
cI|j,kp

(
xn,z

n
j,k,I|znI|j,k = 1, θ

))znI|j,k ,

(23)

p
(
xn,z

n
j,k,H|znH|j,k = 1, θ

)
=

LH−1∏
l=0

MH∏
m=1

(
dl,m|j,kYl,m|j,k,H(t, f)

)zl,m|j,k,H , and
(24)

p
(
xn, z

n
j,k,I|znI|j,k = 1, θ

)
=

LI−1∏
l=0

MI∏
m=1

(
el,m|j,kYl,m|j,k,I(t, f)

)zl,m|j,k,I .
(25)

A graphical model of the observation is given in Fig. 1.

2.3. Bayesian inference
As we described, source separation is defined as the decomposition
of the input power spectrogram. Decomposed power spectrogram of
the j-th sound, Xj(t, f), is obtained by multiplying the responsibil-
ity, i.e., the expectation value of latent variable znj , with the observed
power spectrogram:

Xj(t, f) =
∑

xn∈{x|x∈X,x=(t,f)}
p
(
znj = 1|X)

. (26)

Separated audio signals are obtained by an inverse STFT of the de-
composed spectrograms.

Instrument identification is performed by model selection based
on Bayesian inference. The instruments are estimated by using
model selection based on maximum A Posteriori approximation:

(Instrument of j-th note) = argmax
k

〈
bk|j

〉
p(bj |X) , (27)

where 〈x〉f(x) means the expectation value of the random variable x
with the density function f(x), i.e., 〈x〉f(x) =

∫
xf(x) dx .

The posterior probabilities in above equations are defined as:

p
(
znj = 1|X)

=
p
(
X, znj = 1, Z−zn , θ

)
dZ−zn dθ

p(X,Z, θ) dZ dθ
and (28)

p(bj |X) =
p(X,Z, θ) dZ dθ−bj

p(X,Z, θ) dZ dθ
, (29)

where Z−zn and θ−bj are the whole set of the latent variables and
model parameters except for zn and bj , respectively, but it is im-
practical to directly calculate that integral since the parameter space
is extremely huge. Therefore, we adopt a method of variational in-
ference for estimating the posterior probability of the latent variables
and model parameters.

Let q(Z, θ) be a test distribution that approximates the posterior
distribution, p(Z, θ|X). We assume that the test distribution can be
factorized as:

q(Z, θ) = q(Z) q(θ), (30)

q(Z) =
N∏

n=1

q(zn)
J∏

j=1

q(zn
j )

K∏
k=1

q(zn
j,k) q(z

n
j,k,H) q(z

n
j,k,I), and

(31)

q(θ) = q(a)
J∏

j=1

q(bj)

(
K∏

k=1

q(cj,k) q(dj,k) q(ej,k)

)
q(τj) q(ωj , σj)

(32)
An objective function for estimating the optimal q(z, θ) is de-

fined as:

F [q] =

∫ ∑
z∈Z

q(z, θ) log
p(X, z, θ)

q(z, θ)
dθ, (33)

where F [q] is a functional that depends on function q. The q
that maximizes F [q] most approximates the posterior distribution,
p(Z, θ|X), under the factorization assumption.

To calculate an optimal test distribution that maximizes the ob-
jective function, we solved an Euler-Lagrange equation. All update
equations have been omitted since it would take a page to list them.

3. EXPERIMENTAL EVALUATION
We conducted an experiment to evaluate the efficiency of our source
separation and instrument identification methods. Given audio mix-
tures that consisted of two or three musical instrument sounds ex-
cerpted from the RWC Music Database: Musical Instrument Sound
[15], the audio mixtures were separated into sources and instruments
were estimated. As shown in Table 1, eight musical instruments
were excerpted from the database and sounds were divided into sub-
sets for 10-fold cross validation. The prior distribution of each in-
strument was created by averaging the model parameters estimated
from the training data (nine subsets). Audio mixtures were produced
from the combination of the instrument sounds for each data subset
except pairs consisting of the same instrument sounds. The constant
parameters in the integrated models were set as listed in Table 2. The
performance of instrument identification and source separation were
respectively evaluated by using the accuracy rate and log spectral
distance defined as:√√√√ T∑

t=0

F∑
f=0

∣∣∣∣20 log10 Xorg(t, f)

Xsep(t, f)

∣∣∣∣
2/

TF (34)

Table 3 summarizes the accuracy rate of instrument identifica-
tion and log spectral distance for the source instruments. The fagotto
(FG), violin (VN), and clarinet (CL) have a high accuracy rate for
identification and short log spectral distances. This suggests that
correct instrument identification help to improve source separation.
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Table 1. Musical Instruments.
Inst. name (Abbr.) # of tones
Acoustic piano (PF) 1584

Violin (VN) 2304
Trumpet (TR) 1964
Alto sax (AS) 891
Clarinet (CL) 1080
Fagotto (FG) 1079
Marimba (MB) 909
Vibraphone (VI) 1332

Table 2. Constant values.
Parameter Value

ρH 0.1
ρI 0.1
λ 1.134
κ 440.0
LH 100
MH 30
LI 100
MI 30

Table 3. Experimental results for instrument identification and
source separation, which show averaged log spectral distances in in-
strument sounds. Bold characters mean top two numbers.

Inst. Acc. rate [%] Log spect. dist. (×10−2)
name 2 sounds 3 sounds 2 sounds 3 sounds
PF 63.4 28.0 3.25 3.88
VN 87.8 76.5 2.43 3.31
TR 79.6 61.5 2.78 3.40
AS 39.1 12.7 3.29 3.97
CL 85.1 79.4 1.59 2.12
FG 91.7 85.1 1.83 2.39
MB 48.6 28.2 5.25 5.34
VI 67.6 53.9 6.43 5.86
Avg. 72.1 54.8 3.12 3.65

Fig. 2. Relationship between pitch (MIDI note number) difference
in two instrument sounds to accuracy rate of instrument identifica-
tion (left) and between the difference to log spectral distances of
separated sounds whose instruments are correctly or incorrectly es-
timated (right).

It is easier to decompose audio mixture of two sounds than mix of
three sounds and decreasing the number of sounds increases the ac-
curacy rate of identification on average. This suggests precise source
separation increases the accuracy of instrument identification. The
marimba (MB) and vibraphone (VI) have larger spectral distances
than the other instruments. These instrument sounds have percus-
sive properties and are sensitive to the diffusion of onset time. The
distances can decrease by accurately estimating the onset time.

Fig. 2 shows the relationship between the pitch difference in
two instrument sounds when two sounds are mixed to the accuracy
of identification and the log spectral distance of separated sounds.
The pitch difference is based on the difference of MIDI pitch num-
bers. The spectral distances are shown in cases of correct and in-
correct instrument identification. When pitch differences are 0 (uni-
son), 1, 2, and 11, the Gaussian distribution for F0 overlaps with
other harmonics and this overlap decreases the accuracy of identi-
fication. When the differences are 5 (perfect fourth) and 7 (perfect
fifth), although the F0-Gaussian does not have any overlap, other
many harmonics have overlap and the overlap slightly decreases the
identification accuracy. This suggests that the overlap of overtones

degrades the accuracy of source separation. Spectral distances also
degrade when pitch differences are 0, 1, and 11 when instruments
are identified incorrectly. However, when instruments are identified
correctly, spectral distances did not increase when many overtones
overlapped. This suggests that correct instrument identification en-
ables precise source separation even when many overtones overlap.

4. CONCLUSION
We reported a method of simultaneously processing sound source
separation and musical instrument identification using Bayesian
spectral modeling. We defined the integrated harmonic and inhar-
monic tone models, decomposed the observed power spectrogram
by using the expectation value of the latent variable, and identi-
fied the instrument for each sound in the audio mixture by selecting
the instrument based on maximum A Posteriori approximation. The
experimental results revealed that the accuracy of instrument iden-
tification and source separation rely on each other and correct in-
strument identification enables precise source separation even when
many overtones overlap.
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