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ABSTRACT

This paper addresses the task of lyrics-to-audio alignment, which
involves synchronizing textual lyrics with corresponding music
audio. Most publicly available datasets for this task provide an-
notations only at the line or word level. This poses a challenge
for training lyrics-to-audio models due to the lack of frame-wise
phoneme labels. However, we find that phoneme labels can be
partially derived from word-level annotations: for single-phoneme
words, all frames corresponding to the word can be labeled with
the same phoneme; for multi-phoneme words, phoneme labels can
be assigned at the first and last frames of the word. To leverage
this partial information, we construct a mask for those frames and
propose a masked frame-wise cross-entropy (CE) loss that consid-
ers only frames with known phoneme labels. As a baseline model,
we adopt an autoencoder trained with a Connectionist Temporal
Classification (CTC) loss and a reconstruction loss. We then en-
hance the training process by incorporating the proposed frame-
wise masked CE loss. Experimental results show that incorporat-
ing the frame-wise masked CE loss improves alignment perfor-
mance. In comparison to other state-of-the art models, our model
provides a comparable Mean Absolute Error (MAE) of 0.216 sec-
onds and a top Median Absolute Error (MedAE) of 0.041 seconds
on the testing Jamendo dataset.

1. INTRODUCTION

Lyrics-to-audio alignment is the task of aligning lyrics with the
corresponding music audio, with the aim of automatically provid-
ing time-synchronized lyrics. This task is particularly important
for real-world applications that require accurate large-scale lyric
alignment, such as karaoke systems, lyrics-based music retrieval
[1], and lyrics animation for music videos [2].

Although lyrics-to-audio alignment is related to speech-to-
text alignment, it presents unique challenges due to the distinct
characteristics of singing. First, the singing voice is generally
more expressive than spoken voice [1, 3, 4]. Lyrics are sung
with varying dynamics, pitches, and durations, often incorporat-
ing vocal techniques such as vibrato. This introduces consider-
able variability in pronunciation. Second, the musical accompa-
niment is not simply background noise but is highly correlated
with the vocal, which reduces the effective signal-to-noise ratio
for processing the vocal. To address these challenges, some mod-
els utilize advanced source separation methods to extract vocals
before alignment [5, 6, 7, 8, 9]. Alternatively, other approaches
exploit temporal correlations between lyrics and musical elements
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Figure 1: An illustration of alignment annotations at the line, word,
and phoneme levels. The proposed method uses phoneme labels
derived from word-level annotations, with labeled frames indi-
cated by red arrows. In this example, all frames of the first (single-
phoneme) word are labeled, while only the first and last frames are
labeled for multi-phoneme words. Silent frames between words
are labeled as silence.

such as melody, chords, and accompaniment, learning lyrics-to-
audio alignment jointly with related tasks such as chord estimation
[10], singing pitch detection [8], singing voice separation [11], and
singing voice synthesis [12].

Another practical issue in developing a high-quality lyrics-
to-audio alignment system is the scale and quality of available
datasets, which are crucial for modern data-driven approaches.
With the release of the DALI dataset [13, 14], lyrics-to-audio
alignment performance has improved substantially [15, 8, 16, 17].
However, most of these datasets provide only line-level and word-
level annotations, lacking frame-wise annotations necessary for
supervised training. To train models using such weak annotations,
methods based on conventional automatic speech recognition have
relied on Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM) frameworks to predict frame-wise phoneme labels, which
are then treated as ground truth for training [18]. Alternatively,
Stoller et al. [19] proposed an end-to-end model based on the
Wave-U-Net architecture and trained it using the Connectionist
Temporal Classification (CTC) loss [20]. The use of the CTC loss
simplifies model training by allowing learning from weak, line-
level annotations without explicit alignment. Due to its simplic-
ity, the CTC loss has attracted increasing attention in recent work
[6, 21, 8, 9]. However, the CTC loss is designed for transcrip-
tion tasks and is not sensitive to the precise timing of individual
elements in a sequence, which may limit alignment accuracy. To
address this limitation, Teytaut et al. [21] added a spectral recon-
struction loss to the CTC loss to improve temporal coherence in
the model’s predictions. Huang et al. [8] proposed a joint learn-
ing approach that integrates pitch estimation to enhance alignment
accuracy.

While CTC-based models are commonly used, other methods
leverage cross-modal embeddings from audio and text domains for
lyrics-to-audio alignment. To process cross-modal content, con-
trastive learning has been employed to map audio and text embed-
dings into a shared latent space [22, 17]. Kang et al. [16] computed
a cross-correlation matrix between latent representations of vocal
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and lyric encoders, and trained the model to predict line and word
onsets using cross-entropy (CE) loss. These cross-modal methods
have achieved state-of-the-art results by utilizing large in-house
training datasets.

For reasons of computational cost or performance, many
alignment methods adopt a hierarchical alignment strategy, per-
forming alignment at the line level followed by word-level re-
finement [8, 16, 22]. Demirel et. al. [7] used a similar two-step
method, first segmenting the audio based on detected anchor words
and then performing alignment within those segments.

In this paper, we address lyrics-to-audio alignment using an
autoencoder model trained with the CTC loss. To mitigate the tim-
ing imprecision inherent in the CTC loss, we propose a more effi-
cient use of available alignment annotations. We observe that even
when only word-level annotations are available, they still contain
useful information that has not yet been fully exploited for train-
ing. As illustrated in Figures 1 and 4, we can derive phoneme la-
bels for three types of frames: (1) the first (onset) and last (offset)
frames of words that contain two or more phonemes (we assign
the first and last phoneme labels to those frames, respectively);
(2) frames within the duration of words that contain only a single
phoneme (we assign the same phoneme label to all such frames);
(3) silent frames, identified as frames that do not belong to any
word segment (we assign a silence label to such frames). Based
on these observations, we assign frame-wise phoneme labels to
the three types of frames and construct a mask that includes only
those frames with phoneme labels, excluding all others. We then
apply a masked CE loss, computed over the masked frames using
frame-wise CE loss, to assist the training process.

In our experiments, we adopt an autoencoder model based on
Convolutional Recurrent Neural Network (CRNN) [21]. We com-
bine the masked CE loss with the CTC and reconstruction losses
to train the model using the DALI dataset. Evaluation on the test-
ing Jamendo dataset demonstrates that incorporating the masked
CE loss improves alignment performance, achieving a compara-
ble Mean Absolute Error and a top Median Absolute Error in the
comparison experiment (see Section 3.5).

The contributions of this paper are summarized as follows:

• We propose an effective method for leveraging alignment
annotations by deriving frame-wise phoneme labels—at
word onsets, offsets, and silent frames—from word-level
annotations. Since annotation creation is labor-intensive
and costly, it is crucial to make the most of the available
data.

• We demonstrate that combining the masked CE loss with
the CTC and the reconstruction losses improves alignment
performance and yields an alignment method with state-of-
the-art results.

• Owing to the network simplicity of the CRNN-based
model, our method enables song-level alignment using the
entire song as input, without the need for separate line-level
processing. This allows the model to capture long-range
temporal context while also simplifying inference.

The rest of this paper is organized as follows. Section 2 in-
troduces the baseline model and the proposed masked CE loss.
Section 3 presents the experimental setup and results. Section 4
concludes the paper.

Figure 2: Model architecture. The baseline model is trained us-
ing the Connectionist Temporal Classification (CTC) loss and the
reconstruction loss [21]. We propose a frame-wise masked cross-
entropy (CE) loss (highlighted in red) to enhance training.

2. METHOD

We employ an autoencoder model for phoneme prediction, illus-
trated in Figure 2. The baseline model is trained using a CTC loss
and a reconstruction loss. To improve alignment accuracy, we pro-
pose applying a masked CE loss to constrain model predictions at
word onsets, offsets, and silent frames.

2.1. Audio and Lyrics Preprocessing

We first apply an advanced source separation method, HT Demucs
[23], to the audio signals (stereo, sampled at 44.1 kHz) to extract
the singing vocals. The separated vocals are then converted to
mono and downsampled to 16 kHz. We compute log-scaled mag-
nitude mel-spectrograms with 128 mel bins using a window size
of 1024 and a hop size of 256. The mel-spectrogram of each song
is normalized to a range between 0 and 1.

During training and validation, the vocal audio is divided into
10-second segments with a 5-second hop size. Only words that are
completely included within each segment are used. In contrast,
during testing, the full vocal audio for each song is used without
segmentation, and its mel-spectrogram is fed into the model to ob-
tain predictions.

For the lyrics corresponding to the audio, we follow the same
preprocessing procedure as in [8]. We convert the lyrics into
phoneme sequences using an open-source grapheme-to-phoneme
(G2P) tool1, and adopt a set of 39 phoneme tokens, following the
conventions of the CMU Pronouncing Dictionary2. In addition to
the 39 phoneme tokens, we add a token 0 to represent the blank
symbol ϵ (staying on the same phoneme) used in the CTC loss,
and a token 40 for silence or space, resulting in 41 distinct tokens.
An example of lyrics with the corresponding phonemes and token
representations is shown in Figure 3.

1https://github.com/Kyubyong/g2p
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 3: Example of lyrics preprocessing. “sp” stands for the
silence or space between words.

2.2. The Baseline Autoencoder Model

The baseline is an autoencoder model trained with both CTC loss
and reconstruction loss.

2.2.1. Network Architecture

We adopt the network architecture used in [21] as the basis for our
model (see Figure 2). The mel-spectrogram is first fed into a spec-
tral encoder and a CTC decoder to produce frame-wise phoneme
probabilities as model predictions. These probabilities are then
passed to a spectral decoder for spectral reconstruction.

The spectral encoder consists of a CNN block followed by an
RNN block. The CNN block contains two 2D convolutional layers
with a kernel size of 3×3 and ReLU activations. The number of fil-
ters is 16 and 32 for the first and second layers, respectively. Each
convolutional layer is followed by batch normalization, a pooling
operation that halves the feature dimension, and a 25% dropout.

The RNN block in the spectral encoder, the CTC decoder,
and the spectral decoder all share the same architecture: two bi-
directional LSTM layers with 512 units. In both the CTC decoder
and the spectral decoder, a linear layer follows the LSTM layers,
with output dimensions corresponding to the number of tokens
(41) and the number of mel-spectral bins (128), respectively.

The above CRNN-based model used in this paper is a sim-
plified version of the model in [21], with the attention mecha-
nism removed, as we found that adding attention degraded align-
ment performance in our preliminary experiments. There are also
differences in the model input: we use only the log-scaled mel-
spectrogram, normalized to the range [0, 1], whereas Teytaut et
al. [21] used the log-scaled mel-spectrogram in the range [-1, 1]
along with its temporal spectral derivatives. As a result, we ap-
ply a sigmoid function for spectral reconstruction instead of the
tanh function. While Teytaut et al. [21] excluded the blank from
the spectral decoder input, we include it, as this yielded better re-
sults in our preliminary experiments.

2.2.2. The Connectionist Temporal Classification (CTC) Loss

We predict frame-wise phoneme probabilities P(ŷ|X) from the in-
put mel-spectrogram X ∈ R128×T , where the phoneme sequence
ŷ = {ŷ(t)}, t ∈ [0, · · · , T − 1], and T is the total number of
frames in the mel-spectrogram. However, frame-wise annotations
are not available. Instead, we can use the phoneme sequence of
lyrics y = {y(m)}, m ∈ [0, . . . ,M − 1], where y(m) ∈ A,
M is the length of the phoneme sequence, and A is the set of all
possible phonemes.

Using the CTC loss [20], we train the learnable model param-
eters Θ to maximize the probability of generating an output se-

quence ŷ with the CTC constrains of ŷ ∈ A ∩ {ϵ}, and B(ŷ) = y,

P(y|X; Θ) =
∑

ŷ,B(ŷ)=y

T−1∏
t=0

P(ŷt|X; Θ), (1)

where B is a mapping function that collapses repeated labels and
removes blank symbols ϵ. For example, B(ϵaaaϵϵbbϵϵ) = ab.
The CTC loss is defined as the negative log-likelihood of the above
probability:

LCTC(Θ) = − log P(y|X; Θ). (2)

We apply a softmax function to the output of the CTC decoder
to obtain the frame-wise phoneme probabilities and convert the
probabilities into log scale for efficient computation of the CTC
loss.

2.2.3. The Reconstruction Loss

Although frame-wise phoneme probabilities can be predicted us-
ing the CTC loss, it is computed over all possible alignments with
the target phoneme sequence and is not sensitive to the exact tem-
poral location of each phoneme. To improve the temporal preci-
sion of phoneme alignment, the spectral decoder is used to recon-
struct the input spectrogram from the model’s phoneme predic-
tions, following [21]. The model is then trained to minimize the
reconstruction loss defined as the L2 distance between the input
and reconstructed mel-spectrograms, thereby enforcing temporal
coherence in its predictions:

LREC = ||X̂ − X||2, (3)

where X is the input spectrogram and X̂ is the reconstructed mel-
spectrogram obtained by applying a sigmoid function to the out-
put of the spectral decoder. In our implementation, we use the
Mean Squared Error (MSE) loss as a normalized squared L2 loss.

2.3. The Masked Cross-Entropy (CE) Loss

We observed that although frame-wise phoneme labels are not
available for all frames, labels for specific frames can be derived
from word-level annotations—such as the onset and offset frames
of words. For example, consider the clip shown in Figure 4: the
annotations include the lyrics “I feel like” along with the onset
and offset times for the three words. From such annotations, we
can derive phoneme labels for three types of frames:

1. For words containing two or more phonemes (e.g., “feel”
and “like”), the first phoneme is assigned to the onset frame
and the last phoneme to the offset frame.

2. For words consisting of a single phoneme (e.g., “I”), all
frames within the word duration are labeled with that
phoneme.

3. For frames outside any word segments, a silence/space label
(token 40) is assigned.

These labeled frames play an important role in determining word
onsets and offsets, which is essential for word-level alignment.

We construct a binary mask to compute the CE loss between
the model predictions and the frame-wise phoneme labels yt at
frames with known phoneme labels (masked frames). We first cre-
ate an all-zero matrix as the mask matrix B with the same size as
the model predictions: B = 041×T . For the masked frames, we
set the corresponding elements Bi,t in B to 1, excluding the blank
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Figure 4: Frame-wise phoneme labels (tokens) derived from word-level annotations and the corresponding mask.

(token 0): Bi,t = 1 for token index i ∈ [1, · · · , 40] and frame
index t ∈ the masked frames. This ensures that the presence and
absence of each phoneme label at the masked frames are properly
accounted for during the loss computation. Then, we enhance the
onsets by including the blank at the onset frames: B0,t = 1 for t ∈
the onset frames. We set B0,t to 1 at the onset frames to ensure that
the absence of the blank token (i = 0) is explicitly enforced in the
computation. This is because at the onset frames, the phoneme la-
bel must never correspond to the blank symbol ϵ, which represents
staying on the same phoneme, and this mask setting ensures that
its absence is properly accounted for during the loss computation.

By using this mask B, the masked CE loss is computed as
follows:

LmaskedCE = − 1

Nmask

∑
i

∑
t

Bi,tH(Li,t, Di,t), (4)

where H(a, b) = a log(b). L ∈ R41×T is the one-hot encoding of
the frame-wise phoneme labels (i.e., tokens derived from the word-
level annotations), with elements denoted by Li,t. Li,t = 0 for all
i ∈ [0, · · · , 40] if frame t is not a word onset, offset, or silent
frame (i.e., when no phoneme label can be derived). D ∈ R41×T

represents the model predictions from the CTC decoder, with ele-
ments denoted by Di,t, where Di,t is the predicted probability for
token i at frame t. Nmask is the total number of masked frames.

In the experiments, the proposed model is trained to minimize
the following combined loss L:

L = LCTC + λ1LREC + λ2LmaskedCE, (5)

where λ1 and λ2 are weights for the reconstruction loss and the
masked CE loss, respectively.

2.4. Postprocessing

Since our method performs song-level alignment, we remove silent
segments at the beginning and end of each song prior to forced
alignment to improve alignment performance and robustness.

2.4.1. Removing Silent Segments at the Beginning and End

To remove the silent segments at the beginning and end, we com-
pute the sum of the mel-spectrogram along the frequency axis, re-

sulting in a vector that represents the frame-wise energy of the
song. We normalize this energy vector so that its maximum value
is 1, and apply a threshold of 0.05 to identify non-silent frames.
Among the frames with energy above the threshold, we take the
first frame as the starting point and the last frame as the ending
point. We then extend both points by one second (63 frames) to
ensure that all singing parts are included. Only the audio segment
between these two points is used for alignment.

2.4.2. Forced Alignment

We align the phoneme sequence to the corresponding audio us-
ing the CTC-segmentation, a force alignment method adapted for
CTC-based model predictions [24].

First, we compute the trellis matrix k, with an element kt,m
of k representing the maximum joint probability of aligning the
phoneme sequence up to index m with the audio up to frame t.
For each time frame, this maximum probability is computed by
considering the more likely of two possible transitions: staying on
the same phoneme as in the previous frame (Pstay), or transition-
ing to the next phoneme (Ptransit). The trellis matrix is computed
according to the following recurrence:

kt,m =

 max(Pstay,Ptransit) if t > 0 and m > 0
0 if t = 0 and m > 0
1 if m = 0

(6)

where
Pstay = kt−1,mP(ϵ|t)
Ptransit = kt−1,m−1P(ym|t). (7)

In Equation 7, P(ym|t) denotes the probability of the mth phoneme
label ym at frame t, and P(ϵ|t) denotes the probability of staying
on the same phoneme (blank symbol ϵ) at frame t.

Once the trellis matrix is constructed, we perform backtrack-
ing to determine the most probable sequence of phoneme labels.
These are then merged into words, and the word onsets are ex-
tracted for word-level alignment. We use the PyTorch implemen-
tation3 for forced alignment and word onset detection.

3https://pytorch.org/audio/stable/tutorials/
forced_alignment_tutorial.html
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Figure 5: Word-level alignment results on the Jamendo dataset (test set). λ1 and λ2 are the weights for the reconstruction loss and the
masked CE loss, respectively. For each weight setting, the results of 10 trained models (see Section 3.2) are shown, with the average
value indicated by the green triangle and shown on the right. The baseline results (λ1 = 0, λ2 = 0) are marked by red vertical lines for
comparison. Bold numbers indicate the best results.

3. EXPERIMENTS AND RESULTS

In this section, we describe the datasets, training settings, and eval-
uation metrics used in our experiments, followed by the results and
discussion.

3.1. Datasets

We use the DALI dataset [13] for training and validation. DALI
contains 5,358 songs annotated at four hierarchical levels: note,
word, line, and paragraph. For our experiments, we use 3,352
audio-available songs from the English subset of DALI. The songs
are randomly split into training and validation sets with an 80/20
ratio, resulting in 2,681 training songs and 671 validation songs.

To evaluate our method, we use the publicly available Ja-
mendo dataset [19], which is widely used for benchmarking lyrics-
to-audio alignment. This allows for direct comparison with other
methods that report results on the same dataset. The Jamendo
dataset contains 20 English songs with both line-level and word-
level annotations.

3.2. Training Settings

We train the model with a batch size of 32 for up to 20 epochs
using the RMSprop optimizer with a learning rate of 10−4. To
mitigate variability due to random initialization and dropout, we
train each model 10 times with different random seeds and report
both the results of the 10 trained models and their average.

3.3. Evaluation Metrics

We evaluate word-level alignment performance by comparing the
predicted word onsets with the ground-truth word onsets. Four
evaluation metrics are used: Mean Absolute Error (MAE), Me-
dian Absolute Error (MedAE), and Percentage of Correct Onsets
(PCO) with two tolerance windows, following [10]. The metrics
are defined as follows:

MAE =
1

W

W∑
w=1

|twpred − twref |, (8)

MedAE = median
1≤w≤W

(|twpred − twref |), (9)

PCOτ =
1

W

W∑
w=1

1|tw
pred

−tw
ref

|<τ × 100%, (10)

where W denotes the total number of words in a song, and w de-
notes the word index. twpred and twref represent the predicted and
reference onset times of the wth word, respectively. We compute
PCO with two tolerance window sizes: PCO0.3 and PCO0.2, rep-
resenting the percentage of correctly predicted word onsets within
0.3 seconds and 0.2 seconds, respectively. All results are averaged
over songs.

Among these metrics, MAE, MedAE, and PCO0.3 are com-
monly used for evaluating lyrics-to-audio alignment performance.
PCO0.2 is additionally reported for comparison with the results in
[16].

3.4. Results

Figure 5 shows the results of the proposed method trained with
different combinations of the CTC loss, reconstruction loss, and
masked CE loss, using various weighting values. Compared to the
baseline model (CTC loss only, with λ1 = 0 and λ2 = 0), a clear
improvement in MAE was observed—from 0.247 seconds to 0.22
seconds—by adding the masked CE loss (λ1 = 0 and λ2 = 1).
The MAE was further improved by using both the reconstruction
loss and the masked CE loss (with λ1 = 1, 0.1, or 0.01, and
λ2 = 1). Similar trends were observed for the MedAE and PCO
results, confirming the effectiveness of the proposed masked CE
loss.

3.5. Comparison to State-of-the-Art Results

Considering all the above results, we selected the proposed model
with weights λ1 = 1 and λ2 = 1 for comparison with other state-
of-the-art models, with the results summarized in Table 1. Our
model achieved an MAE of 0.216 seconds, which was comparable
to other models trained on the DALI dataset. Lower MAEs were
reported by methods trained on large-scale in-house datasets. DSE
[22] achieved an MAE of 0.15 seconds using an in-house dataset
of 87,785 songs with professional-quality recordings in English,
Spanish, German, and French. HX-IH [16] achieved an MAE
of 0.16 seconds using an in-house dataset consisting of approxi-
mately 67,000 Korean and English songs.
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Table 1: Comparison with state-of-the-art methods. Bold numbers indicate the best results across all methods, while underlined numbers
indicate the best results among methods trained using the DALI dataset.

MAE ↓ MedAE ↓ PCO0.3 ↑ PCO0.2 ↑ Training Dataset
GC [15] 0.22 0.05 94% DALI
HBE [8] 0.23 94% DALI
KGLW [17] 0.20 94% DALI
HX-D [16] 0.42 0.043 89% 87% DALI
HX-IH [16] 0.16 0.043 93% 91% In-house 67k
DSE [22] 0.15 92% In-house 88k
Proposed (λ1 = 1, λ2 = 1) 0.216 0.041 95.2% 94.3% DALI

Figure 6: The input mel-spectrogram and reconstructed mel-
spectrograms obtained with different reconstruction loss weights
(λ1 = 1, 0.1, and 0.01).

With respect to the MedAE, PCO0.3, and PCO0.2 metrics, our
method outperformed all other methods, including those trained on
in-house datasets. We inspected our alignment results and found
that they contained a large proportion of small absolute errors (as
reflected by the good MedAE and PCO results), but also several
outliers with large absolute errors that contributed to the relatively
high MAE. We expect that incorporating a line-level alignment
stage could help reduce these outliers.

3.6. Discussion

We observed an interesting phenomenon: the reconstructed mel-
spectrograms vary depending on the weight of the reconstruction
loss, as shown in Figure 6. With larger reconstruction weights
(e.g., λ1 = 1 and λ2 = 0), the reconstruction closely resembles
the input mel-spectrogram. In contrast, as λ1 decreases, the recon-
structed mel-spectrograms become smoother, with pitch informa-
tion increasingly suppressed (e.g., λ1 = 0.01 and λ2 = 0). Since
the reconstructed mel-spectrogram is generated from the model’s
predictions of frame-wise phoneme probabilities, it tends to focus
more on phonetic content and less on pitch information as the re-
construction weight λ1 decreases. Note that the masked CE loss
has little impact on the reconstruction (see the result with λ1 = 1
and λ2 = 1).

Although obtaining smoothed reconstructed mel-
spectrograms with suppressed pitch information (e.g., λ1 = 0.01)
is not the goal of this study, such smoothed mel-spectrograms
could be useful for other singing voice research tasks, such
as singer identification [25] and singing voice synthesis [26].
Exploring their potential usefulness would be an interesting
direction for future work.

4. CONCLUSIONS

In this paper, we proposed a masked CE loss to constrain model
predictions at word onsets, offsets, and silent frames for train-
ing a lyrics-to-audio alignment model. Through experiments,
we demonstrated its effectiveness by showing that combining the
masked CE loss with the CTC loss and reconstruction loss im-
proves alignment performance. The resulting model achieved
state-of-the-art word-level alignment accuracy. The proposed
method offers several advantages. First, it provides a more effi-
cient way to leverage limited and valuable annotation data. Sec-
ond, frames with derived phoneme labels—such as onsets, off-
sets, and silent segments—are especially important for word-level
alignment, and incorporating them via the masked CE loss en-
hances performance. Third, the model is based on a simple CRNN
architecture and operates at the song level, taking the entire song
as input. This enables the model to capture long-range temporal
dependencies while simplifying inference.

As for future work, we are interested in investigating whether
additional frame-wise phoneme labels can be derived for the in-
termediate frames within words, beyond just the onset and off-
set frames. Identifying such labels could help further improve
alignment performance by providing the model with more detailed
guidance within word segments.
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