
1

f3.js: A Parametric Design Tool for Physical Computing
Devices for Both Interaction Designers and End-users

Jun Kato Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

{jun.kato, m.goto}@aist.go.jp

ABSTRACT
Although the exploration of design alternatives is crucial for
interaction designers and customization is required for end-
users, the current development tools for physical computing
devices have focused on single versions of an artifact. We
propose the parametric design of devices including their
enclosure layouts and programs to address this issue. A Web-
based design tool called f3.js is presented as an example
implementation, which allows devices assembled from laser-
cut panels with sensors and actuator modules to be
parametrically created and customized. It enables interaction
designers to write code with dedicated APIs, declare
parameters, and interactively tune them to produce the
enclosure layouts and programs. It also provides a separate
user interface for end-users that allows parameter tuning and
dynamically generates instructions for device assembly. The
parametric design approach and the tool were evaluated
through two user studies with interaction designers,
university students, and end-users.
Author Keywords
Integrated development environment; physical computing;
parametric design; personal fabrication.
ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User interfaces – GUI; D.2.6. Software engineering:
Programming environments – Integrated environments.
INTRODUCTION
Recent advances in personal fabrication have lowered the
threshold for creating three-dimensional (3D) models, which
has enabled physical objects to be fabricated. Tools for
novices to program physical computing devices have also
been proposed, although current tools have typically focused
on creating single versions of and devices.

It is important for interaction designers to create various
kinds of design alternatives during the prototyping process
[9]. However, manually exploring and managing design

options are tedious. In addition, compared to the fabrication
of 3D models with computer-aided design (CAD) tools, the
creation of physical devices usually involves programming
in an integrated development environment (IDE), making
exploration of design alternatives more difficult.

There are tools for novices and users without knowledge on
how to use CAD tools or IDEs to create devices with a
predefined set of modules and functions [27]. However, there
is a certain ceiling above which they still need to rely on
professionals. Thingiverse Customizer [17] allows to create
parameterized 3D models that can be customized by end-
users, but they cannot fabricate computing devices.

Tool support is required for both interaction designers and
end-users to efficiently generate and manage variations in
devices. This paper proposes to satisfy these needs with a
parametric design tool (Figure 1). A Web-based design tool
called f3.js (form follows function(), written in JavaScript)
is presented as an example implementation, which is publicly
available at http://f3js.org. Given the programmatic nature of
parametric design, we chose an IDE rather than a CAD tool
as the baseline method. The current f3.js design tool supports
the creation of devices consisting of planar surfaces rather
than that of general 3D shapes.

Interaction designers write JavaScript programs within the
f3.js design tool with our dedicated APIs that define both the
hardware layout and software of physical computing devices.
They can declare the parameters for generating the design
alternatives with a variety of shapes and features and tune the
parameter values to explore the design space. Furthermore,
f3.js provides a separate user interface for end-users with the

Figure 1. Parametric design of physical computing devices
allows their variations to be easily explored and fabricated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
DIS 2017, June 10 - 14, 2017, Edinburgh, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4922-2/17/06…$15.00
DOI: http://dx.doi.org/10.1145/3064663.3064681

http://f3js.org/
http://dx.doi.org/10.1145/3064663.3064681

2

interactive parameter-tuning interface and dynamically
generates instructions for device assembly so that they can
build the customized devices by themselves.

The rest of the paper is organized as follows: First, our
observations on three aspects of the design process are
explained, and our design goal is presented according to
these observations. Then, our approach is compared to prior
work to clarify research contributions. Next, the interaction
design of the tool is presented in detail. Finally, we explain
the tool evaluation through two user studies with people from
diverse technical backgrounds, which is followed by lessons
learned and implications for future work.
PRELIMINARY OBSERVATIONS
This section discusses three aspects of the design process for
physical computing devices, each of which motivated us in
our goal of achieving parametric design for the devices. We
obtained these insights by collecting and analyzing the
photographs of 200 devices, using our experience (one of the
authors had more than seven years of physical computing
research), and conducting informal interviews with
interaction designers and software engineers with varied
levels of experience in personal fabrication.
Design Alternatives for Hardware Layouts and Software
A physical computing device is a combination of hardware
(a device enclosure with sensor and actuator modules) and
software (a program that drives the modules), both of which
are designed with different tools – CAD tools for the former
and IDEs for the latter.

This separation might work well in creating a single artifact
of the device, but it is cumbersome to create and manage
multiple variations of the device with different enclosure
shapes and program features. Exploring design alternatives
involves numerous iterations of splitting and merging the
two independent workflows. For instance, testing different
numbers of buttons in a device requires operations with both
tools. A tool should provide integrated design support for
both hardware layouts and software to address this issue.

There has been much research on investigating [19] and
improving [24,27,37,38,25,26] the process of fabricating
physical objects with sensors and actuators. However, few
researchers have investigated the programming process, and
no work, to the best of our knowledge, has focused on the
parametric design of both hardware and software, as is
reviewed in the related work section.
Mental Gap between Software and Hardware
As was discussed in the last subsection, the devices are
typically created with two independent tools. It is difficult to
imagine the appearance of devices while writing code in an
IDE. For instance, code that initializes a button driver does
not infer any hardware layout, and requires additional
operations in a CAD tool to specify it.

In contrast, conventional graphical user interface (GUI)
applications can solely be created within IDEs, which

provide integrated support for the entire development
process. While interface builders in IDEs are used for
defining the views and code editors for functions, a
programmer can seamlessly switch back and forth between
these tools. This is because they are just two different
representations of the definition of applications features that
are written in text-based code.

These observations inspired a design tool that supports code-
centric development similar to that in GUI applications.
Design Patterns in Physical User Interfaces
We asked seven people to send photographs of devices that
ran on electricity that they used in their daily lives to enable
us to better understand physical user interfaces (PUIs) within
existing computing devices. The photographs of 200 devices
were collected (Figure 2).

As a result, we found that most of them (187) had simple
geometries constructed from mostly planar surfaces, while
13 manually operated devices that did not need glancing,
such as gaming mice and car handles with numerous buttons,
tended to have more complex geometries. We also found
certain design patterns for such PUIs. The most common
pattern found in 139 devices was to align sensor and actuator
modules along a certain straight line, and the second pattern
found in 51 devices was to align modules around a certain
circle.

These observations suggested that a design tool for physical
devices should have dedicated support for these typical
design patterns. Such support would further make the layout
definition adaptable to changes accompanied by the
prototyping process.

We decided to focus on the design process of completely
planar user interfaces (as opposed to nearly-flat or freeform
user interfaces) as an initial step. The prototypes were
assembled from multiple panels, which were cut out from a
larger panel with laser cutters or cutting plotters. Interaction

Figure 2. Physical devices following design patterns (and
car handle that does not follow pattern).

3

designers and researchers often use two-dimensional (2D)
drawing tools such as Adobe Illustrator to define cutting
paths for enclosures. Since they are designed for general
graphics, they have often induced mistakes of mismatched
joints between planes, which we intend to address.
DESIGN GOAL: PARAMETRIC DESIGN OF DEVICES
Here, given the preliminary observations, we introduce a
code-centric development process in which every aspect of a
physical computing device is defined in a single codebase,
which enables parametric design and addresses three kinds
of difficulties in the design process (Figure 3).

First, GUI-like APIs can not only define the behaviors of
modules but also their placements on an enclosure to
automatically generate support structures (e.g., holes for
screws). A constant value can be declared in the code to
control the kinds, numbers, layouts, and behaviors of
modules on a device. The parametric design is easily
achieved by exposing such values as parameters. Second, an
interface builder next to the code editor is expected to narrow
the mental gap between the code and resulting device. Third,
layout manager APIs can help in creating physical user
interfaces that follow typical design patterns.

The code-centric development process itself requires prior
knowledge of programming and is targeted at interaction
designers. Meanwhile, the design tool can also allow end-
users to customize the parameter values in the codebase to

meet their needs. This would be enable by lightweight GUI
widgets, such as sliders, and the system would dynamically
generate layouts and programs as well as customized
instructions to assemble the device.
RELATED WORK
This section introduces prior work to highlight the main
research contributions in our approach and the design tool.
Parametric Design of Physical Objects
The effort in generating content by specifying rules and
tuning parameters is called parametric design within the field
of architecture and procedural art. Notable examples include
Maker Case [10], which allows us to specify the width,
height, and depth of a box shape and create its development
view that consists of six panels. The user does not need to
worry about details such as joint matching between panels
and he/she can focus on design exploration. f3.js provides
similar but more detailed support for the enclosure design.

Apart from such a simple example, most tools for the
parametric design of 2D and 3D models of physical objects
require explicit programming. DressCode [13] allows
designers to write code to generate 2D artifacts or directly
manipulate the artifacts to reflect changes back in the code.
Grasshopper [7] is an extension to the Rhino 3D modeling
software that enables 3D models to be generated with a
visual programming language. OpenSCAD [23] and
ImplicitCAD [11] both provide a text-based programming
environment and Shape.js [32] is a JavaScript library for
generating 3D printer-ready models. Magic Box [33]
provides a much simpler domain-specific language for the
parametric design of box shapes. Our tool also utilizes
programming to not only parameterize physical metrics but
also the features of computing devices.

Some GUI tools utilize constraint-based modeling and do not
necessarily require prior knowledge of programming.
Typical examples are professional CAD tools such as
Autodesk Inventor [2], which allow to specify constraints
and interactively explore parameter space while satisfying
the constraints. Direct manipulation in GUI tools eases the
creation of complex shapes, but they cannot be extended to
parameterize invisible parts of devices, i.e., their features.

These tools assume a single user who has a certain expertise
in their usage. In contrast, Thingiverse Customizer [17] is a
Web-based platform designed for a community of: 1) experts
in OpenSCAD programming who create parametric 3D
models and upload their source code and 2) novice end-users
who use lightweight widgets such as sliders to tune the
parameters to customize the models. A prior investigation
[22] revealed the importance of such parametric design tools
as well as design implications. f3.js is a novel application of
this approach to physical computing devices, which led to
the design goal noted in the previous section. It follows
design implications, such as those of tracking versions, and
provides reference models of existing sensor and actuator
modules.

Figure 3. f3.js screenshots of code-centric development
process for interaction designers (Steps 1–4) and users (3–4).

4

Enclosure Design of Physical Computing Devices
To the best of our knowledge, f3.js is the first tool for the
parametric design of computing devices with enclosures.
However, there have been prior efforts to create single
versions of the enclosures.

Prior IDEs for physical computing devices have typically not
provided graphical representations of the devices. Autodesk
123D Circuit [1] is one of the exceptions that has provided
iconic representations of the modules and their logical
connections. It has also allowed their behaviors, such as
blinking LEDs, to be simulated. Such simulation is not
implemented in f3.js but can be easily integrated and thus
considered in future work. Microsoft .NET Gadgeteer [36] is
a microcontroller and module system, whose development is
well supported by the Visual Studio IDE that also has iconic
representations. PaperPulse [27] goes beyond the symbolic
representations and allows designers to create the actual
layouts as well as the programs of paper-based applications.
Programs are specified as pairs of sensor and actuator events
and continuous relationships between sensor- and actuator-
related values. Our tool also provides integrated support but
takes the code-centric approach and allows programmers
more detailed control of the device design while enabling
end-user customization.

There are also external tools to IDEs that help to fabricate
enclosures for devices. The .NET Gadgeteer plugin for the
SolidWorks CAD tool [5] allows a Visual Studio project to
be imported as 3D models of the components. Enclosed [37]
serves the same purpose without using a professional CAD
tool. The user specifies the position and orientation of the
components and the system generates a development view of
the enclosure to host them. PacCAM [30] helps the user to
interactively optimize the placements of 2D shapes to be cut
out on a development view to reduce material usage. Maker’s
Marks [24] allows to annotate physical objects with printed
markers that specify the locations of corresponding
components. Then, the tool scans the objects and fabricates
the same objects but with holes to host the components. Our
tool also utilizes the physical metrics of the components to
calculate their placements with layout managers and
generate support structures, and our approach can be used in
conjunction with these prior methods.
Development Tools for Physical Computing Devices
Programming support for physical computing devices has
been studied [8,16]. Our tool is built on top of the prior work
in that they supported programming features and ours
additionally supports design of the physical layout.

While this paper is aimed at supporting the development of
general microcontroller applications, it should be noted that
recent work such as PaperPulse [27] has focused on
particular kinds of applications and reduced the amount of
prior knowledge that is required. Midas [25] helps to lay out
printable touch sensors on device surfaces and define events
on the sensors by demonstration. RetroFab [26] is a design
tool to augment existing physical user interfaces by

annotating their 3D scans and generating instructions to
assemble retrofitting user interfaces.

Along with recent advances in Web-based technologies,
there have been various JavaScript libraries to control
physical devices. Johnny-Five [14] and Cylon.js [4] abstract
various kinds of microcontrollers, sensors, and actuators and
provide JavaScript APIs to access them. While their
applications typically run on a personal computer (PC)
connected to microcontrollers, an increasing number of tiny
computers and microcontrollers can execute JavaScript
programs such as Intel Edison [12], Raspberry Pi [29], and
Tessel.io [34].

These JavaScript libraries and platforms rely on a package
manager called npm [21], which provides access to various
kinds of APIs through unique package names. Our design
tool supports the development of applications that use npm to
load module drivers. While the current implementation has
built-in support to develop JavaScript programs for Intel
Edison, Raspberry Pi, and Tessel.io, it can easily be extended
for use with other JavaScript libraries.
CREATING DESIGNS WITH CODE
This section introduces an overview of the tool interface and
provides details of features that contribute to the design goal
of easily creating physical computing devices and their
design alternatives.
f3.js Design Tool Overview
As shown in Figure 3, f3.js provides a code editor to write
JavaScript source code that produces both the layouts and
programs for physical computing devices. It also provides an
interface builder next to the editor just as IDEs for GUI
applications do. The editor is capable of live programming
[18] that continuously evaluates the code and keeps the
interface builder up-to-date. The interface builder shows a
development view of the device and visualizes warnings of
interference between sensor and actuator modules, which are
calculated from module metrics information. It also supports
direct manipulation, such as the selection of shapes, the
addition or removal of modules, and the dragging-and-
dropping of modules to change their positions. The
operations are reflected back in the code to maintain a bi-
directional relationship between the code and view.
GUI-like APIs for Hardware Layouts and Software
The following subsections describe the GUI-like APIs
available in the f3.js design tool. More details on the APIs
can be found in the documents on the f3.js Website [6].

API for Initializing and Controlling Sensors and Actuators
f3.js does not provide APIs for controlling sensors or
actuators. Instead, it relies on existing APIs of the target
platforms [12,29,34] for such features. Interaction designers
can benefit from their prior knowledge or learn the usage
from rich resources for the existing APIs.

f3.js assumes that these APIs represent the drivers of sensors
and actuators as a JavaScript class. This is akin to the APIs
for GUI applications where GUI widgets are initialized by

5

the constructors. The main difference is that the driver
instances are not used to specify how they should be mounted
on the physical enclosure, which results in a mental gap
between software and hardware. f3.js aims to fill the gap by
addressing missing links from the driver instance to its
physical instance through an npm package called “f3js,”
whose APIs are introduced below.

2D API for Path Drawing and Module Placements
The enclosure layout design in the f3.js design tool is the
process of creating a tree structure of the component object
model (COM, similar to the document object model in
HTML), which can be rendered on an HTML canvas or as a
PDF file. Sensor and actuator modules can easily be added
to the COM by passing their driver instances to the add
method of the f3.js API. It accepts optional parameters of x,
y, and rotation to place the module at the specified location
or the layout manager, as will be described later.

The APIs for drawing paths are similar to those found in 2D
graphical applications such as drawLine, drawRectangle, and
drawCircle. These methods return Line, Rectangle, and
Circle instances, whose stroke and fill properties define
whether the path should be cut or engraved with a laser cutter.
More complex paths such as Bezier lines can be drawn with
the drawPath method.

A Container created with the createContainer method can
group multiple modules and paths. It has its transformation
matrix that allows child modules and paths to be moved and
rotated together. Unlike GUI applications, it is common in
the physical user interface (PUI) to rotate shapes since the
resulting device can be used in various positions and angles.

3D Modeling by Extruding 2D Paths
The panels need to have matching edges that are connected
by a certain joint to assemble 3D shapes from planar panels.
A simple joint shape with notches and recesses is currently
supported. Although it can easily be drawn with the
drawJointLine method, manually drawing lines often result
in mismatches of the notches and recesses from both edges.
It gets more complicated at the corner of boxed shapes where
three joint lines need to match one another.

The extrude method can be called on a closed path to
generate panels for constructing a 3D enclosure with a
specified depth to prevent such mistakes. The panel on the
opposite side can be optionally omitted (left of Figure 4),
with the side panels not having joint lines to hold the panel
(red dashed lines). The panels in the depth direction are not

only generated for joint lines (Figure 4: red lines), but for
curves and straight lines (black lines). The panels are
connected to each other with joint lines, which eliminates the
need for concern about matching.

f3.js assigns a numerical identifier to each joint line when
evaluating the code. Then, the interface builder displays
corresponding alphabetic labels next to the lines, which
assists understanding of the resulting 3D shape. In addition,
f3.js generates an identical notch pattern for each joint line
to prevent it from being connected to the mismatching joint
lines. This is a repeating binary pattern of notch-recess (0) or
notch-notch (1) encoded from the numerical identifier.
Parametric Design with Lightweight GUI Widgets
One-to-another correspondence between JavaScript code
and the layouts and programs of devices has already eased
the creation of design alternatives. Furthermore, lightweight
GUI widgets (Figure 5) enable an effective exploration of
device variations, just as Juxtapose [9] did on an exploration
of graphical and physical interaction designs.

When a variable declaration is made with a text comment in
the code editor, a corresponding lightweight GUI widget is
instantly populated below the interface builder. The type of
the widget is dependent on the type of the initial value of the
variable and the text comments.

When the GUI widgets are manipulated, the source code is
edited to reflect the updated values. Manipulating the widget
can affect every aspect of the device to be generated. First,
the interface builder is also updated with warnings of module
interferences, if any, which helps with module placements.
Second, relevant files (PDF files to be sent to laser cutters
and ZIP/TAR files to be installed on the target platform) are
also updated, which can be downloaded by clicking on
corresponding buttons.Every time the files are downloaded,
corresponding design alternatives are assigned a unique
numerical identifier that eases their management. f3.js
records and lists all design alternatives made during the
prototyping process (bottom of Figure 3) in this way.
Layout Managers for Flexible Layouts
According to the design patterns found in existing PUIs, our
layout manager API supports the placement of modules and
paths that follows design patterns (Figure 6).

Figure 5. Variable declarations with special comments and
corresponding GUI widgets.

Figure 4. Example usage of extrusion methods.

6

Unlike GUI layout managers that arrange components to fill
rectangles, our layout manager aligns components along a
specified path. We consider that this difference results from
their different constraints; while GUI design is aimed at not
wasting pixels in rectangular boundaries (as the name of the
Java 2D API pack() suggests), PUI design does not need to
fill spaces. The most prominent constraints are derived from
users’ physical properties such as their hand sizes, and it is
relatively important to assign appropriate spaces.

Given the preliminary observation on PUI design patterns,
the current implementation allows modules and paths to be
aligned along a guide path of a line or circle with some
optional parameters. The modules and paths can be aligned
with fixed margins (name: “align”) or distributed to fill the
path length (name: “distribute”). The vertical alignment of
modules and paths against guide paths can also be chosen
(valign: “top”|“middle”|“bottom”). The modules and paths
can maintain their orientation or be rotated toward the path
(rotate: true|false). Whether to wrap the module or path
placement at the end of the line and continue onto the next
line or to continue along the line regardless of its length
(wrap: true|false) can be specified in line layout. Whether
the modules and paths around the circle can be aligned
clockwise or counterclockwise (clockwise: true|false), as
well as the direction offset of the first module (offset:
n[rad]), can also be specified in circular layout.
CUSTOMIZING DESIGNS VIA GUI
The f3.js design tool enables customization, printing, and the
use of devices without prior knowledge by providing
lightweight GUI widgets for customization and detailed
instructions on building of devices (Figure 7). Building
physical prototypes that perfectly match the need is “as easy
as assembling a plastic model kit” with f3.js (quoted from a
user study).
Parametric Design with Graphical User Interfaces
Users first search for existing projects. Once an interesting
project is found, a project page displays its details when it is
accessed. The page provides lightweight GUI widgets that
allow users to interactively explore device variations.

Tweaking parameters with the widgets silently updates
variable declarations in the codebase, and the print preview

is consequently updated. Unlike the interface builder for
interaction designers that can edit the codebase, the print
preview for end-users can only be used to check the
development view, which prevents unintentional changes
breaking in the core functionality of the device.
Preparing Hardware Modules and Materials
There are detailed instructions on which sensor and actuator
modules to purchase below the print preview. The list is
dynamically generated simultaneously as the print preview
is updated by aggregating the type and number of modules
used in the project. The list also continues to other tools and
materials such as Phillips’ screwdrivers, sheets of acrylic
panels, and glue for connecting the panels.

Each module name is a link to the module information page,
where the description, metrics information, and relevant
links, such as those for introducing specifications and for
shopping, are presented. With such concrete guidance, users
can confidently prepare the required materials.
Printing Layouts and Assembling Devices
Next to the list of modules is a link to download PDF files
that can be directly sent to the laser cutter. It provides the
option of printing labels near adjacent edges. As was
discussed previously, joint lines have unique shapes that
does not match with wrong edges. These features help the
user to assemble the panels without confusion.

If users do not want these annotations to be engraved on the
acrylic panels, they can still print them on paper and refer to
them while assembling the panels without the annotations.

Figure 7. Customization interface and instructions for users.

Figure 6. Example usage of PUI layout managers.

7

Installing and Running Programs
The final step is to install and run a program on the target
platform. f3.js archives each project in TAR or ZIP format
whose content can be directly executed on the target.

The installation consists of downloading the archive file,
transferring it to the target platform, optionally installing
dependencies, and launching a daemon that continuously
runs the program. All the steps can be handled by a single
command-line tool (f3-projects) that can be installed on
computers with a command of npm install -g f3js-cli.
IMPLEMENTATION
This section briefly describes the implementation of the f3.js
design tool. It is a Web-based application consisting of a
Web server and an HTML/JavaScript-based client. It can be
accessed with any Web standard-compliant browser on a
desktop computer, tablet, or smartphone. While f3.js helps
with physical computing, it is a software solution and the
hardware part is handled by existing printers and physical
computing toolkits.
f3.js JavaScript Interpreter
The current implementation of f3.js can be used to develop
JavaScript programs for a tiny computer or microcontroller
that hosts a JavaScript execution environment called Node.js.
It has a de facto standard module system called npm for
loading packaged JavaScript libraries.

The JavaScript source code in our design tool is utilized in
two ways by running it on two separate interpreters, as shown
in Figure 8. While one interpreter was implemented by us to
run within the browser and render the hardware layout, the
other was provided by third parties and embedded in the
supported tiny computers and microcontrollers. JavaScript
programming language was chosen because of its popular
usage by interaction designers, its package manager npm is
widely used to load drivers of sensors and actuators, and its
high affinity with the Web technologies used for the
implementation of our design tool.

f3.js automatically executes the Node.js code with its own
JavaScript interpreter after every edit on the code. While the
interpreter is capable of running the source code written for
microcontrollers, it does not load full npm drivers for sensor
and actuator modules. Instead, when a driver class is
instantiated, the interpreter returns a dummy object whose
method calls nothing. As noted in the related work section,
we intend to implement these methods in future work and
simulate the behaviors of physical modules.

Since the interpreter currently only collects information on
hardware properties, it ignores exceptions, such as calling
undefined functions. The execution times out after a certain
period of time (500 ms) to keep the tool responsive and
addresses user bugs and incomplete code that occasionally
contains infinite loops.
f3.js Sensors and Actuators Repository
f3.js utilizes the metadata of sensor and actuator modules for
various purposes. This subsection introduces where they are
stored, what sort of modules can be registered, and how the
information is utilized.

Such metadata are not defined in the npm module and need to
be independently stored in the repository in the f3.js Web
server. The repository is shared among f3.js users, and any
users (including non-programmers) can edit the metadata.
While interaction designers can register their preferred
sensors and actuators on the Website, those in the Grove
system [31] are pre-registered. It is a modular system that
does not require soldering and it supports various modules.

Sensor and actuator modules need to be represented as npm
packages (e.g., a serial camera driver jsupm_grovescam_js) or
JavaScript classes defined in the packages (e.g., a
temperature sensor driver GroveTemp class defined in a driver
collection package jsupm_grove) for them to be registered.
This one-to-one relationship between the class and the
physical module allows the interpreter to accumulate the
kinds and numbers of physical modules that are used when
the code runs.

After the code is executed, the interpreter has a reference
from the instantiated JavaScript objects of modules drivers
to their metadata. The metadata contain their shapes and
names that allow a graphical preview to be provided and
module names to be displayed in the development view. It
also contains their support structures to enable screw holes
that hold the modules and optional holes to be printed to
expose modules or to enable cables to be inserted. This shape
information is used for interference detection with other
modules, which appears as a warning in the interface builder.
The metadata further contain relevant uniform resource
locators (URLs) such as the Websites of their manufacturers
and distributors.
USER STUDIES
We conducted two user studies in different stages of
developing f3.js. The first study was conducted to validate
its potential and to assess its limitations by collecting a

Figure 8. Single codebase runs on Web browsers for
rendering and on microcontrollers for physical computing.

8

variety of applications that could be made with f3.js. The
second study was conducted after revisions to check if the
tool could help both interaction designers and end-users to
explore variations in devices.
First Study through Two Workshops
We conducted two workshops in a series. The participants
were a total of twenty-one people made up of five interaction
designers and sixteen university students.

Participants and Equipment
The first workshop was held with five interaction designers
working in the same research group as the present authors.
Four of them had prior experience with physical computing
and one did not. All of them had intense programming
experience in JavaScript to create Web-based applications.

The second workshop was held with senior university
students who enrolled in a “User Interface” course. Sixteen
students with varying levels of prior experience in
programming (mean: 4.2 years and standard deviation (SD):
3.14) and physical computing (twelve students had no prior
experience) formed nine teams by themselves. Every team
had at least one student who had sufficient expertise in
programming to develop JavaScript programs.

We provided the participants 1) access to the preliminary
version of f3.js, 2) Intel Edison modules, 3) Grove modules
compatible with Intel Edison (upon requests,) 4) acrylic
panels to create enclosures, 5) screws to attach the modules
on the panels, and 6) Grove cables with varied lengths to
connect the modules. We also provided tools for them to
create devices such as laser cutters and screw drivers.

Workshop Procedure
Each interaction designer and a group of students were asked
to create their application with f3.js. First, they were given
an introductory lesson on Intel Edison and f3.js for an hour.
Then, they were given two weeks for implementation and
device assembly. Finally, they submitted the outcomes as an
archive of source code and demonstration videos and
answered a questionnaire.

Workshop Results
All interaction designers and student groups successfully
created their own physical computing devices. The GUI-like
APIs were appreciated as they provided programming
experience similar to that for GUI applications, enabling the
enclosures to be designed by all participants including those
without any prior use of CAD tools. They could iterate the
prototyping process up to three times in two weeks by
printing multiple variations of the enclosures. Multiple

versions of the code (234 versions for 27 projects) were
created, each of which represented a pair of the layout and
program for the physical computing devices.

Table 1 summarizes the results of the questionnaire that
consisted of the mean, SD, and percentage of positive
responses with scores >4 (Q1, 3, and 5) or <4 (Q2 and 4) on
a 7-point Likert scale. The mean of every item denotes
positive results. Most users considered f3.js to be useful and
appropriate for creating devices (Q2 and 5). However, there
were mixed feelings on usability (Q1, 3, and 4 with relatively
large SDs). Six (Q1), six (Q3), and eight (Q4) out of 21 users
awarded negative scores to these questions.

Their answers to the free text question were analyzed to
understand the reasons for these low scores. Many of them
were found to share the same complaints about insufficient
features. Please note that the requested features had already
been implemented, were included in the prior explanation of
f3.js, and were evaluated in the second study.

First, most of them requested direct manipulation on the
interface builder to eliminate the need to be concerned with
concrete numbers that specified module locations. It is
particularly cumbersome when there are multiple nested
containers with transformation matrices. The current version
enables drag-and-drop interaction by calculating the inverse
matrix to obtain the relative movements of the modules and
paths to their parent container.

Second, five of them complained about the difficulty of
assembling the laser-cut panels. This motivated us to provide
support for the assembly process including the assignment of
different joint shapes for each edge and the display of edge
labels to identify edge correspondence.

Third, four of them complained that it was tedious to
manually download the archive file, extract the archive and
transfer the files to the target platform. This is addressed by
developing a command-line tool that automated the tasks.
Second Study with Interaction Designers and End-users
The second study was conducted after updating f3.js and it
was aimed at investigating the iterative prototyping process
by interaction designers and checking if the tool was usable
by end-users to customize, assemble, and use devices.

Participants and Equipment
We asked three interaction designers who had participated in
the first study as well as three end-users who had been newly
recruited to use the f3.js design tool. All participations were
voluntary who were free to leave at any time if they wanted.
As with the previous study, we provided the f3.js design tool
as well as all the hardware equipment required throughout
the procedure.

Study Procedure
We asked the interaction designers to choose a favorite
project, iteratively improve it, and expose parameters so that
end-users could customize devices. We then interviewed
them to obtain feedback.

Questions regarding f3.js design tool Mean SD %
1 I would like to use it frequently. 4.62 1.53 12/21
2 I found it unnecessarily complex. 2.38 0.79 20/21
3 I thought it was easy to use. 4.48 1.53 9/21
4 I needed technical support to use it. 3.62 1.68 10/21
5 I thought it was suitable for creating devices. 5.71 1.03 19/21
Table 1. Results from post-workshop questionnaire. (1 = strongly

disagree and 7 = strongly agree)

9

After they had made revisions, we asked the end-users to
customize, assemble, and use the devices. First, they were
given an introductory lesson to use the f3.js Website for 15
min. Then, they were asked to choose a favorite project,
change the parameters, and provide us a list of modules and
a PDF file of the enclosure layout. We played the role of a
shop by providing the modules and laser-cut panels. Next,
they followed dynamically-generated instructions. Finally,
they assembled the devices and demonstrated their use, and
we interviewed them informally about their experience.

Study Results
All interaction designers had no difficulty in revising the
projects. We observed iterative cycles of 1) writing the code,
2) customizing the parameters and assembling the device,
and 3) installing and debugging the code within the device as
their typical workflow.

The first step was already effectively supported in the first
user study, and there was a recurring result. The designers
appreciated its immediacy for exploring variations in device
enclosures with one stating: “writing the code and providing
parameters produced the enclosure layout in no time with no
explicit operations.” The layout manager API was
effectively used to make the enclosure adaptable to changes
in the device size and number of modules.

The second and third steps were carried out more smoothly
than in the first study, due to the newly implemented
assembly support and the command-line tool. The third step
was particularly interesting since its debugging process
sometimes involved code edits outside f3.js. Several users
edited the code with their favorite text-editor and upload it to
the f3.js Website with the f3-projects command. This was
the only behavior observed outside the f3.js design tool,
which reflected requests for a debugger integrated in f3.js.

The interaction designers typically parameterized features
(e.g., sound on/off) during the prototyping process and types
of similar sensors (e.g., slider or rotary sensors) to compare
variations. Finally, they found some parameter values did not
work well, and replaced the parameters with effective
constant values. The lasting parameters made the devices
adaptable to user environments and preferences.

All end-users could customize and create devices with such
parameters. They told us that f3.js was easy to use and
customization was a delightful experience that gave them
greater ownership of the devices. One user built project A
(described in the next subsection) with four (three by default)
buzzers. Another user built project D with a customized
message of “Excellent!” The last user built project C in two-
player mode (one-player mode by default).
Example Projects from Studies
Figures 1 and 9 show photographs of five projects selected
from the studies to showcase the variety of applications.

A. QuadBuzzer is a musical instrument with one to four
buzzers. It is connected to a host PC and creates sound

according to user operations on the host. The enclosure is
centrosymmetrical with curves and the buzzers are placed
with the Circle layout.

B. Music Kiosk plays musical melodies in synchronicity with
another computer that is playing a music video uploaded to
YouTube. The device enclosure uses the Line layout to place
four equally-spaced LEDs in line.

C. Card Matching Game allows a user to choose a number of
players from one or two and changes the number of printed
controllers, as well as the available game modes.

D. Rhythm Game on a Drum is an interactive game that
utilizes a sound sensor to detect a hit on the drum, which is
made of a hand-crafted case.

E. Translator is an arm-mounted device that uses a Web-
based translation API to translate text captured by a camera
and presents the results on its LCD.
DISCUSSION
We will now discuss the validity of our approach, lessons
learned, and future work based on the user study results.
Creativity Support for Community of People
While we played the role of shops during the user study for
the end-users, our role can be substituted with online stores.
Then, f3.js can be an open-source marketplace for physical
computing devices with the capability of end-user
customization. f3.js, TextAlive [15] (lyrics animations), and

Figure 9. Projects selected from user study results.

10

Thingiverse Customizer [17] (3D models) are all Web-based
creativity support tools for the community of people, and it
would be interesting to investigate how these tools can be
extended to foster further user collaborations.

As noted in the related work section, we implemented
various ideas from analysis on the Customizer [22]. Among
other unimplemented ideas, enabling “remix” of projects
(constructing a device with multiple features taken from
existing devices) is non-trivial and interesting future work.
Benefits of Code-centric Development of Devices
Adapting to Changes – Changes in the device size and
numbers and types of sensor and actuator modules often
occurred during the exploration of design alternatives. The
GUI-like APIs and layout managers could accommodate the
changes without manually re-aligning the modules and paths.
“They made the code clean,” an interaction designer
appreciatively stated, “combined with the parameter tuning
widgets, the APIs certainly helped the parametric design.”

Layout managers in GUI toolkits play a similarly important
role in the development process, but their role is slightly
different from that in our case of PUI. While GUI benefit
from layout managers to handle changes in window size
during runtime, PUI do not change their shapes (except for
emerging shape-changing interfaces [28]). PUI layout
managers are primarily beneficial during the design process.

Encapsulating Details – The APIs handle cumbersome
details in the design process. For instance, an interaction
designer considered “extruding support for 3D enclosures
that produced multiple panels was helpful and far better than
manually creating them.” A student appreciated that “the
module types are automatically detected and opening the
holes to hold them was as easy as one API call.”

Standing on Top of Standards – Our APIs were built on top
of an existing JavaScript ecosystem (npm package manager),
and interaction designers and students could greatly benefit
from the ecosystem. For instance, various projects used
external npm modules to connect to the Internet and utilize the
Web APIs (e.g., A, B, and E).

Computational Design for Functionalities – The f3.js APIs
could be extended to provide more computational design
methods. For instance, PrintedOptics [38] utilizes acrylic
panels with optical fibers as sensors and displays, and its
design patterns can be encapsulated as additional APIs.
Interface Builders that Complement APIs
Bi-directional Relationship – The interface builder with the
code editor was “an essential pair for the enclosure layout
design.” Our result replicates the prior work emphasizing
importance of the bi-directional editing between the code
editor and interface builder [3,13].

3D Visualization – A student complained about the difficulty
of imagining the resulting device in its 3D shape. Because
the current implementation technically recognizes the 3D

shape of the device being developed, its visualization should
be feasible and will shortly be included in f3.js.

3D Modeling – While the current implementation is limited
to designing the completely planar PUIs, the proliferation of
3D printers and various personal fabrication techniques
highlight the importance of modeling freeform 3D objects in
the process of PUI design. We plan to add support to 3D
printers (producing 3D models instead of the development
view for laser cutters) by providing APIs to design freeform
3D models such as Shape.js [32]. Inspired by faBrickation
[20] that combines LEGO® blocks with 3D printed objects,
combining laser-cut panels with 3D printed objects would
also enables cost savings and quick printings.
Domain-Specific Language for Model-View Separation
DSL vs Shallow Embedding – It was technically feasible to
use a domain-specific language (DSL) to specify the device
layouts. However, we adopted a shallow embedding
approach (just providing APIs in the same programming
language) because we assumed that it would eliminate
learning costs, ease the management of design alternatives,
and increase code interoperability.

The results obtained from user studies mostly supported
these assumptions. An interaction designer commented on
the first two assumptions that “writing a single codebase to
specify every aspect of the device was a very simple user
experience.” Editing the code outside the f3.js IDE and
copying it back to the IDE in the third step of the workflow
required the third assumption of interoperability.

Nevertheless, there was concern if this would scale to larger
programs as “the code for model and view resides in the
same place and could be messed up when the codebase
increases.” “While the variable scope should be shared, it
would be better if the code could be separated into two files.”
Given that our APIs are used in building the COM, which is
very similar to the document object model (DOM) in HTML,
we could utilize similar languages for the COM.

View Code for Physical Metrics-aware Applications – f3.js
currently uploads the entire source code that contains the
view part to microcontrollers. While it could be excluded in
the uploading process, we left the code as it was for two
reasons. First, the exclusion makes it impossible to recover
the original source code, reducing the code interoperability.
Second and more importantly, the view code in the
microcontroller makes the application aware of its physical
metrics. For instance, one can imagine that the application is
aware of the distance between two ultrasonic sensors and is
capable of estimating the position of an object.
CONCLUSION
We proposed the code-centric development of physical
computing devices that enabled them to be parametrically
designed – created with code and customized via GUI. Web-
based design tool, f3.js (http://f3js.org), was presented and
evaluated through two user studies involving people with
diverse technical background.

http://f3js.org/

11

ACKNOWLEDGEMENTS
This work was supported in part by CREST and ACCEL,
JST. We thank all the user study participants for using f3.js
and providing valuable feedback, which enabled the Web
release of the f3.js design tool.
REFERENCES
1. Autodesk. Autodesk 123D Circuits.

http://www.123dapp.com/circuits
2. Autodesk. Autodesk Inventor.

http://www.autodesk.com/products/inventor
3. Ravi Chugh, Brian Hempel, Mitchell Spradlin, and

Jacob Albers. 2016. Programmatic and direct
manipulation, together at last. In Proceedings of the
37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI '16).
ACM, New York, NY, USA, 341-354.
http://dx.doi.org/10.1145/2908080.2908103

4. Cylon.js. https://cylonjs.com
5. Dassault Systems. SolidWorks.

http://www.solidworks.com/
6. f3.js | IoT apps with enclosures from single code base.

http://f3js.org
7. Grasshopper. http://www.grasshopper3d.com
8. Saul Greenberg and Chester Fitchett. 2001. Phidgets:

easy development of physical interfaces through
physical widgets. In Proceedings of the 14th annual
ACM symposium on User interface software and
technology (UIST '01). ACM, New York, NY, USA,
209-218.
http://dx.doi.org/10.1145/502348.502388

9. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design as
exploration: creating interface alternatives through
parallel authoring and runtime tuning. In Proceedings
of the 21st annual ACM symposium on User interface
software and technology (UIST '08). ACM, New York,
NY, USA, 91-100.
http://dx.doi.org/10.1145/1449715.1449732

10. Jon Hollander. MakerCase. http://www.makercase.com
11. ImplicitCAD. http://www.implicitcad.org
12. Intel Edison.

https://software.intel.com/iot/hardware/edison
13. Jennifer Jacobs and Leah Buechley. 2013. Codeable

objects: computational design and digital fabrication
for novice programmers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '13). ACM, New York, NY, USA, 1589-1598.
http://dx.doi.org/10.1145/2470654.2466211

14. Johnny-Five. http://johnny-five.io
15. Jun Kato, Tomoyasu Nakano, and Masataka Goto.

2015. TextAlive: Integrated Design Environment for
Kinetic Typography. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York, NY,
USA, 3403-3412.
http://dx.doi.org/10.1145/2702123.2702140

16. Jun Kato, Daisuke Sakamoto, and Takeo Igarashi.
2012. Phybots: a toolkit for making robotic things. In
Proceedings of the Designing Interactive Systems
Conference (DIS '12). ACM, New York, NY, USA,
248-257.
http://dx.doi.org/10.1145/2317956.2317996

17. MakerBot. Thingiverse Customizer.
http://www.thingiverse.com/apps/customizer

18. Sean McDirmid. 2007. Living it up with a live
programming language. In Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented
programming systems and applications (OOPSLA '07).
ACM, New York, NY, USA, 623-638.
http://dx.doi.org/10.1145/1297027.1297073

19. David A. Mellis and Leah Buechley. 2012. Case
studies in the personal fabrication of electronic
products. In Proceedings of the Designing Interactive
Systems Conference (DIS '12). ACM, New York, NY,
USA, 268-277.
http://dx.doi.org/10.1145/2317956.2317998

20. Stefanie Mueller, Tobias Mohr, Kerstin Guenther,
Johannes Frohnhofen, and Patrick Baudisch. 2014.
faBrickation: fast 3D printing of functional objects by
integrating construction kit building blocks. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '14). ACM, New
York, NY, USA, 3827-3834.
http://dx.doi.org/10.1145/2556288.2557005

21. npm, Inc. npm. https://www.npmjs.com
22. Lora Oehlberg, Wesley Willett, and Wendy E. Mackay.

2015. Patterns of Physical Design Remixing in Online
Maker Communities. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York, NY,
USA, 639-648.
http://dx.doi.org/10.1145/2702123.2702175

23. OpenSCAD. http://www.openscad.org
24. Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn

Hartmann. 2015. Makers' Marks: Physical Markup for
Designing and Fabricating Functional Objects. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST '15).
ACM, New York, NY, USA, 103-108.
http://dx.doi.org/10.1145/2807442.2807508

25. Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann.
2012. Midas: fabricating custom capacitive touch
sensors to prototype interactive objects. In Proceedings
of the 25th annual ACM symposium on User interface
software and technology (UIST '12). ACM, New York,

http://www.123dapp.com/circuits
http://f3js.org/
http://www.openscad.org/

12

NY, USA, 579-588.
http://dx.doi.org/10.1145/2380116.2380189

26. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool
for Retrofitting Physical Interfaces using Actuators,
Sensors and 3D Printing. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI '16). ACM, New York, NY, USA, 409-
419. https://doi.org/10.1145/2858036.2858485

27. Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015.
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI '15). ACM, New York, NY,
USA, 2457-2466.
http://dx.doi.org/10.1145/2702123.2702487

28. Majken K. Rasmussen, Esben W. Pedersen, Marianne
G. Petersen, and Kasper Hornbæk. 2012. Shape-
changing interfaces: a review of the design space and
open research questions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '12). ACM, New York, NY, USA, 735-744.
http://dx.doi.org/10.1145/2207676.2207781

29. Raspberry Pi. https://www.raspberrypi.org
30. Daniel Saakes, Thomas Cambazard, Jun Mitani, and

Takeo Igarashi. 2013. PacCAM: material capture and
interactive 2D packing for efficient material usage on
CNC cutting machines. In Proceedings of the 26th
annual ACM symposium on User interface software
and technology (UIST '13). ACM, New York, NY,
USA, 441-446.
http://dx.doi.org/10.1145/2501988.2501990

31. SeeedStudio. Grove System.
http://www.seeedstudio.com/wiki/GROVE_System

32. Shapeways. ShapeJS. http://shapejs.shapeways.com
33. Studio Ludens. Magic Box.

http://www.studioludens.com/magicbox
34. Tessel.io. https://tessel.io
35. Unity. http://unity3d.com
36. Nicolas Villar, James Scott, Steve Hodges, Kerry

Hammil, and Colin Miller. 2012. .NET gadgeteer: a
platform for custom devices. In Proceedings of the
10th international conference on Pervasive Computing
(Pervasive '12). Springer, Berlin, Heidelberg, 216-233.
http://dx.doi.org/10.1007/978-3-642-31205-2_14

37. Christian Weichel, Manfred Lau, and Hans Gellersen.
2013. Enclosed: a component-centric interface for
designing prototype enclosures. In Proceedings of the
7th International Conference on Tangible, Embedded
and Embodied Interaction (TEI '13). ACM, New York,
NY, USA, 215-218.
http://dx.doi.org/10.1145/2460625.2460659

38. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan
Poupyrev. 2012. Printed optics: 3D printing of
embedded optical elements for interactive devices. In
Proceedings of the 25th annual ACM symposium on
User interface software and technology (UIST '12).
ACM, New York, NY, USA, 589-598.
http://dx.doi.org/10.1145/2380116.2380190

http://www.seeedstudio.com/wiki/GROVE_System
http://shapejs.shapeways.com/
http://www.studioludens.com/magicbox
http://unity3d.com/

	f3.js: A Parametric Design Tool for Physical Computing Devices for Both Interaction Designers and End-users
	Abstract
	Author Keywords
	ACM Classification Keywords

	Introduction
	Preliminary Observations
	Design Alternatives for Hardware Layouts and Software
	Mental Gap between Software and Hardware
	Design Patterns in Physical User Interfaces

	Design Goal: Parametric Design of Devices
	Related Work
	Parametric Design of Physical Objects
	Enclosure Design of Physical Computing Devices
	Development Tools for Physical Computing Devices

	Creating Designs with Code
	f3.js Design Tool Overview
	GUI-like APIs for Hardware Layouts and Software
	API for Initializing and Controlling Sensors and Actuators
	2D API for Path Drawing and Module Placements
	3D Modeling by Extruding 2D Paths

	Parametric Design with Lightweight GUI Widgets
	Layout Managers for Flexible Layouts

	Customizing Designs via GUI
	Parametric Design with Graphical User Interfaces
	Preparing Hardware Modules and Materials
	Printing Layouts and Assembling Devices
	Installing and Running Programs

	Implementation
	f3.js JavaScript Interpreter
	f3.js Sensors and Actuators Repository

	User Studies
	First Study through Two Workshops
	Participants and Equipment
	Workshop Procedure
	Workshop Results

	Second Study with Interaction Designers and End-users
	Participants and Equipment
	Study Procedure
	Study Results

	Example Projects from Studies

	DiscussioN
	Creativity Support for Community of People
	Benefits of Code-centric Development of Devices
	Interface Builders that Complement APIs
	Domain-Specific Language for Model-View Separation

	CONCLUSION
	Acknowledgements
	REFERENCES

