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Abstract
In this paper I introduce a method, called PreFEst, for es-
timating the fundamental frequency (F0) of simultaneous
sounds in monaural polyphonic audio signals. Most pre-
vious F0-estimation methods have had difficulty dealing
with such complex audio signals because these methods
were designed to deal with mixtures of only a few sounds.
Without assuming the number of sound sources, PreFEst
can estimate the relative dominance of every possible har-
monic structure in the input mixture. It treats the mixture
as if it contains all possible harmonic structures with dif-
ferent weights, and estimates their weights by MAP esti-
mation. PreFEst can obtain the melody and bass lines by
regarding the most predominant F0 in middle- and high-
frequency regions as the melody line and the one in a low-
frequency region as the bass line. Experimental results
with compact-disc recordings showed that a real-time sys-
tem implementing this method was able to detect melody
and bass lines about 80% of the time these existed.

1. Introduction
The estimation of the fundamental frequency (F0) of si-
multaneous sounds in monaural polyphonic mixtures is
important to build a computational model that can under-
stand audio signals in a human-like fashion. Moreover,
it is useful in various practical applications, such as au-
tomatic indexing for information retrieval and intelligent
editing of audio signals. It has, however, been consid-
ered difficult to estimate the F0 in such real-world au-
dio signals; this is because the number of sound sources
in them generally cannot be assumed, because the fre-
quency components of one sound often overlap the fre-
quency components of simultaneous sounds, and because
the F0’s frequency component (the frequency component
corresponding to the F0) is sometimes very weak or miss-
ing (missing fundamental). Most previous F0 estimation
methods have been premised upon the input audio signal
containing just a single-pitch sound with aperiodic noise.
Although several methods for dealing with multiple-pitch
mixtures have been proposed [1, 2, 3, 4], these require that
the number of simultaneous sounds be assumed and have
difficulty estimating the F0 in complex audio signals like
those sampled from music compact discs.

This paper introduces a Predominant-F0 Estimation
method, called PreFEst, that I developed during 1999 and
2001 [5, 6, 7, 8]. PreFEst can estimate the fundamen-
tal frequency (F0) of melody and bass lines in monaural
audio signals containing simultaneous sounds of various
musical instruments. Unlike previous methods, PreFEst
does not assume the number of sound sources, locally
trace frequency components, or even rely on the existence
of the F0’s frequency component. PreFEst basically esti-

mates the F0 of the most predominant harmonic structure
— the most predominant F0 corresponding to the melody
or bass line — within an intentionally limited frequency
range of the input mixture. It simultaneously takes into
consideration all possibilities for the F0 and treats the in-
put mixture as if it contains all possible harmonic struc-
tures with different weights (amplitudes). It regards a
probability density function (PDF) of the input frequency
components as a weighted mixture of harmonic-structure
tone models (represented by PDFs) of all possible F0s and
simultaneously estimates both their weights correspond-
ing to the relative dominance of every possible harmonic
structure and the shape of the tone models by MAP (Max-
imum A Posteriori Probability) estimation considering
their prior distribution. It then considers the maximum-
weight model as the most predominant harmonic struc-
ture and obtains its F0. The method also considers the
F0’s temporal continuity by using a multiple-agent archi-
tecture.

2. Predominant-F0 estimation method:
PreFEst

Figure 1 shows an overview of PreFEst. PreFEst consists
of three components, the PreFEst-front-end for frequency
analysis, the PreFEst-core to estimate the predominant
F0, and the PreFEst-back-end to evaluate the temporal
continuity of the F0. Since the melody line tends to have
the most predominant harmonic structure in middle- and

Figure 1: Overview of PreFEst.
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p(x,1 | F,2,µ(t)(F,2))high-frequency regions and the bass line tends to have the
most predominant harmonic structure in a low-frequency
region, the F0s of the melody and bass lines can be es-
timated by applying the PreFEst-core with appropriate
frequency-range limitation.

2.1. PreFEst-front-end: Forming the observed prob-
ability density functions

The PreFEst-front-end first uses an STFT-based multi-
rate filter bank in order to obtain adequate time-frequency
resolution under the real-time constraint. It then ex-
tracts frequency components by using an instantaneous-
frequency-related measure [5, 8] and obtains two sets
of bandpass-filtered frequency components, one for the
melody line (261.6 - 4186 Hz) and the other for the bass
line (32.7 - 261.6 Hz). To enable the application of sta-
tistical methods, each set of the bandpass-filtered com-
ponents is represented as a probability density function
(PDF), called an observed PDF, p(t)

Ψ (x), where t is the
time measured in units of frame-shifts (10 ms), and x is
the log-scale frequency denoted in units of cents 1.

2.2. PreFEst-core: Estimating the F0’s probability
density function

For each set of filtered frequency components represented
as an observed PDF p(t)

Ψ (x), the PreFEst-core forms a
probability density function of the F0, called the F0’s
PDF, p(t)

F 0(F ), where F is the log-scale frequency in cents.
We consider each observed PDF to have been generated
from a weighted-mixture model of the tone models of all
the possible F0s; a tone model is the PDF corresponding
to a typical harmonic structure and indicates where the
harmonics of the F0 tend to occur. Because the weights
of tone models represent the relative dominance of ev-
ery possible harmonic structure, these weights can be re-
garded as the F0’s PDF: the more dominant a tone model
is in the mixture, the higher the probability of the F0 of
its model.

2.2.1. Weighted-mixture model of adaptive tone models

To deal with diversity of the harmonic structure, the
PreFEst-core can use several types of harmonic-structure
tone models. The PDF of the m-th tone model for each F0
F is denoted by p(x|F,m, µ(t)(F,m)) (Figure 2), where
the model parameter µ(t)(F, m) represents the shape of
the tone model. The number of tone models is Mi (1 ≤
m ≤ Mi) where i denotes the melody line (i = m) or the
bass line (i = b). Each tone model is defined by

p(x|F,m, µ(t)(F, m)) =
Hi∑
h=1

p(x, h|F, m,µ(t)(F, m)), (1)

p(x, h|F, m, µ(t)(F,m))

= c(t)(h|F, m) G(x; F + 1200 log2 h, Wi), (2)

µ(t)(F,m) = {c(t)(h|F,m) | h = 1, ..., Hi}, (3)

G(x; x0, σ) =
1√

2πσ2
e−

(x−x0)2

2σ2 , (4)

1In this paper I define that frequency fHz in hertz is converted to fre-
quency fcent in cents so that there are 100 cents to a tempered semitone

and 1200 to an octave: fcent = 1200 log2(fHz / (440 × 2
3
12 −5)).

Figure 2: Model parameters of multiple adaptive tone models.

where Hi is the number of harmonics considered, Wi

is the standard deviation σ of the Gaussian distribution
G(x; x0, σ), and c(t)(h|F,m) determines the relative am-
plitude of the h-th harmonic component (the shape of the
tone model) and satisfies

Hi∑
h=1

c(t)(h|F, m) = 1. (5)

In short, this tone model places a weighted Gaussian dis-
tribution at the position of each harmonic component.

We then consider the observed PDF p(t)
Ψ (x) to have

been generated from the following model p(x|θ(t)),
which is a weighted mixture of all possible tone models
p(x|F, m, µ(t)(F,m)):

p(x|θ(t)) =
∫ Fhi

Fli

Mi∑
m=1

w(t)(F, m) p(x|F, m, µ(t)(F, m)) dF,

(6)
θ(t) = {w(t), µ(t)}, (7)

w(t) = {w(t)(F, m) | Fli ≤F ≤ Fhi, m = 1, ..., Mi}, (8)

µ(t) = {µ(t)(F, m) | Fli ≤F ≤ Fhi, m = 1, ..., Mi}, (9)
where Fli and Fhi denote the lower and upper limits of the
possible (allowable) F0 range and w(t)(F, m) is the weight
of a tone model p(x|F, m, µ(t)(F, m)) that satisfies∫ Fhi

Fli

Mi∑
m=1

w(t)(F, m) dF = 1. (10)

Because we cannot know a priori the number of sound
sources, it is important that we simultaneously take
into consideration all F0 possibilities as expressed in
Equation (6). If we can estimate the model parameter θ(t)

such that the observed PDF p(t)
Ψ (x) is likely to have been

generated from the model p(x|θ(t)), the weight w(t)(F, m)
can be interpreted as the F0’s PDF p(t)

F 0(F ):

p(t)
F 0(F ) =

Mi∑
m=1

w(t)(F, m) (Fli ≤ F ≤ Fhi). (11)

2.2.2. Introducing a prior distribution

To use prior knowledge about F0 estimates and the tone-
model shapes, we define a prior distribution p0i(θ(t)) of
θ(t) as follows:
p0i(θ(t)) = p0i(w(t)) p0i(µ(t)), (12)

p0i(w
(t)) =

1
Zw

e−β(t)
wi

Dw(w(t)
0i

;w(t)), (13)
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p0i(µ(t)) =
1

Zµ
e
−

∫ Fhi

Fli

∑Mi

m=1
β(t)

µi
(F,m) Dµ(µ(t)

0i
(F,m);µ(t)(F,m)) dF

.
(14)

Here p0i(w(t)) and p0i(µ(t)) are unimodal distributions:
p0i(w(t)) takes its maximum value at w(t)

0i (F, m) and
p0i(µ(t)) takes its maximum value at µ(t)

0i (F, m), where
w(t)

0i (F, m) and µ(t)
0i (F, m) (c(t)

0i (h|F,m)) are the most
probable parameters. Zw and Zµ are normalization fac-
tors, and β(t)

wi and β(t)
µi(F, m) are parameters determining

how much emphasis is put on the maximum value. The
prior distribution is not informative (i.e., it is uniform)
when β(t)

wi and β(t)
µi (F, m) are 0, corresponding to the case

when no prior knowledge is available. In Equations (13)
and (14), Dw(w(t)

0i ; w(t)) and Dµ(µ(t)
0i (F, m); µ(t)(F,m))

are the following Kullback-Leibler information:

Dw(w(t)
0i ; w(t)) =

∫ Fhi

Fli

Mi∑
m=1

w(t)
0i (F, m) log

w(t)
0i (F, m)

w(t)(F, m)
dF,(15)

Dµ(µ(t)
0i (F, m); µ(t)(F, m))

=
Hi∑
h=1

c(t)
0i (h|F, m) log

c(t)
0i (h|F,m)

c(t)(h|F,m)
.(16)

2.2.3. MAP estimation using the EM algorithm

The problem to be solved is to estimate the model parame-
ter θ(t), taking into account the prior distribution p0i(θ(t)),
when we observe p(t)

Ψ (x). The MAP estimator of θ(t) is
obtained by maximizing∫ ∞

−∞
p(t)

Ψ (x) (log p(x|θ(t)) + log p0i(θ
(t))) dx. (17)

Because this maximization problem is too difficult to
solve analytically, we use the Expectation-Maximization
(EM) algorithm [9], which is an algorithm iteratively ap-
plying two steps — the expectation step (E-step) and the
maximization step (M-step) — to compute MAP estimates
from incomplete observed data (i.e., from p(t)

Ψ (x)). With
respect to θ(t), each iteration updates the old estimate
θ′(t) = {w′(t), µ′(t)} to obtain the new (improved) estimate
θ(t) = {w(t), µ(t)}. For each frame t, w′(t) is initialized
with the final estimate w(t−1) after iterations at the previ-
ous frame t− 1; µ′(t) is initialized with the most probable
parameter µ(t)

0i in the current implementation.
By introducing the hidden (unobservable) variables

F , m, and h, which, respectively, describe which F0,
which tone model, and which harmonic component were
responsible for generating each observed frequency com-
ponent at x, we can specify the two steps as follows:
1. (E-step)

Compute the following QMAP(θ(t)|θ′(t)) for the MAP
estimation:
QMAP(θ(t)|θ′(t)) = Q(θ(t)|θ′(t)) + log p0i(θ

(t)), (18)

Q(θ(t)|θ′(t)) =
∫ ∞

−∞
p(t)

Ψ (x)

EF,m,h[log p(x, F, m, h|θ(t)) | x, θ′(t)] dx, (19)
where Q(θ(t)|θ′(t)) is the conditional expectation of the
mean log-likelihood for the maximum likelihood es-
timation. EF,m,h[a|b] denotes the conditional expec-

tation of a with respect to the hidden variables F , m,
and h, with the probability distribution determined by
condition b.

2. (M-step)
Maximize QMAP(θ(t)|θ′(t)) as a function of θ(t) to ob-
tain the updated (improved) estimate θ(t):

θ(t) = argmax
θ(t)

QMAP(θ(t)|θ′(t)). (20)

In the E-step, Q(θ(t)|θ′(t)) is expressed as

Q(θ(t)|θ′(t)) =
∫ ∞

−∞

∫ Fhi

Fli

Mi∑
m=1

Hi∑
h=1

p(t)
Ψ (x)

p(F, m, h|x, θ′(t)) log p(x, F, m, h|θ(t))dFdx, (21)
where the complete-data log-likelihood is given by

log p(x, F,m, h|θ(t))

= log(w(t)(F, m) p(x, h|F, m, µ(t)(F, m))). (22)

Regarding the M-step, Equation (20) is a conditional
problem of variation, where the conditions are given by
Equations (5) and (10). This problem can be solved by us-
ing Euler-Lagrange differential equations with Lagrange
multipliers [7, 8] and we obtain the following new param-
eter estimates:

w(t)(F,m) =
w(t)

ML(F, m) + β(t)
wiw

(t)
0i (F, m)

1 + β(t)
wi

, (23)

c(t)(h|F,m) =

w(t)
ML(F, m) c(t)

ML(h|F,m) + β(t)
µi(F, m)c(t)

0i (h|F, m)

w(t)
ML(F,m) + β(t)

µi(F, m)
,(24)

where w(t)
ML(F, m) and c(t)

ML(h|F,m) are, when the nonin-
formative prior distribution (β(t)

wi = 0 and β(t)
µi(F, m) = 0)

is given, the following maximum likelihood estimates:

w(t)
ML(F, m) =

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F, m) p(x|F, m, µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1 w′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη
dx, (25)

c(t)
ML(h|F,m) =

1

w(t)
ML(F, m)

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F, m) p(x, h|F, m, µ′(t)(F, m))∫ Fhi

Fli

∑Mi

ν=1 w′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη
dx. (26)

For an intuitive explanation of Equation (25), we call
w′(t)(F,m) p(x|F,m,µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1
w′(t)(η,ν) p(x|η,ν,µ′(t)(F,ν)) dη

the decomposition

filter. For the integrand on the right side of Equation (25),
we can consider that, because of this filter, the value of
p(t)

Ψ (x) at frequency x is decomposed into (is distributed
among) all possible tone models p(x|F, m, µ′(t)(F, m))
(Fli ≤ F ≤ Fhi, 1 ≤ m ≤ Mi) in proportion to the nu-
merator of the decomposition filter at x. The higher the
weight w′(t)(F, m), the larger the decomposed value given
to the corresponding tone model. Note that the value of
p(t)

Ψ (x) at different x is also decomposed according to a
different ratio in proportion to the numerator of the de-
composition filter at that x. Finally, the updated weight
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w(t)
ML(F, m) is obtained by integrating all the decomposed

values given to the corresponding m-th tone model for the
F0 F .

We think that this decomposition behavior is the ad-
vantage of PreFEst in comparison to previous comb-filter-
based or autocorrelation-based methods [1, 2, 3]. This
is because these previous methods cannot easily support
the decomposition of an overlapping frequency compo-
nent (overtone) shared by several simultaneous tones and
tend to have difficulty distinguishing sounds with over-
lapping overtones. In addition, PreFEst can simultane-

ously estimate all the weights w(t)
ML(F, m) (for all the range

of F ) so that these weights can be optimally balanced:
it does not determine the weight at F after determining
the weight at another F . We think this simultaneous es-
timation of all the weights is an advantage of PreFEst
compared to previous recursive-subtraction-based meth-
ods [1, 4] where components of the most dominant har-
monic structure identified are subtracted from a mixture
and then this is recursively done again starting from the
residue of the previous subtraction. In these methods,
once inappropriate identification or subtraction occurs,
the following recursions starting from the wrong residue
become unreliable.

After the above iterative computation of Equations
(23) and (24), the F0’s PDF p(t)

F 0(F ) can be obtained from
w(t)(F, m) according to Equation (11). We can also ob-
tain the tone-model shape c(t)(h|F,m), which is the rela-
tive amplitude of each harmonic component of all types
of tone models p(x|F,m, µ(t)(F, m)).

2.3. PreFEst-back-end: Sequential F0 tracking by
multiple-agent architecture

A simple way to identify the most predominant F0 is to
find the frequency that maximizes the F0’s PDF. This re-
sult is not always stable, however, because peaks corre-
sponding to the F0s of simultaneous sounds sometimes
compete in the F0’s PDF for a moment and are transiently
selected, one after another, as the maximum.

We therefore consider the global temporal continuity
of the F0 by using a multiple-agent architecture [5, 6, 8]
in which agents track different temporal trajectories of the
F0. The final F0 output is determined on the basis of the
most dominant and stable F0 trajectory.

3. Experimental results
The PreFEst has been implemented in a real-time system
that takes a musical audio signal as input and outputs the
detected melody and bass lines in several forms, such as
audio signals and computer graphics. The current imple-
mentation uses two adaptive tone models and main pa-
rameter values are described in [7, 8]. The system was
tested on excerpts from 10 musical pieces in the popular,
jazz, and orchestral genres. The 20-s-long input monaural
audio signals — each containing a single-tone melody and
the sounds of several instruments — were sampled from
compact discs. We evaluated the detection rates by com-
paring the estimated F0s with the correct F0s that were
hand-labeled using our F0 editor program [6, 8].

In our experiment the system correctly detected, for
most parts of each audio sample, the melody lines pro-
vided by a voice or a single-tone mid-range instrument

and the bass lines provided by a bass guitar or a contra-
bass: the average detection rate was 88.4% for the melody
line and 79.9% for the bass line.

4. Conclusion
I have introduced the PreFEst method that estimates the
most predominant F0 in a monaural sound mixture with-
out assuming the number of sound sources. Although
PreFEst has great potential, I have not fully exploited
it. In the future, for example, many different tone mod-
els could be prepared by analyzing or learning various
kinds of harmonic structure that appear in music and
multiple peaks in the F0’s PDF, each corresponding to
a different sound source, could be tracked simultane-
ously by using a sound source discrimination method.
While I dealt with only harmonic-structure tone models in
this paper, PreFEst can be applied to any weighted mix-
ture of arbitrary tone models (even if their components
are inharmonic) by simply replacing Equation (2) with
p(x, h|F, m, µ(t)(F, m)) = c(t)(h|F, m)parbit(x; F, h, m),
where parbit(x; F, h, m) is an arbitrary PDF (h is merely
the component number in this case). Even with this gen-
eral tone model, in theory the F0’s PDF can be estimated
by using the same Equations (23) and (24). Both any
harmonic- and inharmonic-structure tone models can also
be used together. Moreover, PreFEst can be applied to
non-music audio signals. In fact, Masuda-Katsuse [10]
has extended it and demonstrated its effectiveness for
speech recognition in realistic noisy environments.
Acknowledgments: I thank Shotaro Akaho and Hideki
Asoh for their valuable discussions.
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