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ABSTRACT

This paper describes a method for estimating F0s of vocal from
polyphonic audio signals. Because melody is sung by a singer in
many musical pieces, the estimation of F0s of the vocal part is use-
ful for many applications. Based on existing multiple-F0 estimation
method, we evaluate the vocal probabilities of the harmonic struc-
ture of each F0 candidate. In order to calculate the vocal proba-
bilities of the harmonic structure, we extract and resynthesize the
harmonic structure by using a sinusoidal model and extract feature
vectors. Then, we evaluate the vocal probability by using vocal and
non-vocal Gaussian mixture models (GMMs). Finally, we track F0
trajectories using these probabilities based on Viterbi search. Exper-
imental results show that our method improves estimation accuracy
from 78.1% to 84.3%, which is 28.3% reduction of misestimation.

1. INTRODUCTION

Singing voice plays an important role in many musical genres, es-
pecially in popular music. The estimation of the fundamental fre-
quency (F0) of the vocal part, therefore, is an important issue. Esti-
mated F0s of vocal are useful in various applications, such as au-
tomatic transcription, automatic generation of Karaoke track and
music information retrieval (e.g., searching for a song by singing
a melody).

Several study have been made on melody extraction from poly-
phonic audio signals [1, 2, 3, 4]. Their methods usually consisted of
two steps. First, they estimated F0 candidates from input audio sig-
nals using multiple-pitch estimation method. Then, among these F0
candidates, they constructed a melody trajectory by using some clues
such as predominance, timber, meter and F0’s continuity. However,
the F0s of other predominant instruments performed concurrently
with vocals were often detected because they did not assume what a
sound source was [1].

In this paper, we focus on the F0 estimation of vocal from poly-
phonic audio signals. Polyphonic audio signals contain frequency
components corresponding to various F0s coming from the instru-
ments. Without vocal/non-vocal discrimination focusing on a fre-
quency component corresponding to a particular F0, it is difficult to
estimate the F0s of vocal. In previous vocal/non-vocal discrimina-
tion methods [5, 6, 7], since feature vectors were extracted directly
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Fig. 1. Overview of our method.

from polyphonic audio signals, they did not identify a sound source
of a particular F0. In order to overcome this technical issue, we use
accompaniment sound reduction we developed [8], which enable us
to accurate F0 estimation focusing on vocal.

There are two key ideas behind our method. First is to eval-
uate the probability that harmonic structure of each F0 candidate
is vocal, which we call vocal probability, by using vocal and non-
vocal GMMs. We enable it by using accompaniment sound reduc-
tion. First, we extract and resynthesize the harmonic structure of
each F0 candidate by using a sinusoidal model and extract feature
vector from the resynthesized audio signal. Then, we evaluate the
vocal probability according to the Bayes rule. Second is to track
vocal’s F0 trajectory based on Viterbi search considering these vocal
probabilities. We enable it by modeling and formulating the stochas-
tic dependency among a sequence of F0s, spectra and sound sources
using a graphical model.

2. OUR METHOD FOR ESTIMATING F0 OF VOCAL

Figure 1 shows an overview of our method. It consists of three
parts: pitch likelihood calculation, vocal probability calculation and
F0 tracking based on Viterbi search. We define pitch likelihood as
likelihood that an F0 is the most predominant F0 in a spectrum.

First, we calculate pitch likelihood (Figure 1 (a)) using PreFEst[1]
developed by Goto. Given a spectrum, it calculates a predominance
of every possible F0 at each time. We consider the predominance
as pitch likelihood. Then, we evaluate vocal probability for each F0
(Figure 1 (b)). Finally, considering the vocal probabilities and the
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Fig. 2. Vocal probability calculation.

continuity of F0s, we estimate the time series of F0s that gives the
highest probability (Figure 1 (c)).

Hereafter, f represents the log-scale frequency denoted in units
of cents (a musical-interval measurement).

2.1. Pitch Likelihood

We use Goto’s PreFEst [1] for calculating pitch likelihood. Though
PreFEst consists of three steps, front-end, core and back-end, we do
not use the PreFEst-back-end method here because it selects most
predominant pitch trajectory.

We will describe a summary of PreFEst-core below. Given the
power spectrum ψ(f), in order to enable the application of statistical
methods, we represent each of the frequency components as a prob-
ability density function (PDF), called an observed PDF: pψ(f) =
ψ(f)/

R ∞
−∞ ψ(f)df . Then, we consider each observed PDF to have

been generated from a weighted-mixture model of the tone models
of all the possible F0s, which is represented as follows: p(f |θ) =R Fh

Fl
w(F )p(f |F )dF , θ = {w(f)|Fl ≤ f ≤ Fh}, where p(f |F ) is

the PDF of the tone model for each F0, and Fh and Fl denote lower
and upper limits of the possible (allowable) F0 range, and w(f) is
the weight of a tone model that satisfies

R Fli
Fhi

w(f)df = 1. Tone
model represents a typical harmonic structure and indicates where
the harmonics of the F0 tend to occur. Then, we estimate w(f) us-
ing EM algorithm and regard it as the F0’s PDF. We consider F0’s
PDF estimated by PreFEst-core as pitch likelihood function, that is
p(ψ|f) = w(f). Considering the computational cost, we select 10
candidates that have the highest likelihoods.

2.2. Vocal/Non-vocal Probability

We describe the method that enables us to calculate feature vec-
tors corresponding to each F0 candidate and its vocal and non-vocal
probabilities. Figure 2 shows an overview of this method.

2.2.1. Accompaniment Sound Reduction

To calculate the feature vector of each of the F0 candidate, we use
accompaniment sound reduction, which we proposed in [8]. By us-
ing this method, we can obtain the audio signal that corresponds only
to the F0. This method consists of the following two steps.

1. Harmonic Structure Extraction
We extract the power and the phase of fundamental frequency
component and harmonic components. The extracted power,
Al, and frequency, Fl, of the l-th overtone (l = 1, . . . , 20)
can be represented as

Fl = argmax
f

|ψ(f)|G(f ; lf , 20), (1)

Al = |ψ(Fl)|, (2)

where ψ denotes the spectrum, f denotes the target F0, and
G(x; m, σ) represents the Gaussian distribution.

2. Resynthesis
We resynthesize the audio signal of the melody from the ex-
tracted harmonic structure by using a sinusoidal model [9].
Resynthesized audio signals s(t) are expressed as

s(t) =

LX
l=1

Al cos(ωlt). (3)

2.2.2. Feature Extraction

From the resynthesized audio signals, we calculate feature vectors
consisting of two features.

• LPC-derived mel cepstral coefficients (LPMCCs)
We use LPMCCs as spectral feature for vocal/non-vocal dis-
crimination because we have reported that, in the context of
singer identification, LPMCCs express vocal’s characteris-
tics better than mel-frequency cepstral coefficients (MFCCs),
which are widely used for music modeling [8].

• ∆F0s
We use ∆F0s [10], which represent the dynamics of F0’s tra-
jectory, because singing voice tends to have temporal varia-
tion of F0s in consequence of vibrato and, therefore, ∆F0s
are expected to be good cues for vocal/non-vocal discrimina-
tion.

2.2.3. Probability Calculation

We introduce two Gaussian mixture models (GMMs): a vocal GMM,
sV, and a non-vocal GMM, sN. The parameters of the vocal GMM,
θV, is trained on feature vectors extracted from vocal sections, and
the parameters of the non-vocal GMM, θN, is trained on those ex-
tracted from interlude sections.

When x(ψt, f) is the feature vector extracted from a spectrum,
ψt, with a fundamental frequency f at time t, the likelihoods of the
vocal and non-vocal model are represented as

p(ψt, f |sV) = NGMM(x(ψt, f); θV), (4)

p(ψt, f |sN) = NGMM(x(ψt, f); θN), (5)

where NGMM(x; θ) denotes the probability density function of the
GMM with parameter θ.

The vocal and non-vocal probabilities, according to the Bayes
rule, can be represented as

p(sV|ψt, f) =
p(ψt, f |sV)p(sV)

p(ψt, f |sV)p(sV) + p(ψt, f |sN)p(sN)
, (6)

p(sN|ψt, f) =
p(ψt, f |sN)p(sN)

p(ψt, f |sV)p(sV) + p(ψt, f |sN)p(sN)
, (7)

where p(sV ) and p(sN ) denote a priori probabilities of vocal and
non-vocal. We used 64-mixture GMM and set p(sV ) = p(sN ).

2.3. F0 Tracking Based on Viterbi Search

We formulate the F0 tracking method based on Viterbi search.
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Fig. 3. Stochastic dependency among F , Ψ and Λ.

2.3.1. Formulation

At each time step, t (t = 1, · · · , T ), we define an F0, spectrum and
sound source as ft, ψt and λt, respectively. We also define F =
{ft|t = 1, · · · , T}, Ψ = {ψt|t = 1, · · · , T} and Λ = {λt|t =
1, · · · , T}. As a sound source, we consider a singing voice and the
other sound, that is λt ∈ {sV, sN}.

We assume that stochastic dependency among Ft, Ψt, and Λt

can be expressed as show in Fig. 3. According to Fig. 3, we intro-
duce the following conditional probability distributions: vocal/non-
vocal probability p(λi|fi, ψi), pitch likelihood p(ψi|fi) and transi-
tion probability p(fi|fi−1). Pitch likelihood and sound source prob-
ability were explained in Sec. 2.1 and Sec. 2.2. We define transition
probability, p(fi|fi−1), as

p(fi|fi−1) = G(fi; fi−1, WV ), (8)

where G(x; m, σ) represents the Gaussian distribution, and WV

denotes the changeability of F0. We set WV to 100 cent.
The purpose is, after observing the time series of spectra, O =

{ot|t = 1, · · · , T}, and observing that sound source is singing
voice, sV , at every time step, to estimate a sequence of F0s F̂ that
maximizes the following equation.

F̂ = argmax
F

log p(F |Ψ = O, Λ = (always sV )) (9)

= argmax
FT

(
TX

t=1

log p(λt = sV |ft, ψt = ot)

+
TX

t=1

log p(ψt = ot|ft) +
TX

t=1

log p(ft|ft−1)

)
(10)

In practice, introduction of connection weights among vocal/non-
vocal probability, pitch likelihood and transition probability are ef-
fective such as the following equation.

F̂ = argmax
FT

(
α

TX
t=1

log p(λt = sV|ft, ψt = ot)

+β

TX
t=1

log p(ψt = ot|ft) +

TX
t=1

log p(ft|ft−1)

)
(11)

We use Eq. (11) instead of Eq. (10), setting α = 0.2 and β = 0.8.

2.3.2. Viterbi Search

Since directly computing Eq. (11) is difficult, we compute it recur-
sively by using the following equations. We introduce an back pointer,
B(t, f), and an accumulated probability, A(t, f).
(1) Initialization

∀f A(1, f) = α log p(λ1|f, ψ1) + β log p(ψ1|f) (12)

(2) Recursive calculation (t = 2, · · · , T )

A(t, f) = max
f ′ {A(t − 1, f ′) + α log p(λt|f, ψt)

+β log p(ψt|f) + log p(f |f ′)} (13)

B(t, f) = argmax
f ′

{A(t − 1, f ′) + α log p(λt|f, ψt)

+β log p(ψt|f) + log p(f |f ′)} (14)

Table 1. Training data for Vocal/Non-Vocal model.

Name Gender Piece Number

Shingo Katsuta M 027
Yoshinori Hatae M 037
Masaki Kuehara M 032, 078
Hiroshi Sekiya M 049, 051
Katsuyuki Ozawa M 015, 041
Masashi Hashimoto M 056, 057
Satoshi Kumasaka M 047
Konbu F 013
Eri Ichikawa F 020
Tomoko Nitta F 026
Kaburagi Akiko F 055
Yuzu Iijima F 060
Reiko Sato F 063
Donna Burke F 081, 091, 093, 097

We can obtain the sequence of F0s, F̂ = {f̂1, · · · , f̂T }, that
gives the highest probability by tracking back the back pointer.

f̂T = argmax
f

A(T, f) (15)

f̂t = B(f̂t+1) (t = T − 1, · · · , 1) (16)

3. EXPERIMENTS

3.1. Construction of Vocal/Non-vocal Models

We describe the construction of vocal/non-vocal models. As the
training data, we used 21 songs of the 14 singers listed in Table 1,
which were taken from the “RWC Music Database: Popular” [11].
First, we computed boundaries between vocal and non-vocal sec-
tions by comparing polyphonic data and vocal-only data. The vocal
GMM was trained on feature vectors that were extracted from the
vocal section of polyphonic data using the F0s estimated from vocal-
only data. The non-vocal GMM was trained on feature vectors that
were extracted from the non-vocal section of polyphonic data using
the F0s estimated from polyphonic data using PreFEst[1].

3.2. Conditions

We evaluated our method on 10 musical pieces taken from the “RWC
Music Database: Popular” [11] (Table 2). The singers of the musical
pieces used for training are not included in the 10 musical pieces
used for evaluation. To evaluate the effectiveness of our method, we
conducted experiments under the following six conditions:
(i) Max density Select the F0s maximizing pitch density, without

considering vocal probability nor F0’s continuity.
(ii) PreFEst-back-end (baseline) Use the PreFEst-back-end [1],

which tracks peak trajectories considering F0s’ continuity by
introducing a multiple-agent architecture.

(iii) MFCC Use our method with MFCCs as feature vectors.
(iv) MFCC+∆F0 Use our method with MFCCs and ∆F0 as feature

vectors.
(v) LPMCC Use our method with LPMCCs as feature vectors.
(vi) LPMCC+∆F0 (Proposed) Use our method with LPMCCs

and ∆F0 as feature vectors.

Estimation accuracies were evaluated by comparing the estimated
F0s with the correct F0s, obtained by estimating the F0s from vocal-
only data. The evaluation was made during periods when a vocal
was present. We use two estimation accuracy indicators: pitch accu-
racy and chroma accuracy. The pitch accuracy is the probability of
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Table 2. Experimental results of F0 estimation for fifteen musical pieces in RWC-MDB-P-2001.

Piece Singer’s Accuracy Method
number gender indicator Max density PreFEst-back-end MFCC MFCC+∆F0 LPMCC LPMCC+∆F0

No.007 Female Pitch acc. 76.5% 87.3% 92.2% 92.9% 92.7% 93.1%
Chroma acc. 78.5% 88.0% 92.5% 93.2% 93.0% 93.4%

No.012 Male Pitch acc. 74.0% 78.4% 80.3% 81.8% 80.3% 82.3%
Chroma acc. 76.3% 80.4% 82.4% 83.9% 82.4% 84.5%

No.019 Male Pitch acc. 59.8% 62.5% 69.1% 70.0% 68.3% 70.2%
Chroma acc. 63.9% 66.1% 72.8% 73.8% 72.4% 74.2%

No.021 Female Pitch acc. 80.1% 83.1% 85.7% 86.5% 86.6% 87.5%
Chroma acc. 80.6% 83.1% 85.8% 86.5% 86.7% 87.5%

No.039 Male Pitch acc. 78.0% 81.1% 84.4% 86.3% 85.3% 86.2%
Chroma acc. 81.3% 83.8% 87.2% 89.2% 88.1% 89.1%

No.065 Female Pitch acc. 73.8% 79.3% 85.6% 88.9% 87.0% 90.2%
Chroma acc. 77.0% 80.3% 87.1% 89.0% 87.4% 90.3%

No.075 Female Pitch acc. 79.9% 83.7% 87.2% 91.0% 86.1% 90.4%
Chroma acc. 80.9% 84.2% 87.5% 91.3% 86.6% 90.7%

No.083 Male Pitch acc. 72.5% 72.0% 73.2% 76.4% 74.1% 76.9%
Chroma acc. 74.0% 72.6% 74.4% 77.7% 75.4% 78.3%

No.088 Male Pitch acc. 67.5% 76.4% 77.8% 84.9% 84.7% 84.6%
Chroma acc. 70.3% 77.4% 79.5% 85.8% 85.7% 85.5%

No.092 Female Pitch acc. 76.6% 77.2% 80.9% 81.3% 80.4% 81.3%
Chroma acc. 77.6% 77.3% 81.0% 81.4% 80.5% 81.3%

Average Pitch acc. 73.9% 78.1% 81.6% 84.0% 82.6% 84.3%
Chroma acc. 76.0% 79.3% 83.0% 85.2% 83.8% 85.5%

correct pitch value. The chroma accuracy is the probability that the
chroma (i.e. the note name) is correct. In other words, octave errors
are ignored.

3.3. Results and Discussions

Experimental results, listed in Table 2, show that our method im-
proves the estimation accuracy from 78.1% to 84.3%. By this fact,
we can confirm the effectiveness of our method. We can also find
that, introduction of ∆F0 improve the accuracy from 82.6% to 84.3%.
Though ∆F0 has not been used in conventional vocal/non-vocal dis-
crimination method, we confirmed that this feature is a good cue
for vocal/non-vocal discrimination. When we compare MFCCs and
LPMCCs, the accuracy for LPMCCs was 0.3% higher than that of
MFCCs.

4. CONCLUSION

We have described a method that estimates the F0s of vocal part
in polyphonic audio signals. The basic ideas of our method are to
calculate the vocal probabilities of each F0 candidate and to track the
F0 trajectory using these probability based Viterbi search. Though
conventional vocal/non-vocal discrimination method cannot treat the
harmonic structure of a particular F0, we made it possible by using
our accompaniment sound reduction. Experimental results showed
that our system accurately estimated the F0s of vocal and improve
estimation accuracy.

In the future, we plan to extend our method to the song in which
multiple singers sing together. We also plan to work on the detection
of vocal region (i.e. where the singer is singing in a musical piece).

5. REFERENCES

[1] M. Goto, “A real-time music-scene-description system:
predominant-F0 estimation for detecting melody and bass lines
in real-world audio signals,” Speech Communication, vol. 43,
no. 4, pp. 311–329, 2004.

[2] M. Marolt, “Gaussian mixture models for extraction of melodic
lines from audio recordings,” in Proc. ISMIR, pp.80–83, 2004

[3] J. Eggink and G. J. Brown, “Extracting melody lines from com-
plex audio,” in Proc. ISMIR, pp.84–91, 2004.

[4] M. P. Ryynanen and A. Klapuri, “Note event modeling for audio
melody extraction,” in Online Proc. MIREX2005, 2005.

[5] A. L. Berenzweig and D. P. W. Ellis, “Locating singing voice
segments within music signals,” in Proc. WASPAA, 2001.

[6] W. Tsai and H. Wang, “Automatic detection and tracking of tar-
get singer in multi-singer music recordings,” in Proc. ICASSP,
pp. 221–224, 2004.

[7] T. L. Nwe, “Automatic detection of vocal segments in popular
songs,” in Proc. ISMIR, pp. 138–145, 2004.

[8] H. Fujihara, T. Kitahara, M. Goto, K. Komatani, T. Ogata, and
H. G. Okuno, “Singer identification based on accompaniment
sound reduction and reliable frame selection,” in Proc. ISMIR,
pp. 329–336, 2005.

[9] J. A. Moorer, “Signal processing aspects of computer music: A
survey,” Proceedings of the IEEE, vol. 65, no. 8, pp. 1108–1137,
1977.

[10] Y. Ohishi, M. Goto, K. Itou, and K. Takeda, “Discrimination
between singing and speaking voices,” in Proc. Eurospeech, pp.
1141–1144, 2005.

[11] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC
Music Database: Popular, classical, and jazz music databases,”
in Proc. ISMIR, pp. 287–288, 2002.

V ­ 256


