
Proceedings of HCI International 2001, Vol.1, pp.198-202, August 2001.

Speech Completion:
New Speech Interface with On-demand Completion Assistance

Masataka Goto, Katunobu Itou, Tomoyosi Akiba, and Satoru Hayamizu

National Institute of Advanced Industrial Science and Technology (former Electrotechnical Laboratory)
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JAPAN.

m.goto@aist.go.jp

Abstract

This paper describes a novel speech interface function, called speech completion, that helps a user enter a word or
phrase by completing (filling in the rest of) a phrase fragment uttered by the user. Although the concept of completion
has been widely used in text-based interfaces, effective completion for speech has not been proposed. We enable
a user to invoke the speech-completion function intentionally and effortlessly by building an interface that displays
completion candidates when a filled pause is uttered (a vowel is lengthened) during a phrase. The filled pause can be
considered a nonverbal modality that has not been used in speech input interfaces. In our experience with a system that
includes a filled-pause detector and a speech recognizer capable of listing completion candidates, the effectiveness of
speech completion was confirmed.

1 INTRODUCTION

Current speech-input interfaces have not fully exploited the potential of speech. Although human speech has two
aspects, verbal information (e.g., words) and nonverbal information (e.g., hesitation), most speech recognizers utilize
only the modality of verbal information. They are therefore, as it were, nothing more than a computer keyboard that
sometimes makes key-recognition errors; even if the precision of speech recognizers could be improved, it is difficult
to build an interface that is handier than a keyboard. The purpose of this study is to build a speech interface that makes
full use of the role nonverbal speech information plays in human-human communication.

From among various nonverbal information, we focus on a filled pause (the lengthening of a vowel), which is a
hesitation phenomenon and is apt to reflect the mental state of a speaker (e.g., trying to think of a subsequent word)
(Takubo, 1995; Rose, 1998). When a speaker cannot remember an entire phrase and hesitates with a filled pause, the
listener sometimes helps the speaker recall it: the listener suggests options obtained by completing the partially uttered
fragment (i.e., by filling in the rest of it). For example, when a speaker cannot remember the Japanese phrase “maikeru
jakuson” (in English, “Michael Jackson”)1 and stumbles, saying “maikeru–” (“Michael–”) with a filled pause “ru–”
(“l–”), a listener can help the speaker by asking whether the speaker intended to say “maikeru jakuson” (“Michael
Jackson”). Although one of the reasons that speech communication is comfortable is that we can expect a listener to
help us this way when we utter vague or incomplete information, this phenomenon has been given little attention in
speech recognition research.2

The concept of completing a fragment has been widely used in text-based interfaces. For example, several text
editors (e.g., Emacs) and UNIX shells (e.g., tcsh and bash) provide functions completing the names of files and com-
mands. These functions fill in the rest of a partially typed fragment when a completion-trigger key (typically the Tab
key) is pressed. Completion functions for pen-based interfaces, such as POBox (Masui, 1998), have also been pro-
posed. Even though completion is so convenient that it becomes indispensable to those who have used it, effective
completion functions for speech input interfaces have not been developed because there has been no way to trigger
them during natural speech input.

In this paper we describe a completion function, called speech completion, that enables a user to enter a word or
phrase by uttering a fragment of it with a filled pause. The following sections explain the basic concept of speech
completion, describe the design and implementation of a speech recognition interface with the speech-completion
function, show experimental results obtained with the interface, and discuss directions of future work.

1When a foreign name like “Michael Jackson” is written or pronounced in Japanese, the Japanese style is used: “maikeru jakuson.”
2In most current speech recognizers, it is understood that the user prepares the content in advance and pronounces it carefully and precisely.

Although hesitation phenomena such as filled pauses and restarts occur frequently in spontaneous speech, current recognizers accept only fluent
speech without these phenomena because they tend to cause recognition errors. In addition, only few attempts have been made at making good use
of the valuable roles these phenomena play in human-human communication.

198



1. maikeru jakuson
2. maikeru boruton
3. maikeru

makudonarudo

"maikeru-"

"No.1" "jakuson" "maikeru jakuson"

maikeru jakuson
(Michael Jackson)

Display completion
candidates

Read out the
number

Read out the
last part

Read out the
entire word

"next candidates"
"previous candidates"

if there are
other candidates

Input utterance

Utterance without
a filled pause

Utterance with
a filled pause

"maikeru jakuson"

Determine the result

Proceedings of HCI International 2001, Vol.1, pp.198-202, August 2001.

2 SPEECH COMPLETION

Figure 1: Flowchart for our speech input interface with speech completion assis-
tance.

Speech completion, the general term for
interface functions that enable a user
to invoke completion assistance during
speech input, has the following three ad-
vantages:

1. It helps the user recall uncertain
phrases.

2. It saves labor when the input word
or phrase is a long one.

3. It reduces the psychological pres-
sure of being forced to utter the
whole content carefully and pre-
cisely, something that most current
speech recognizers force users to
do.

Since completion should not become annoying, it should be invoked only when the user wants to obtain completion
candidates. For effective and practical speech completion, we therefore use an intentional filled pause to trigger a
speech-completion function that fills in the rest of a partially uttered fragment. Since the filled pause is a very natural
trigger, the user can invoke the speech-completion function intentionally and effortlessly. This is especially true for
Japanese, a moraic language in which every mora ends with a vowel that can be lengthened. In fact, speakers typically
use filled pauses to gain time to recall a word or to wait for a listener to help with word choice.

Although various completion levels — such as those of the word, phrase, clause, and sentence — can be considered,
in this paper we concentrate on word-level and phrase-level completion (this completion can be naturally extended to
the sentence level). We deal with words registered in the system vocabulary of a speech recognizer, and phrases such
as the names of musicians and songs can be registered as single words.

3 SPEECH INPUT INTERFACE WITH SPEECH COMPLETION ASSISTANCE

We designed a speech-input-interface system (Figure 1) that can assist a user by completing any system vocabulary
word (which can be either a single word or a phrase). It works as follows:

1. When the user does not remember the last part of a word or phrase and utters the first part while intentionally
lengthening its last syllable (making a filled pause),3 the system displays a numbered list of completion candidates
whose beginnings acoustically resemble the uttered fragment.
When, for example, the Japanese phrase “maikeru jakuson” (in English, “Michael Jackson”) is registered as one
word in the system vocabulary, a user uttering the fragment “maikeru–” (“Michael–”) gets completion candi-
dates such as “maikeru jakuson” (“Michael Jackson”), “maikeru boruton” (“Michael Bolton”), and “maikeru
makudonarudo” (“Michael McDonald”).

2. The user can invoke the display of other candidates by uttering the turning-the-page phrases, “next candidates”
and “previous candidates,” displayed whenever there are too many candidates to fit on the computer screen. If all
the candidates are inappropriate or the user wants to enter another word, the user can simply ignore the displayed
candidates and proceed with the next utterance.

3. When the user selects one of the candidates by uttering (reading out) either its number, the last part of the word,
or the entire word, that word is highlighted and used as the speech input result.

4 IMPLEMENTATION

Figure 2 shows the architecture of our speech-completion system. The boxes in the figure represent different processes,
and the four main processes are those of the filled-pause detector (Section 4.1), the speech recognizer (Section 4.2), the
interface manager, and the graphics manager. Those processes can be distributed over a LAN (Ethernet) and connected
by using a network protocol called RVCP (Remote Voice Control Protocol), which is an extension of RMCP (Goto,
Neyama, & Muraoka, 1997). RVCP supports timestamp-based synchronization for real-time information handling and
supports efficient multicast-based information sharing without the overhead of multiple transmission.

3The user can insert a filled pause at an arbitrary position while uttering a word or phrase.

199



Speech recognizer
capable of listing

completion candidates

Audio signal input Filled-pause detector

Utterance detector
(Endpoint detector)

VQ encoder Graphics manager

LPC mel-cepstrum
analyzer Interface manager

VQ code

Filled pause

Proceedings of HCI International 2001, Vol.1, pp.198-202, August 2001.

Figure 2: System architecture.

The filled-pause detector controls the two modes of
the speech recognizer, the normal mode and the comple-
tion mode. In the completion mode triggered by a filled
pause, the recognizer generates a numbered list of comple-
tion candidates that is sent to the interface manager man-
aging the state transition of the interface (flowchart shown
in Figure 1). The graphics manager manages a front-end
GUI and displays on the screen the recognition results and
a pop-up window containing the candidate list.

4.1 Filled-pause detector

Figure 3: An example of a detected filled pause for “maikeru–”:
the power and the spectrum (top), the filled pause (middle),
and the phoneme sequence recognized by the speech recognizer
that inhibits the transition from a vowel phoneme to the next
phoneme during the detected filled pause (bottom).

Because speech completion is impractical without a real-
time method for detecting filled pauses that is independent
of vocabulary and language, we use a robust filled-pause
detection method (Goto, Itou, & Hayamizu, 1999). It is a
bottom-up method that can detect an intentionally length-
ened vowel in any word without using top-down informa-
tion (language model). It determines the beginning and
end of each filled pause by finding two acoustical features
of filled pauses, small fundamental frequency transitions
and small spectral envelope deformations. Those fea-
tures are evaluated by using a sophisticated instantaneous-
frequency-based analysis (Goto et al., 1999). Figure 3
shows an example of a detected filled pause.

Note that, as shown in Figure 2, the processing of the
real-time filled-pause detector that directly analyzes the
input audio signal is executed in parallel with that of the
following HMM-based speech recognizer.

4.2 Speech recognizer capable of listing completion candidates

To provide a list of completion candidates whenever a filled pause was detected, we extended an HMM-based speech
recognizer, niNja (Itou, Hayamizu, & Tanaka, 1992). The extended recognizer receives VQ codes and the detected
filled pause and sends the following results to the interface manager:

• The top Nchoice completion candidates
The completion candidates are generated at the beginning of each filled pause and are sent immediately (i.e.,
before the end of the current utterance). Each candidate includes the information of which parts (phonemes) of
it have been uttered (how much of it has been uttered).

• The top Nresult recognition results
At the endpoint of each utterance, the recognition results of that utterance are sent.

The recognizer uses not only a vocabulary of words to be input and be completed (e.g., the names of musicians and
songs) but also a vocabulary for operating the interface (e.g., the candidate numbers and the turning-the-page phrases).
All these words are stored in a tree structure as shown in Figure 4, where the wedge marks represent multiple hypotheses
maintained by a frame-synchronous Viterbi beam search decoder.4

The recognizer enters the completion mode when the beginning of a filled pause is detected (about 200 ms after a
vowel is lengthened). It generates candidates by tracing from the top Nseed hypotheses (at the beginning of the pause)
to the leaves (Figure 4): the candidates are obtained by deriving from the vocabulary tree those words that share the
prefix corresponding to each incomplete word hypothesis of the uttered fragment. The top Nchoice candidates (leaves)
are sorted and numbered in order of likelihood and then sent to the interface manager. We call the nodes corresponding
to the top Nseed hypotheses the speech completion seeds. For example, if the top black circle in Figure 4 is a seed, the
completion candidates obtained are “Michael Bolton” and “Michael Jackson.”

4Because single phonemes cannot be recognized accurately enough, most up-to-date speech recognizers do not determine the phoneme sequence
of a word phoneme by phoneme but instead choose the maximum likelihood hypothesis while pursuing multiple hypotheses predicting the next
phoneme.

200



r

root
leaf

node

m
n u

u

o-

b
j

s
r
s

Michael Bolton

Michael Jackson

Mike Oldfield

k o
b Mikerobenics

entry node table

add temporary entry nodes
top Nseed hypotheses when
a filled pause is detected

other hypotheses when
a filled pause is detected

nodes traced for speech completionspeech completion seeds

Proceedings of HCI International 2001, Vol.1, pp.198-202, August 2001.

Figure 4: Obtaining completion candidates on the vocabulary tree at
the beginning of a filled pause and adding speech completion seeds
to the entry node table.

To enable the user to select the correct candi-
date by reading out the last part of it, the speech-
completion system must be able to recognize last-
part fragments that are not registered as vocabulary
words. We therefore use an entry node table in which
are listed the roots (nodes) from which the decoder
starts searching. In the normal mode, only the root
of the vocabulary tree is listed. During the utterance
just after the listing of completion candidates, speech
completion seeds are temporarily added to the table
as shown in Figure 4. Although a candidate can be
selected by uttering just the last part, the recognition
result sent to the interface manager is the entire word.

5 EXPERIMENTAL RESULTS

We tested the system with a system vocabulary com-
prising about 500 names of musicians and songs in
Japanese. Our current implementation uses the fol-
lowing parameter values, which should be adjusted according to the vocabulary and the purpose of speech input in-
terface: Nchoice = 20, Nresult = 5, and Nseed = 5. Figure 5 shows an example of the graphics output displayed during
speech completion.

Experimental results showed that our system can provide a helpful list of completed full names when a filled pause
is uttered. We have confirmed that the speech-completion function is intuitive enough to be used without any training
and is effective for entering uncertain phrases. The completion candidates are especially useful when the input phrase
is a long proper name.

6 DISCUSSION

Our speech completion research began with the intention of making speech-recognition technologies user-friendly.
This approach suggests various directions for future work.

6.1 Autocompletion functions

While text-based (keyboard-based) completion functions manually invoked by a completion-trigger key were men-
tioned in Section 1, autocompletion functions have also been used in Reactive Keyboard (Darragh, Witten, & James,
1990) and for URL entry on web browsers. These autocompletion functions automatically list up completion candidates
every time a user types a key. The interface with such functions is also called predictive interface and is considered
effective.

Such autocompletion functions, however, are not suitable for use in speech input interfaces. In keyboard input, there
is no ambiguity in recognizing which key is pressed and the boundaries between successive characters are obvious. In
speech input, on the other hand, the recognition of each phoneme is ambiguous and the boundaries between successive
phonemes are not easily determined.5 It is therefore hard to determine when autocompletion candidates should be
displayed. Even if the candidates are displayed at arbitrary regular intervals, it is very difficult to continually provide
candidates as good as those obtained in text-based autocompletion. The autocompletion of speech input is thus likely
to become annoying and not be practical since a predictive interface tends not to be used when it is less convenient
than an interface that is not predictive. In our speech-completion function, by enabling a user to explicitly invoke the
completion function by using an intentional filled pause, we have successfully built a practical interface that does not
interfere with the user at all when the completion is not needed.

6.2 Multimodal interface using multiple modalities in speech audio signals

As stated in Section 1, most current speech interfaces use only the modality of verbal information that can be handled
by speech recognition. Our speech-completion function, on the other hand, achieves a user-friendly interface because it
exploits the modality of nonverbal information — the filled pauses. We regard our speech completion as a multimodal
interface that makes use of multiple modalities contained in speech audio signals.

5Metaphorically speaking, speech is not block letters but cursive letters that are not easily segmented.

201



Proceedings of HCI International 2001, Vol.1, pp.198-202, August 2001.

(1) Uttering “maikeru–.” (3) Uttering “No. 2.”

(2) A pop-up window containing
completion candidates appears.

(4) The second candidate is
highlighted and bounces.

(5) The selected candidate “maikeru jakuson”
is determined to be the recognition result.

Figure 5: Screen snapshots of speech completion when the phrase “maikeru jakuson” (“Michael Jackson”) is entered.

Starting from our speech-completion interface, interfaces that are more user-friendly could be built by introducing
other nonverbal modalities. In contrast to a computer keyboard, the current speech recognizers have dealt with only a
part of the normal letter keys.6 In this study, on the other hand, the role of the special key “Tab” (the typical completion-
trigger key in text-based interfaces such as UNIX shells and the Emacs editor) is triggered by the filled pause. This
approach opens up new vistas for future research that assigns other nonverbal information (e.g., pitch and speech rate)
to special keys.

Furthermore, speech interfaces can go beyond the limitations of computer keyboard functions because speech has
both verbal and nonverbal modalities that can naturally and simultaneously provide different functions. In our speech-
completion function, for example, the voice during a filled pause simultaneously conveys both phoneme information
(verbal modality) and the user’s mental state (nonverbal modality); this function can be considered more efficient and
natural than text completion using the completion-trigger key. Typical nonverbal modalities can thus provide meta
communicative functions that make ordinary verbal communication rich. By fully bringing out this kind of potential
capabilities of speech, we will be able to build excellent interfaces that enhance well-known advantages of speech
interfaces, such as hands-free and fast input speed.

7 CONCLUSION

We have described the new speech interface function “speech completion,” which fills in the missing part of a partially
uttered fragment in order to help a user enter an uncertain phrase. While we have confirmed the effectiveness of this
function for the task of inputting the names of musicians and songs, it can also be immediately applied to various other
speech applications. We believe it will become as indispensable in speech interfaces as text completion is in good
text-based interfaces.

REFERENCES

Darragh, J. J., Witten, I. H., & James, M. L. (1990). The Reactive Keyboard: A Predictive Typing Aid. IEEE Computer, 23(11),
41–49.

Goto, M., Itou, K., & Hayamizu, S. (1999). A Real-time Filled Pause Detection System for Spontaneous Speech Recognition.
In Proceedings of Eurospeech ’99, pp. 227–230.

Goto, M., Neyama, R., & Muraoka, Y. (1997). RMCP: Remote Music Control Protocol — Design and Applications —. In
Proceedings of International Computer Music Conference, pp. 446–449.

Itou, K., Hayamizu, S., & Tanaka, H. (1992). Continuous speech recognition by context-dependent phonetic HMM and an
efficient algorithm for finding N-best sentence hypotheses. In Proceedings of ICASSP 92, pp. I–21–24.

Masui, T. (1998). An Efficient Text Input Method for Pen-based Computers. In Proceedings of CHI’98, pp. 328–335.

Rose, R. L. (1998). The communicative value of filled pauses in spontaneous speech. Master’s thesis, University of Birmingham.

Takubo, Y. (1995). Towards a Linguistic Model of Speech Performance (in Japanese). Journal of Information Processing Society
of Japan, 36(11), 1020–1026.

6In this paper, we consider that a computer keyboard consists of two parts, the normal letter keys for typing alphabetical and numeric characters
and the other special keys such as Tab, Delete, and Escape keys.

202


