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Abstract
In this paper we describe a robust method, calledPreFEst, for
estimating the fundamental frequency (F0) of melody and bass
lines in monaural audio signals containing sounds of various
instruments. Most previous F0-estimation methods have diffi-
culty dealing with such complex audio signals because they are
designed for mixtures of only a few sounds. Without assum-
ing the number of sound sources, PreFEst can obtain the most
predominant F0 — corresponding to the melody or bass line
— supported by harmonics within an intentionally-limited fre-
quency range. It estimates the relative dominance of every pos-
sible F0 (represented as a probability density function of the F0)
and the shape of harmonic-structure tone models by using the
MAP (MaximumA Posteriori Probability) estimation consider-
ing their prior distribution. Experimental results showed that a
real-time system implementing this method is robust enough to
detect the melody and bass lines in compact-disc recordings.

1. Introduction
What cues can we rely on when we want to enable a system to
understand music? Most people think that reliable and funda-
mental information in music is provided by the notes in musical
scores, and most previous systems attempting to understand mu-
sic have dealt with automatic music transcription, which trans-
forms audio signals into a symbolic note-level representation.
Such a representation, however, is not a good starting point
for understanding musical audio signals. Identifying the names
(symbols) of the notes corresponding to the sounds of music is
a skill mastered only by trained musicians. Even though many
trained musicians use scores for composing and interpreting mu-
sic, untrained listeners understand music without mentally rep-
resenting audio signals as musical scores.

We therefore proposed a research approach,music scene de-
scription [1], intended to obtain more fundamental and reliable
descriptions of musical audio signals. We have been working on
obtaining intuitive and basic descriptions — such as the melody
line, bass line [2, 3], and hierarchical beat structure [4, 5, 6]
— without identifying musical notes and without segregating
sound sources. This paper focuses on detecting melody and bass
lines in compact-disc recordings. These lines are fundamental to
the perception of Western music and are useful in various prac-
tical applications, such as automatic music indexing for infor-
mation retrieval.

This paper describes a predominant-F0 (fundamental fre-
quency) estimation method, calledPreFEst [2], that can detect
the melody and bass lines in monaural complex mixtures con-
taining simultaneous sounds of various musical instruments. It
has been considered difficult to estimate the F0 in such audio
signals because the number of sound sources in them gener-
ally cannot be assumed, because the frequency components of
one sound often overlap the frequency components of simulta-
neous sounds, and because the F0’s frequency component (the
frequency component corresponding to the F0) is sometimes

very weak or missing (missing fundamental). Most previous F0-
estimation methods [7, 8, 9, 10, 11], however, assumed that the
input contained just a single-pitch sound with aperiodic noises.
Although several methods for dealing with multiple-pitch mix-
tures were proposed [12, 13, 14, 15], they assumed the number
of simultaneous sounds and had difficulty dealing with compact-
disc recordings.

Advantages of our method are that it does not assume the
number of sound sources, locally trace frequency components,
or even rely on the existence of the F0’s frequency component.
It basically estimates the F0 of the most predominant harmonic
structure in the input sound mixture, simultaneously taking into
consideration all the possibilities of the F0 and treating the input
mixture as if it contains all possible harmonic structures with
different weights (amplitudes). It regards a probability density
function (PDF) of the input frequency components as a weighted
mixture of the harmonic-structure tone models (represented by
PDFs) of all possible F0s and then finds the F0 of the maximum-
weight model corresponding to the most predominant harmonic
structure.

The method has recently been made more adaptive and flex-
ible by the following three extensions [3]: introducing multiple
types of harmonic-structure tone models, estimating the shape of
tone models, and introducing a prior distribution of the model
shapes and F0 estimates. For example, when prior knowledge
about very rough F0 estimates of the melody and bass lines is
available, it can be used in the estimation process. These exten-
sions were made possible by the MAP (MaximumA Posteriori
Probability) estimation executed by using the EM (Expectation-
Maximization) algorithm.

The following sections first describe the extended PreFEst
in detail and then present experimental results showing that a
real-time system based on the PreFEst can detect the melody and
bass lines and that the use of a prior distribution of F0 estimates
enables the F0 to be determined more accurately.

2. Predominant-F0 Estimation Method:
PreFEst

PreFEst consists of three components,PreFEst-front-end for
frequency analysis,PreFEst-core estimating the most predomi-
nant F0, andPreFEst-back-end considering temporal continuity
of the F0. Since the melody line tends to have the most predom-
inant harmonic structure in middle- and high-frequency regions
and the bass line tends to have the most predominant harmonic
structure in a low-frequency region, we can estimate the F0s of
the melody and bass lines by applying PreFEst-core with appro-
priate frequency-range limitation.

2.1. PreFEst-front-end: Forming the Observed Probability
Density Functions

The PreFEst-front-end first uses an STFT-based multirate fil-
ter bank (Figure 1) in order to obtain adequate time and fre-
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Figure 1: Structure of the multirate filter bank: The cut-off fre-
quency of the anti-aliasing filter (FIR LPF) in each decimator is
0.45 fs, where fs is the sampling rate at that branch. The input
signal is digitized at 16 bit / 16 kHz and is finally down-sampled
to 1 kHz.

Figure 2: Frequency responses of bandpass filters (BPFs).

quency resolution under the constraint of real-time operation. It
then extracts frequency components by using an instantaneous-
frequency-related measure [1, 2] and obtains two sets of the in-
put bandpass-filtered frequency components (Figure 2), one for
the melody line and the other for the bass line. To use statistical
methods, we represent each of the bandpass-filtered frequency
components as a probability density function (PDF), called an
observed PDF, p(t)

Ψ (x), where t is the time measured in units of
frame-shifts (10 msec), and x is the log-scale frequency denoted
in units of cents (a musical-interval measurement). Frequency
fHz in hertz is converted to frequency fcent in cents as follows:

fcent = 1200 log2
fHz

440 × 2
3
12 −5

. (1)

2.2. PreFEst-core: Estimating the F0’s Probability Density
Function

For each set of filtered frequency components represented as an
observed PDF p(t)

Ψ (x), the PreFEst-core forms a probability den-
sity function of the F0, called the F0’s PDF, p(t)

F 0(F ), where F
is the log-scale frequency in cents. We consider each observed
PDF to have been generated from a weighted-mixture model of
tone models of all the possible F0s; a tone model is the PDF cor-
responding to a typical harmonic structure and indicates where
the harmonics of the F0 tend to occur. Because the weights of
tone models represent the relative dominance of every possi-
ble harmonic structure, we can regard those weights as the F0’s
PDF: the more dominant a tone model in the mixture, the higher
the probability of the F0 of its model.

2.2.1. Weighted-mixture model of adaptive tone models

To deal with diversity of harmonic structure, the PreFEst-core
can use multiple types of harmonic-structure tone models. The
PDF of the m-th tone model for each F0 F is denoted by
p(x|F,m, µ(t)(F,m)) (Figure 3) where the model parameter
µ(t)(F,m) represents the shape of the tone model. The num-
ber of tone models is Mi (1 ≤ m ≤ Mi) where i denotes the
melody line (i = m) or the bass line (i = b). Each tone model is
defined by

p(x|F,m,µ(t)(F,m)) =

Hi∑
h=1

p(x, h|F,m, µ(t)(F,m)), (2)

Figure 3: Model parameters of multiple adaptive tone models.

p(x, h|F,m, µ(t)(F,m))

= c(t)(h|F,m) G(x;F + 1200 log2 h,Wi), (3)

µ(t)(F,m) = {c(t)(h|F,m) | h = 1, ...,Hi}, (4)

G(x;x0, σ) =
1√

2πσ2
e
− (x−x0)2

2σ2 , (5)

where Hi is the number of harmonics considered, W2
i is the vari-

ance of the Gaussian distribution G(x;x0, σ), and c(t)(h|F,m)
determines the relative amplitude of the h-th harmonic compo-
nent (the shape of tone model) and satisfies

Hi∑
h=1

c(t)(h|F,m) = 1. (6)

We then consider the observed PDF p(t)
Ψ (x) to have been

generated from the following model p(x|θ(t)), which is a
weighted mixture of all possible tone models p(x|F,m,µ(t)(F,
m)):

p(x|θ(t)) =

∫ Fhi

Fli

Mi∑
m=1

w(t)(F,m) p(x|F,m, µ(t)(F,m)) dF,

(7)
θ(t) = {w(t), µ(t)}, (8)

w(t) = {w(t)(F,m) | Fli ≤ F ≤ Fhi,m = 1, ...,Mi}, (9)

µ(t) = {µ(t)(F,m) | Fli ≤ F ≤ Fhi,m = 1, ...,Mi}, (10)
where Fli and Fhi denote the lower and upper limits of the pos-
sible (allowable) F0 range and w(t)(F,m) is the weight of a tone
model p(x|F,m,µ(t)(F,m)) that satisfies∫ Fhi

Fli

Mi∑
m=1

w(t)(F,m) dF = 1. (11)

Because we cannot know a priori the number of sound sources,
it is important that we simultaneously take into consideration all
the possibilities of the F0 as expressed in Equation (7). If we can
estimate the model parameter θ(t) such that the observed PDF
p(t)

Ψ (x) is likely to have been generated from the model p(x|θ(t)),
w(t)(F,m) can be interpreted as the F0’s PDF p(t)

F 0(F ):

p(t)
F 0(F ) =

Mi∑
m=1

w(t)(F,m) (Fli ≤ F ≤ Fhi). (12)

2.2.2. Introducing a prior distribution

To use prior knowledge about F0 estimates and the tone-model
shapes, we define a prior distribution p0i(θ(t)) of θ(t) as follows:
p0i(θ

(t)) = p0i(w
(t)) p0i(µ

(t)), (13)

p0i(w
(t)) =

1
Zw

e−β
(t)
wi

Dw (w(t)
0i

;w(t)), (14)



p0i(µ
(t)) =

1
Zµ

e
−

∫ Fhi

Fli

∑Mi

m=1
β

(t)
µi

(F,m) Dµ(µ(t)
0i

(F,m);µ(t)(F,m)) dF
.

(15)
Here p0i(w(t)) and p0i(µ(t)) are unimodal distributions: p0i(w(t))
takes its maximum value at w(t)

0i (F,m) and p0i(µ(t)) takes its
maximum value at µ(t)

0i (F,m), where w(t)
0i (F,m) and µ(t)

0i (F,m)
(c(t)

0i (h|F,m)) are the most probable parameters. Zw and Zµ

are the normalization factors, and β(t)
wi and β(t)

µi(F,m) are the
parameters determining how much emphasis is put on the max-
imum value. The prior distribution is not informative (i.e., it is
uniform) when β(t)

wi and β(t)
µi(F,m) are 0, corresponding to the

case when no prior knowledge is available. In Equations (14)
and (15), Dw(w(t)

0i ;w(t)) and Dµ(µ(t)
0i (F,m);µ(t)(F,m)) are the

following Kullback-Leibler information:

Dw(w(t)
0i ;w(t)) =

∫ Fhi

Fli

Mi∑
m=1

w(t)
0i (F,m) log

w(t)
0i (F,m)

w(t)(F,m)
dF,(16)

Dµ(µ(t)
0i (F,m);µ(t)(F,m))

=

Hi∑
h=1

c(t)
0i (h|F,m) log

c(t)
0i (h|F,m)
c(t)(h|F,m)

. (17)

2.2.3. MAP estimation using the EM algorithm

The problem to be solved is to estimate the model parameter
θ(t), taking into account the prior distribution p0i(θ(t)), when we
observe p(t)

Ψ (x). The MAP (Maximum A Posteriori Probability)
estimator of θ(t) is obtained by maximizing∫ ∞

−∞
p(t)

Ψ (x) (log p(x|θ(t)) + log p0i(θ
(t))) dx. (18)

Because this maximization problem is too difficult to be solved
analytically, we use the Expectation-Maximization (EM) algo-
rithm [16], which is an iterative algorithm successively applying
two steps — the expectation step (E-step) and the maximization
step (M-step) — to compute MAP estimates from incomplete
observed data (i.e., from p(t)

Ψ (x)). With respect to θ(t), each iter-
ation updates the old estimate θ′(t) = {w′(t), µ′(t)} to obtain the
new (improved) estimate θ(t) = {w(t), µ(t)}.

By introducing hidden (unobservable) variables F , m, and
h, which respectively describe which F0, which tone model,
and which harmonic component were responsible for generat-
ing each observed frequency component at x, we can specify
the two steps as follows:

1. (E-step)
Compute the following QMAP(θ(t)|θ′(t)) for the MAP estima-
tion:
QMAP(θ(t)|θ′(t)) = Q(θ(t)|θ′(t)) + log p0i(θ

(t)), (19)

Q(θ(t)|θ′(t)) =

∫ ∞

−∞
p(t)

Ψ (x)

EF,m,h[log p(x, F,m, h|θ(t)) | x, θ′(t)] dx, (20)
where Q(θ(t)|θ′(t)) is the conditional expectation of the
mean log-likelihood for the maximum likelihood estimation.
EF,m,h[a|b] denotes the conditional expectation of awith re-
spect to the hidden variablesF ,m, andhwith the probability
distribution determined by condition b.

2. (M-step)
Maximize QMAP(θ(t)|θ′(t)) as a function of θ(t) in order to
obtain the updated (improved) estimate θ(t):

θ(t) = argmax
θ(t)

QMAP(θ(t)|θ′(t)). (21)

In the E-step, Q(θ(t)|θ′(t)) is expressed as

Q(θ(t)|θ′(t)) =

∫ ∞

−∞

∫ Fhi

Fli

Mi∑
m=1

Hi∑
h=1

p(t)
Ψ (x)

p(F,m,h|x, θ′(t)) log p(x, F,m, h|θ(t))dFdx, (22)
where the complete-data log-likelihood is given by

log p(x, F,m, h|θ(t))

= log(w(t)(F,m) p(x, h|F,m, µ(t)(F,m))). (23)
Regarding the M-step, Equation (21) is a conditional problem of
variation, where the conditions are given by Equations (6) and
(11). This problem can be solved by using the following Euler-
Lagrange differential equations with Lagrange multipliers λw

and λµ:

∂

∂w(t)

(∫ ∞

−∞

Hi∑
h=1

p(t)
Ψ (x) p(F,m, h|x, θ′(t))

(logw(t)(F,m) + log p(x, h|F,m, µ(t)(F,m))) dx

− β(t)
wi w

(t)
0i (F,m) log

w(t)
0i (F,m)

w(t)(F,m)

− λw(w(t)(F,m) − 1
Mi(Fhi−Fli) )

)
= 0, (24)

∂

∂c(t)

(∫ ∞

−∞
p(t)

Ψ (x) p(F,m,h|x, θ′(t)) (logw(t)(F,m)

+ log c(t)(h|F,m) + logG(x;F + 1200 log2 h,Wi)) dx

− β(t)
µi(F,m) c(t)

0i (h|F,m) log
c(t)

0i (h|F,m)
c(t)(h|F,m)

− λµ(c(t)(h|F,m) − 1
Hi

)

)
= 0. (25)

From these equations we get
w(t)(F,m) =∫ ∞

−∞ p(t)
Ψ (x) p(F,m|x, θ′(t)) dx + β(t)

wiw
(t)
0i (F,m)

1 + β(t)
wi

, (26)

c(t)(h|F,m) =∫ ∞
−∞ p(t)

Ψ (x)p(F,m, h|x, θ′(t)) dx + β(t)
µi(F,m)c(t)

0i (h|F,m)∫ ∞
−∞ p(t)

Ψ (x)p(F,m|x, θ′(t)) dx + β(t)
µi(F,m)

.

(27)
According to the Bayes’ theorem, p(F,m,h|x, θ′(t)) is given by

p(F,m, h|x, θ′(t)) =
w′(t)(F,m) p(x, h|F,m, µ′(t)(F,m))

p(x|θ′(t))
.

(28)
Finally we obtain the following new parameter estimates:

w(t)(F,m) =
w(t)

ML(F,m) + β(t)
wiw

(t)
0i (F,m)

1 + β(t)
wi

, (29)

c(t)(h|F,m) =

w(t)
ML(F,m) c(t)

ML(h|F,m) + β(t)
µi(F,m)c(t)

0i (h|F,m)

w(t)
ML(F,m) + β(t)

µi(F,m)
, (30)

where w(t)
ML(F,m) and c(t)

ML(h|F,m) are, when the noninforma-
tive prior distribution (β(t)

wi = 0 and β(t)
µi(F,m) = 0) is given, the

following maximum likelihood estimates:

w(t)
ML(F,m) =

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F,m) p(x|F,m,µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1 w
′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη

dx, (31)



c(t)
ML(h|F,m) =

1

w(t)
ML(F,m)

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F,m) p(x, h|F,m,µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1 w
′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη

dx.(32)

After the above iterative computation, the F0’s PDF p(t)
F 0(F )

estimated by considering the prior distribution can be obtained
fromw(t)(F,m) according to Equation (12). We can also obtain
the tone-model shape c(t)(h|F,m), which is the relative ampli-
tude of each harmonic component of all the types of tone models
p(x|F,m, µ(t)(F,m)).

2.3. PreFEst-back-end: Sequential F0 Tracking by
Multiple-Agent Architecture

A simple way to identify most predominant F0 is to find the fre-
quency that maximizes the F0’s PDF. This result is not stable,
however, because peaks corresponding to the F0s of simultane-
ous sounds sometimes compete in the F0’s PDF for a moment
and are transiently selected, one after another, as the maximum.

We therefore consider the global temporal continuity of the
F0 by using a multiple-agent architecture [1, 2] in which agents
track different temporal trajectories of the F0. The final F0 out-
put is determined on the basis of the most dominant and stable
F0 trajectory.

3. Experimental Results
The PreFEst has been implemented in a real-time system that
takes a musical audio signal as input and outputs the detected
melody and bass lines in several forms, such as audio signals
and computer graphics [1, 2]. The current implementation uses
two adaptive tone models with the following parameter values:
Fhm = 8400 cent, Flm = 3600 cent, Mm = 2, Hm = 16, Wm = 17
cent; Fhb = 4800 cent, Flb = 1000 cent, Mb = 2, Hb = 6, and Wb

= 17 cent. For the prior distribution of the shape of tone models,
we use c(t)

0i (h|F,m) = αi,m gm,h G(h; 1,Ui), where m is 1 or
2, αi,m is a normalization factor, gm,h is 2/3 (when m = 2 and
h is even) or 1 (otherwise), Um = 5.5, and Ub = 2.7.

The system was tested on excerpts from a total of 10 songs
in the popular, jazz, and orchestral genres. The input monaural
audio signals — each containing a single-tone melody and the
sounds of several instruments — were sampled from compact
discs. We evaluated the detection rates by comparing the esti-
mated F0s with the correct F0s hand-labeled using the F0 editor
program we previously developed [2]. In our experiment the
system correctly detected the melody and bass lines for most of
each audio sample: the average detection rate was 88.4% for the
melody line and 79.9% for the bass line.

We also tested the system by providing prior knowledge
about rough F0 estimates of the melody line. For the prior F0
distribution, we used w(t)

0i (F,m) = G(F ;F (t)
0i , 100 cent)/Mi,

where F (t)
0i is the F0 estimate given by playing a MIDI keyboard

while listening to each excerpt of the songs. Comparing the re-
sults obtained with and without using the prior F0 distribution
showed that the use of prior knowledge improved the average
detection rate for the melody line (from 88.4% to 91.2%). In
particular, the detection rate for an orchestral song was greatly
improved (11.9% improvement).

4. Conclusion
We have described a method, called PreFEst, that estimates the
most predominant F0 in a monaural complex sound mixture
without assuming the number of sound sources. Its MAP esti-
mation executed by using the EM algorithm makes it possible to
estimate the F0’s PDF and the shape of tone models while con-
sidering their prior distribution. Experimental results showed

that a system implementing this method is robust enough to es-
timate the F0s of the melody and bass lines in compact-disc
recordings in real time.

Although the PreFEst has great potential, we have not fully
exploited it. In the future, for example, a lot of tone models
could be prepared by analyzing various kinds of harmonic struc-
ture appearing in music, and multiple peaks in the F0’s PDF,
each corresponding to a different sound source, could be tracked
simultaneously by using a sound source discrimination method.
The PreFEst can also be applied to non-music audio signals. In
fact, Masuda-Katsuse [17, 18] has extended it and shown that
it is effective for speech recognition in realistic noisy environ-
ments.
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