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Abstract—Because of an ability of modelling context infor-
mation, Recurrent Neural Networks (RNNs) or bi-directional
RNNs (BRNNs) have been used for beat tracking with good
performance. However, there are two problems associated with
RNN-based beat tracking. The first problem is the imbalanced
data: usually only around 2% frames are labelled as ‘beat’. The
second one is the disagreement on the precise positions of beats
in human annotations or the delay of annotations caused by
human tapping. In order to tackle these problems, we propose
to convolve the original ground truth with a Gaussian kernel as
the target output of the network for a more robust training. We
conduct a comparison experiment using five different Gaussian
kernels on five individual datasets. The results on the validation
sets show that we can train a better or at least competitive model
in a shorter time by using the convolved ground truth with a
proper Gaussian kernel.

I. INTRODUCTION

Beat tracking [1] is defined as the task to derive a se-

quence of beat instants from a music audio signal. Due to

temporal continuity, contextual information of previous beats

and following beats is valuable for beat tracking. Since 2010,

it has become popular to apply deep neural networks for

beat tracking and downbeat (the first beat of a measure in

music) tracking. Because Recurrent Neural Networks (RNNs)

are good at modeling context information (with bi-directional

RNNs (BRNNs) for modeling both the past and future con-

texts), they have been used for beat tracking [2], [3], [4],

downbeat tracking [5] and joint beat and downbeat tracking

[6]. Other related work includes an ensemble of Convolutional

Neural Networks (CNNs) which are trained on harmonic

and rhythm features for downbeat tracking [7], [8]. Metrical

continuity is tackled in a post-processing stage with the learned

features from CNNs.
In this paper we are interested in beat tracking based

on the bi-directional RNN, because such models show good

performance in beat tracking [2], [3], [4]. A drawback of these

models is the biased labels which may lead to an inefficient

learning. The proportions of two labels (‘beat’ and ‘no beat’)

are very imbalanced. With a tempo of 120 bpm and a frame

of 10ms, only 2% data will be labelled as beat. With a

slower tempo, the occurrence of beats is even sparser. The

other problem is that human annotations may slightly deviate

from the precise timing of beats, because of the subjective

perception or the delay caused by manually tapping [4].
In order to tackle these two problems, we propose to con-

volve the ground truth labels with a Gaussian kernel for train-

ing BRNNs. Similar techniques with smooth or fuzzy labels

are used for different reasons. The target output of an RNN

is transformed into a conditional probability distribution over

label sequences in order to classify unsegmented sequence data

[9]. An RNN is trained with fuzzy ground truth (all possible

annotations) because of imperfect manual annotations [10]. A

CNN-based music boundary detection method [11] proposes to

use frames around annotated boundaries as positive examples

(weighted by a Gaussian kernel) because of the disagreement

between human annotaions. [12] convolves the ground truth

labels with a Gaussian kernel in a CNN-based music boundary

detection system, because of the sparse occurrence of the

segment boundaries and the perceptual variance in the ground

truth. In this paper, we apply the convolved labels to train

BRNNs for beat tracking. In addition, we study the impact of

using different labels on the training. The results show that a

better or competitive performance can be achieved in a shorter

time by using the convolved labels with a proper Gaussian

kernel.

In the rest of the paper, we introduce existing RNN-based

beat tracking models in Section II. Section III conducts a

comparison experiment with labels convolved with different

Gaussian kernels on five datasets. In Section IV, we illustrate

the comparison results with examples. Discussions and con-

clusions are drawn in Section V and Section VI, respectively.

II. EXISTING RNN-BASED MODELS

We study existing RNN-based beat tracking models [2], [3],

[4] in this section.

A. Pre-processing

All three models use input features based on Mel spec-

trograms [2], [3], [4]. There are three Mel spectrograms

computed with various window lengths (23.2ms, 46.4ms and

92.8ms) and the same hop-size of 10ms. For the spectral

differences, [3], [4] use the positive first order differences of

the Mel spectrograms; in [2], instead of the previous spectrum,

a median spectrum of previous spectra is subtracted to obtain

the positive first order median difference. Then the three Mel

spectrogram and their differences are concatenated along the

frequency axis as the input of the networks.

B. Neural Network

All three models use a bi-directional RNN with Long Short-

Term Memory (LSTM) units [2], [3], [4]. The LSTM unit is

usually used with the RNN to overcome the vanishing gradient
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Fig. 1: Overview of the beat tracking systems.

TABLE I: Optimisation of the RNN trainings.

Ref. optimiser learning rate
[2] standard gradient descent not available

[3] standard gradient descent 10−4 (fine-tuned with 10−5)

[4] stochastic gradient descent 10−4 (a momentum of 0.9)

problem [13]. The fully connected network has 3 hidden layers

in each direction, with 25 LSTM units in each layer. The

output layers (with the softmax activation function) has two

units for two classes of ‘beat’ and ‘no beat’. The network is

trained as a classifier with the cross entropy error function. The

output nodes represent the probabilities of the two classes.

C. Network training

Different models are trained and combined for beat tracking

in [2], [3], as shown in Figure 1. In [2] five models are

trained on different sets of the training datasets, then the

outputs of different models are averaged as the input of the

post-processing stage. In [3] models are trained on individual

training datasets (assuming different music styles) for a better

beat detection in heterogeneous music styles. The output

mostly close to the output of the reference model (trained

on all the data) is chosen as the input of the post-processing

stage. In [4] the network is trained in an 8-fold cross validation

setting based on a random splitting of the training datasets.

Weights of the network are randomly initialised using a

Gaussian distribution with mean 0 and standard deviation 0.1
in [2], [3], and with a uniform random distribution with range

[−0.1, 0.1] in [4]. Standard gradient descent and stochastic

gradient decent are used for optimisation, with settings shown

in Table I. To prevent overfitting, the training is stopped if no

improvement of the cross entropy error of the validation set

can be observed for 20 epochs.1

D. Post-processing

Beats are tracked on beat activations obtained by the

BRNN models, by using autocorrelation function [2], dynamic

Bayesian network [3].

In [4], the output of the BRNN (the beat activation function)

is convolved with a Hamming window of length 140ms to

obtain a smooth activation function. Then beats are tracked

on the convolved beat activations by using comb filters. The

convolution in this post-processing stage [4] is different from

1One epoch consists of one full training cycle on the training set.

the convolution in our method, because it works on the output

of the network and makes no change to the training stage.

Our method manipulates the target labels, which changes the

training stage.

III. A COMPARISON EXPERIMENT

In this section, we study the impact of using different labels

on training BRNNs for beat tracking. The labels are generated

by convolving the ground truth labels with different Gaussian

kernels. We compare the training of the BRNNs using 5

different labels on 5 individual datasets.

A. The basic network architecture

In this experiment we adopt the pre-processing, post-

processing steps and the network architecture from [2], [3],

[4], [14].

1) Pre-processing and post-processing: We adopt the signal

pre-processing step in [3], [4] to compute the input features for

the neural network. For the post-processing stage, we apply

the comb filter periodicity estimation method [4] to track beat

positions from the network outputs, with the implemetations

of [14]. See Section II-A and II-D for details.

2) Neural network: We apply a bi-directional RNN with

LSTM units as in [2]. There are 3 hidden layers in both

directions, with 25 LSTM units each layer (Section II-B).

Weights are initialised with a Gaussian distribution of mean 0

and standard deviation 0.1.

B. Comparison parameters

The annotation data are processed in 10ms frames, with beat

frames labelled 1 and other frames labelled 0. We convolve

the ground truth beat labels with a Gaussian kernel function

g(x) as the target outputs for training the BRNNs:

g(x) = e−
1
2 (

x
σ )2 , x ∈ [−2σ, 2σ]. (1)

The Gaussian kernels with different standard deviations are

shown in Figure 2. The si means labels obtained by convolving

a Gaussian kernel with a standard deviation of i. The s0
denotes the original labels.

By doing so, the labels of the BRNN model are no longer

binary values, but indicate the probabilities of ‘beats’ and ‘no

beat’. The sum of the values of the ‘beat’ and ‘no beat’ labels

is 1 for each frame. Because there is a post-processing step to

track beats on the BRNN outputs, we do not need to train the

BRNN model as a classifier, but train the BRNN model with

beat probabilities.

In the comparison experiment, we compare different Gaus-

sian kernels with standard deviations (σ) ranging from 0 to 4

frames to find a proper kernel.

C. Network training

We train BRNN models on RWC pop, jazz, classic [15],

SMC [16] and ballroom datasets [17], [18]. The usage of

datasets is shown in Table II. For example, we use clips from

10 seconds to 50 seconds of 100 pieces in the RWC pop

dataset, with data of a total length of 4000 seconds used in
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Fig. 2: Gaussian kernels with different standard deviations (σ).

TABLE II: The usage of the datasets.

No. dataset files range length batch size
1 RWC pop [15] 100 10-50s 4000s 128
2 RWC jazz [15] 50 10-50s 2000s 64
3 RWC classic [15] 50 10-50s 2000s 64
4 SMC [16] 200 0-40s 8000s 256
5 Ballroom [17], [18] 250 0-30s 7500s 256

the experiment. The batch size is set in proportion to the total

length of data in each dataset, so that weights are updated

for similar times in each epoch for all datasets. For example,

after arranging the input data, there are 640 and 320 training

samples for the RWC pop and jazz datasets, respectively. With

the batch sizes of 128 and 64, weights are updated for 5 times

in an epoch for both datasets. We train models on individual

datasets with 80% data for training and 20% for validation,

based on a random splitting of the data.

We apply a simple truncation strategy to feed data into the

BRNNs. The method reshapes the input data into short se-

quences (key sequences), then attaches some previous frames

and following frames to the key sequences (zero-padding if no

frames before or after). We show the beat interval histogram

of pieces in the datasets in Figure 3. The largest interval

is less than 2 seconds. We assume that each sample should

include several beats in order to learn the context relations in

the BRNN. So we set the length of the key sequence to 500

frames (5 seconds including at least 2 beats), and the numbers

of previous frames and following frames to 250. Then each

sample is a sequence of 1000 frames.

We minimise the cross entropy loss using an optimisation

method of Adam [19] with a learning rate of 10−4 (other

parameters with default values in tensorflow). We stop training

when the validation loss does not decrease for 20 epochs.

Fig. 3: The histogram of beat intervals in the datasets.

TABLE III: Comparison results on validation sets. ‘Epochs’

denotes the number of epochs when the validation loss is

smallest. ‘F’ is the average F-measure obtained by the trained

models on the validation sets.

RWC pop RWC jazz RWC classic SMC Ballroom
Epochs F Epochs F Epochs F Epochs F Epochs F

s0 538 81 526 73 382 54 470 45 808 91
s1 242 82 466 73 182 55 368 47 410 89
s2 200 79 222 63 156 51 204 45 180 91
s3 126 80 148 65 130 51 170 43 176 89
s4 124 78 118 63 140 50 174 43 178 89

D. Network testing

When producing beat activations on the testing data, we

unroll the BRNN model for the whole length of the input

sequence (30s or 40s), and feed in the whole sequence at a

time. No truncation of the data is needed for this step.

IV. COMPARISON RESULTS

For each dataset, we compare beat tracking performance

(in F-measures) of 5 models trained with 5 different labels on

the validation set. The detailed results are shown in Table III.

We find that using convolved labels (s1) provides better

results than using the original ground truth labels (s0) on

three datasets: 1 percentage point improvement for the RWC

pop and classic datasets and 2 percentage point improvement

for the SMC dataset. For the other two datasets, the results

are the same for using the original labels and using the

proper convolved labels (with the s1 model for RWC jazz

and the s2 model for ballroom). With convolved labels, the

best performance is achieved by the s1 model on all datasets

except the ballroom dataset. For the ballroom dataset, the

s2 model produces the best beat tracking result. There is no

improvement in performance by further increasing the standard

deviation of the Gaussian kernel to 3 and 4 frames.

The results on the validation sets can be used as an indica-

tion of the difficulty of the datasets. We show two examples

of the outputs of the BRNN models of the easiest (ballroom)

dataset and of the most difficult (SMC) dataset in Figure 4.

We find that with a larger standard deviation, the output beat

activations are larger, and the peaks are wider and more similar

to the Gaussian kernel used for generating labels for training.

The beat activations of the ballroom dataset are relatively

larger than those of the SMC dataset. As shown in Figure 4a,

we find the beat activations of the s2 model are more related

to the ground truth; beat activations of other models are more

related to half-tempo beats. As shown in Figure 4b, from 5 to

10 second, the beat activations of the s0, s1 and s5 models

indicate the ground truth beats. However, from 0 to 5 second,

the beat activations of the s0 model are small and those of the

other four models are noisy.

For standard deviations from 0 to 3 frames, the training time

is shorter with a larger standard deviation, as indicated by the

numbers of epochs in Table III.2 We find that the decreasing

2An epoch takes the same amount of time on the same dataset.
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(a) Beat activations of a clip from the ballroom dataset
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(b) Beat activations of a clip from the SMC dataset

Fig. 4: Beat activations of two 10s clips—(a) and (b)—from

the validation sets obtained by models trained with different

labels (si, i ∈ [0, 4]). Stems indicate the ground truth beats.

rate of the training time with the increasing standard deviation

is generally related to the average tempo of the dataset. For

example, with the s2 model, the number of epochs for training

decreases from 808 to 180 for the ballroom dataset (with faster

tempi), and decreases from 470 to 204 for the SMC dataset

(with slower tempi). One possible reason is when convolving

with a Gaussian kernel, the ratio of non-zero frames increases

more quickly for pieces with faster tempi, hence a sharper

decrease on the training time.

The comparison experiment shows that we can learn a better

or competitive model in a shorter time with the convolved

labels. Because there is a post-processing step to track the

beats, the difference of the average performance of different

models are small. The individual examples in Figure 4 indicate

that better beat activations can be obtained by using a proper

Gaussian kernel.

V. DISCUSSIONS

Due to the overlapped frames used for computing the input

spectrogram, the spectra of frames around beats are similar

to each other. With the original labels, only beat frames are

labelled 1, while the adjacent frames are labelled 0. Then some

similar inputs will have different labels, which makes it less

efficient to train the model. Then with the proper convolved

labels, similar inputs have similar labels, making the model

training more efficient (with better or competitive performance

in a shorter period of time). There could be arguments that

deep learning should be able to learn the inherent structure of

the data of the above situation. We think the experiment shows

that with the same network architecture, it is more efficient

to train a network with more reasonable labels. In addition,

as mentioned in the introduction the original labels of beat

tracking are imbalanced. When using the convolved labels,

there are more non-zero frames, resulting in less biased data,

which also contributes to a more efficient training.

The results show that the convolved labels can help a

more efficient training in a training-validation setting on five

datasets. We need to fine-tune the BRNN models for testing

unknown music pieces. We train the models with sequences

of 10 seconds. A preliminary experiment shows that feeding

the BRNN with shorter sequences can obtain better results

in some occasions. To find a proper sequence length for beat

tracking is worth exploring in the future.

VI. CONCLUSIONS

In this paper, we propose to use smooth labels for training

BRNN-based beat tracking models by convolving the ground

truth labels with a Gaussian kernel. We conduct a comparison

experiment with different Gaussian kernels on five individual

datasets. The results show that a more efficient training can be

obtained by using the labels convolved with a proper Gaussian

kernel.

We make use of existing techniques for building a BRNN-

based beat tracking model and also provide details for the

training and testing processes. We think that these details can

help conduct a re-production of the work.
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