
Lyric App Framework: A Web-based Framework for Developing
Interactive Lyric-driven Musical Applications

Jun Kato Masataka Goto
jun.kato@aist.go.jp m.goto@aist.go.jp

National Institute of Advanced Industrial Science and National Institute of Advanced Industrial Science and
Technology (AIST) Technology (AIST)

Tsukuba, Ibaraki, Japan Tsukuba, Ibaraki, Japan

Lyric apps as websites

Mass Distribution of Lyric Apps (§4.3)

Lyric app users
(always unique experience)Lyric app: Musician

Programmer

Musicians can upload new musical pieces

Programmers and musicians can choose from
existing online music

or

Web-based Development Workflow (§4.1) APIs for Building Lyric App Interactions (§4.2)

Lyric App Framework (https://developer.textalive.jp)

A lyric app is a new form of lyric-driven visual art that can render
different lyrical content depending on user interaction (§2)

Design space exploration collecting
52 examples of lyric apps revealed
8 representative categories (§6)

Lyric video audiences
(always same content)Lyric video (existing static medium): Musician Motion graphic designer Video-sharing services

TextAlive App API (npm: textalive-app-api)

Figure 1: The Lyric App Framework opens up a novel design space for programmers and musicians to develop lyric apps. These
apps enable users to interact with lyric-driven visual art synchronized with music, addressing the limitations of lyric videos.

ABSTRACT
Lyric videos have become a popular medium to convey lyrical
content to listeners, but they present the same content whenever
they are played and cannot adapt to listeners’ preferences. Lyric
apps, as we name them, are a new form of lyric-driven visual art that
can render different lyrical content depending on user interaction
and address the limitations of static media. To open up this novel
design space for programmers and musicians, we present Lyric
App Framework, a web-based framework for building interactive
graphical applications that play musical pieces and show lyrics
synchronized with playback.We designed the framework to provide
a streamlined development experience for building production-
ready lyric apps with creative coding libraries of choice. We held
programming contests twice and collected 52 examples of lyric
apps, enabling us to reveal eight representative categories, confirm
the framework’s effectiveness, and report lessons learned.

CCS CONCEPTS
•Human-centered computing→User interface toolkits;Web-
based interaction; • Applied computing→ Sound and music com-
puting.

KEYWORDS
toolkit, multimedia control, music synchronization

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3580931

ACM Reference Format:
Jun Kato and Masataka Goto. 2023. Lyric App Framework: A Web-based
Framework for Developing Interactive Lyric-driven Musical Applications.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3544548.3580931

1 INTRODUCTION
Lyrics in a musical piece have greater power to induce mood
changes than music alone [41], and lyrics have been delivered
to audiences in various ways that reflect the evolution of media
technologies. Vinyl records and compact discs may come with lyric
sheets on which graphic designers aesthetically place static lyrics
text. Since music videos and video-sharing services appeared, lyric
videos have become popular, with motion graphic designers im-
plementing kinetic typography of lyrics synchronized with music
playback. In the current era of media convergence [14], musicians
use various media formats to deliver their musical pieces to audi-
ences. The current era is also one of participatory culture [15], in
which audiences not only listen to musical pieces but also actively
participate in the lifecycle of media content. For example, theymake
posts on social networking services and share their experience with
their favorite musical content. Moreover, the proliferation of smart-
phones has provided many people with casual means to experience
novel interactions with musical pieces [22].

We foresee that an interactive medium incorporating lyrics,
which we name a lyric app (Figure 1), will follow lyric sheets and
lyric videos in providing a new way to enjoy musical pieces and
lyrics audibly and visually. For instance, when an end-user runs a
lyric app, he or she can listen to a musical piece and see a dynami-
cally generated scene in three-dimensional (3D) computer graphics.
Unlike in static lyric videos, it is possible to freely navigate a scene

https://orcid.org/0000-0003-4832-8024
https://orcid.org/0000-0003-1167-0977
https://doi.org/10.1145/3544548.3580931
https://doi.org/10.1145/3544548.3580931
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3580931&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

in which graphical objects based on lyric phrases appear at the
timings when they are vocalized. Thus, users can not only read
but also touch and place lyric phrases to build toward a one-time
landscape at the end of the music piece, making the experience
unique. Clearly there are far more interactive design opportunities
here than in the static medium of lyric videos.

However, the development of lyric apps involves distinct chal-
lenges as compared to authoring lyric videos. Synchronization of
lyrics with music playback requires laborious preparation to an-
notate the timings of lyrics and other musical elements. It is not
straightforward to build time-sensitive user interactions for musical
content, nor is it trivial to deliver such applications to end-users.

To aid the development and explore the design space of lyric
apps, we propose Lyric App Framework, a web-based framework
that provides a streamlined development experience for building
production-ready lyric apps. After accepting music audio and corre-
sponding lyrics text as inputs, the framework analyzes the audio to
estimate the timings of lyrics and other musical elements. Then, it
provides an application programming interface (API) to control the
music playback and access relevant musical elements at the speci-
fied timings. The resulting lyric apps can be distributed as standard
websites that can be executed by web browsers on smartphones
and PCs. We built this framework on top of our current web service
for authoring lyric videos, named TextAlive [34], and we released it
to the general public (https://developer.textalive.jp).

Our contributions in this work are threefold: (1) We extend lyric
videos by adding interaction capabilities around musical pieces and
lyrics, thus yielding a novel media format called a “lyric app.” (2)
We built a novel framework comprising a web-based workflow and
API (the TextAlive App API) to provide a streamlined development
experience for building production-ready lyric apps. (3) We de-
ployed the framework in the wild, conducted annual programming
contests twice, and collected 52 examples of lyric apps (in addition
to 11 apps that we developed); as a result, we could reveal eight
representative categories, evaluate the framework’s effectiveness,
and obtain insights for future work.

2 LYRIC APPS
In this section, we explain our web service for authoring lyric
videos, which led us to define a lyric app as a novel media format
that adds interaction capabilities to lyric videos. Then, we provide a
representative example to illustrate the interactive user experience,
and we explain the distinctive development challenges.

2.1 From Lyric Videos to Lyric Apps
In 2015, we built TextAlive [34], a web service for authoring lyric
videos that was based on the interaction design described in our
CHI 2015 paper [16]. TextAlive allows programmers to interac-
tively develop graphical algorithms for animating text and drawing
graphics, and it allows musicians to choose and customize those al-
gorithms with its intuitive user interface to create lyric videos. As of
February 6, 2023, 1396 algorithm revisions and 18,867 video data en-
tries had been created on TextAlive. Both amateur and professional
musicians have used it to promote their musical pieces.

While programmers could use TextAlive to successfully define a
variety of graphical algorithms, we observed that their creativity

was limited by the tool and the target media format. First, they had
to use the provided programming environment, which prevented
them from using the creative coding libraries of their choice. Sec-
ond, they had to follow a specific program structure that renders a
static video frame without any interaction capabilities, other than
defining typed parameters for musicians to customize the visual
styles of lyric videos.

To address these limitations, we conceptualized a “lyric app” that
adds interaction capabilities to lyric videos. Instead of providing a
specific programming environment, we provide a framework for
lyric app development that allows programmers to use their favorite
tools and environments. Musicians can still customize applications
to promote their musical pieces, and audiences can use those apps
to listen to music, read lyrics, and interact with lyrics.

2.2 Representative Example of Lyric App
Here, given the benefits of lyric apps from the programmer and mu-
sician perspectives, we concretize the interactive user experience.

Suppose that Alice finds a new blog post by her favorite musician
in the afternoon.When she opens a link in the post, the web browser
executes a lyric app and starts playing a newly released musical
piece. The piece’s cover image and title appear on the wall in a
space of three-dimensional computer graphics (3D CG).

Unlike with a static lyric video, Alice can touch the screen to
navigate freely in the space. She enjoys finding various graphical
objects, which reflect the song’s theme and are animated in syn-
chrony with the music’s beat. Then, she notices lyrics popping out
at the timings when they are vocalized. She can not only read the
lyrics but also manipulate and place them in her own way to build
a one-time landscape. When the musical piece reaches the chorus,
the visual effects become more prominent to reflect excitement.

In the evening, Alice opens the lyric app again. It renders the
same 3D CG space but in dark colors. She can now build a different
landscape, thus making the same song and lyrics feel more familiar
yet fresh. Within the lyric app, she can even open another musical
piece by the musician. These interaction capabilities enable her to
dive deeply into the virtual world of the musical pieces, making the
experience unique and personal.

2.3 Development Challenges and Support Needs
Given the comparison to lyric video programming and the above
lyric app example, we discuss three distinctive challenges in devel-
oping lyric apps that lead to the needs for development tools.

First, lyric-driven visual art, including lyric videos and apps, must
be synchronized with the music playback. Such synchronization
typically requires a lot of manual effort to annotate lyrics and other
music-structure timings. Our prior work on lyric video authoring
introduced automatic analysis and a user interface for correcting the
analysis to reduce the amount of labor [16]. Such a semiautomated
procedure would be beneficial, but it is not obvious how to integrate
the procedure into the lyric app development workflow.

Second, it is not straightforward to build user interactions for
musical pieces and lyrics. Compared to motion graphic designers,
who elaborate a single version of a lyric video, programmers must
come up with algorithms to generate visuals on the fly. Program-
mers can benefit from existing creative coding libraries (Section 3.3),

https://developer.textalive.jp
https://github.com/TextAliveJp/textalive-app-api

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

but lyric app development is notably more challenging because it
requires accounting for various musical timings, lyric meanings,
and user inputs. It is crucial to offer tool support that does not
conflict with creative coding practices.

Third, it is unclear how to deliver lyric apps to end-users. While
typical research on creativity support tools often focuses on lab-
oratory studies [8], we consider an engineering perspective for
production use to be very important, particularly for research on
the novel media format of lyric apps. Just as video-sharing services
enable musicians to easily distribute lyric videos, there should be a
way for programmers and musicians to distribute their lyric apps.

3 RELATED WORK
Before introducing our framework to support programmers, we re-
view related work to provide context for our research contributions.
First, we review early examples of lyric apps. Then, we cover prior
work on automatic synchronization techniques for multimedia con-
tent and programming techniques for generating and interacting
with multimedia content.

3.1 Early Examples of Lyric Apps
Synchronization of audio and visual media makes for an immersive
experience. Karaoke allows people to watch simple lyric captions,
sing a song without remembering the exact lyrics, and enjoy the
musical piece. In some cases, karaoke machines play lyric videos
and provide an immersive experience. Some rhythm games [39, 42]
and games for practicing typing and foreign languages [26] can
also show lyrics text synchronized with music playback.

These applications use the timing information of musical el-
ements such as lyrics and beats and can be considered as early
examples of lyric apps. However, they have a relatively narrow
scope from the interaction design perspective. Karaoke involves
little interactivity, and games focus on fun gameplay itself or gami-
fied purposes. We expect that lyric apps have more potential than
their predecessors, and we thus built a framework to aid lyric app
development and explore the design space (see Section 6).

3.2 Automatic Synchronization Techniques
An experience synchronized with lyric and musical elements is
integral to lyric app development. There are previous examples
of automatically synchronizing and generating such time-series
multimedia content.

Automatic transcription of speech videos and unified interac-
tions for the resulting time-coded text, audio, and video has long
been studied. PodCastle [11] applies automatic speech recognition
to podcasts, accepts crowdsourced user edits for improved accu-
racy, and provides full-text search within the transcriptions. Our
work uses the same crowdsourcing approach and enables revision
control of user edits. Video Digests [31] defines a structured format
for summarizing video content and provides a user interface for
editing such summaries with transcript-based interactions. Our
work deals with structured time-coded information, not for speech
transcription but for lyrics and musical elements, and we propose
a novel interactive media format using this information.

Synchronization of lyrics text with its corresponding musical
audio signals is typically more challenging than synchronization of

speech transcription with its corresponding speech signals, because
singing voices have varying vocal styles and music signals contain
accompaniment sounds. LyricSynchronizer [9] aims to solve this
problem by applying a novel signal processing technique for audio-
lyric synchronization. By leveraging this technique, it provides a
user interface for controlling the music playback position by click-
ing lyrics text. TextAlive [16, 34] further enables interactive kinetic
typography video authoring and live programming of graphic ren-
dering algorithms for videos. SyncPower [4], Musixmatch [28], and
LyricFind [25] provide APIs for retrieving lyrics text and rendering
karaoke-style visuals with graphical components called PetitLyrics,
FloatingLyrics, and Lyric Display, respectively. Our work differs
from these prior studies (except for TextAlive, upon which we built
this work) in two aspects. First, our intelligent web-based workflow
enables registration of new musical pieces and corresponding lyrics
text. Second, the existing commercial APIs focus on lyrics but do
not provide direct access to timing information, whereas our APIs
provide unified, direct access to lyrics text and timing information
as well as other musical elements. These two novel aspects are the
key enablers for programmers to develop lyric apps for musical
pieces of their choice.

Automatic generation techniques and frameworks for creating
synchronized audio and visual media content have also been stud-
ied. MusicStory [40] generates a video from a musical piece by
retrieving its lyrics online, searching for relevant images in a spec-
ified dataset, and showing the images at intervals matching the
music’s pace. Crosscast [43] generates a video from an audio travel
podcast by transcribing the content and finding relevant images
via natural language processing (NLP) and text mining. A recent
automatic generation technique [23] infers a preferred shot-type
sequence from music, which can potentially be used for automatic
concert video mashups. Songle Widget [13] and Songle Sync [17]
are web-based platforms that support music playback synchro-
nization with multimedia performances. Our work can be used in
conjunction with these, thus opening up novel end-user interaction
opportunities that go beyond static multimedia content.

3.3 Creative Coding and Interactive Multimedia
There are various programming tools for generating multimedia
content and designing interactions with content. Such creative use
of programming techniques for artistic purposes is often called
“creative coding,” or it may have a different name, depending on
the application domain and context, such as generative art [32],
algorithmic music [27], generative design, and procedural modeling.

Processing [37] and openFrameworks [44] are popular creative
coding tools for prototyping interactive applications. They are often
used to generate beautiful images, videos, and interactive graphics.
Creative coding libraries for the web such as p5.js help build graph-
ical applications. They have become popular by enabling users to
easily run applications on smartphones and other devices with web
browsers. Because such libraries are helpful for generating visuals
in lyric apps, our framework is designed to work with a program-
mer’s creative coding library of choice, while still providing support
to address the distinctive challenges of lyric app development.

Researchers have also explored the web’s potential to facilitate
new media formats for creative use. D3.js [2] was developed for

https://p5js.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

data visualization, and subsequent works such as Idyll [3] explored
a workflow to build web articles with interaction capabilities. Web-
strates [19] envisioned shareable dynamic media and enabled collab-
orative data authoring and interaction programming. Videostrates
[20] and Codestrates [35] were built on top of Webstrates and ex-
plored domain-specific interactions for video authoring and literate
programming. Our work is in line with these works, in that it de-
fines a novel media format of lyric apps and explores the related
design space by deploying a framework in the wild.

In the context of musical applications, commercial musical pieces
have been released as smartphone applications that enable end-
users to dynamically edit musical and visual content, such as Bjork’s
Biophilia [1] and Brian Eno’s Reflection [29] (for more examples,
see Levtov’s article on algorithmic music for mass consumption
[22]); however, these were built with general programming tools.
In contrast, RjDj [36] was one of the first attempts to enable play-
ing and editing algorithmic musical pieces based on Pure Data on
smartphones, to explicitly support the production and distribution
of interactive music. A more recent example is variPlay [30], which
focuses on recorded music tracks instead of algorithmic music. Un-
like these prior works, our framework does not allow editing of
existing musical pieces, but it adds interaction capabilities around
them to produce a novel lyric-driven artistic experience.

4 LYRIC APP FRAMEWORK
To address the distinctive challenges of developing lyric apps, we
propose Lyric App Framework. In this section, we introduce its
streamlined development experience, as illustrated in Figure 1,
which is enabled by three core features that correspond to each of
the three challenges discussed in Section 2.3.

4.1 Web-based Development Workflow
To address the first challenge of developing lyric-driven visual
performances synchronized with music playback, we propose an
intelligent, flexible, web-based development workflow.

4.1.1 Semiautomatic Analysis. Our framework analyzes musical
pieces and lyrics text and provides useful information for lyric app

Table 1: Types of analysis results available to lyric apps.

Analysis type Explanation

Lyric timings Timings when the vocalization of each phrase,
word, and character starts and ends.

Part of speech Part of speech of each word in the lyrics.
Vocal amplitude Time-series changes in vocal amplitude.
Valence/arousal Time-series changes in valence and arousal

values indicating emotional mood transitions.

Musical beats Timings of each musical beat, corresponding
to a quarter note.

Chords Series of chord progressions with timings.
Chorus segments Timings when each repetitive chorus segment

starts and ends.

development while allowing manual corrections. Table 1 lists the
types of analysis results that are available.

First, programmers and musicians can use the framework’s web
interface to register pairs of musical pieces and lyrics text for use in
lyric apps. They can either upload new music and lyrics or specify
the URLs of existing online music and lyrics with an appropriate
license for derivative use. After about ten minutes, automatic anal-
ysis results become available on the framework’s servers, and the
musical piece becomes available for use in lyric apps.

Then, not only programmers but also musicians can review the
lyrics and other music-structure timings on the web interface and
correct them if necessary. We previously examined such a crowd-
sourcing approach in a web service called Songle [12, 33]. Following
its success, we added novel features including lyric timing analysis
and corrections, part-of-speech (POS) estimation of lyric words,
and revision control for timing information.

4.1.2 Musical Piece URL as Key. Our framework assumes that every
musical piece has a canonical URL, which is the unique key to
playing the piece and retrieving its lyrics text and analysis results.
A programmer can implement a user interface for the end-user
to choose a musical piece so that the user’s lyric app runs with
multiple musical pieces. Additionally, the programmer can specify
optional numerical revision identifiers for each musical piece to
retrieve a particular version of the analysis results, thus making the
lyric app’s behavior reproducible and resilient against malicious
edits. This simple URL-based mechanism with revision control of
automatic analysis and manual edits will be useful for future work
on frameworks that add interactivity to static media.

Furthermore, our framework allows a musical piece to be reg-
istered at any time, thus contributing to a flexible development
workflow. For instance, a programmer can start development with
an existing musical piece and easily replace it later with a newly
registered one. Similarly, a musician can first upload a musical piece
with restricted access and later make it publicly available with a
different URL to promote its release.

4.2 APIs for Building Lyric App Interactions
To address the second challenge of building user interactions in
lyric apps, we developed the TextAlive App API, which comprises
two APIs to address this challenge.

4.2.1 Event-driven API for State Management. While a lyric video
is always tied to a single musical piece, a lyric app can be designed
either for a particular piece (just like a lyric video), for a particular
set of pieces (e.g., a rhythm game with a supported song list), or for
any musical piece (e.g., a music player application with interactive

onAppReady

onAppParameterUpdate

onAppMediaChange

on{SongMap, Lyrics, ...}Load

onTimerReady

onPlay onPause onSeek onVolumeUpdate ...

Lyric app initialization

App customization

Preparation for musical piece

Playback control of musical piece

Loading analysis results

Embedding DOM elements for playing music

Figure 2: Our framework provides an event-driven API to
help manage complex states in a lyric app.

https://github.com/TextAliveJp/textalive-app-api

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

graphics). In addition, a lyric app can be designed to allow or disal-
low particular end-user operations. For instance, whereas a music
player allows pause and seek operations, a game typically disallows
both. For narrative purposes, a lyric-video-like application might
allow pausing but not seeking.

To help implement all of these interaction scenarios, we defne
a shared set of possible lyric app states as shown in Figure 2, and
we provide an API for notifcation of every state transition. In
particular, the JavaScript class Player serves as the entry point to
access the framework’s features.

Once an app instance successfully connects to a framework
server, the onAppReady event is triggered. If a programmer wants
to design a lyric app for a particular musical piece, it should be
explicitly loaded here by calling player.createFromSongUrl(songUrl) .
Otherwise, the framework looks for a fallback URL to load, which
can be specifed by the programmer or musician via a web inter-
face on the framework called Lyric App Customizer (detailed in
Section 4.3.2). If no fallback URL is found, the framework waits
for a call to this API, which allows the programmer to show the
end-user a list of musical pieces. An additional call to this API loads
the newly specifed musical piece, which allows the lyric app to
switch between musical pieces.

After the loading process, the programmer is responsible for
controlling music playback. It is up to him or her whether to im-
plement a user interface to allow end-user operations of pausing
and seeking, depending on the chosen interaction scenario. In any
case, the framework provides notifcations of various media player
events, such as onPlay , onPause , onSeek , and onTimeUpdate .

4.2.2 Time-driven API for Time-sensitive Interactions. Various
graphical user interface (GUI) frameworks and our prior toolkit
work on time-coded musical elements [17] provide event-driven
APIs, but for lyric apps, we suppress the support for such musical
events for three major reasons. First, these events are not good
for future planning because they are usually only triggered right
after something happens. For example, they cannot make a lyric
word start sliding into the screen well before it is vocalized. Second,
they can only be tied to a single kind of musical element, whereas
attractive visuals typically involve multiple kinds of musical ele-
ments. For instance, consider ripple animations that appear around
phrases when they are vocalized. They might fade in and out in
synchrony with the beat and change color during the chorus. Third,
they tend to result in poor time precision. For our framework to
emit musical events, it must implement an event loop that period-
ically checks whether the current playback position exceeds the
timing of a musical event. Such an implementation may emit a
musical event with a delay of nearly the event loop interval in the
worst case1. In summary, APIs that do not guarantee time precision
are not helpful and could be harmful, especially for novices who
could be confused by imprecise behavior.

Thus, to support future planning, easily account for multi-
ple kinds of musical elements, and achieve high timing accu-
racy, we propose a time-driven API that accepts a position ar-
gument in milliseconds and returns time-coded information (see

1In addition to this theoretical limitation, current browser implementations have a
practical limitation in that execution timings can be afected by various factors such
as the CPU overload, inactive browser tabs, and power saving on a low battery.

Appendix A for illustrated explanations). For example, seeking a
phrase that will be vocalized fve seconds later is as easy as calling
player.getPhrase(player.position + 5000) . Then, after beat informa-
tion is retrieved by getBeat with the same argument, it can be
combined with phrase and chorus information to generate visuals.

This API works well with existing graphics and creative cod-
ing libraries that help generate interactive visual content. These
libraries typically have mechanisms with which a programmer
defnes a rendering function to draw visual content, including
requestAnimationFrame() in the Web API, Components.render() in Re-
act, loop() in p5.js, and renderer.render() in Three.js. The pro-
grammer can then simply call the time-driven API within such
rendering functions to guarantee that displayed content is always
up to date with the music playback.

4.3 Mass Distribution of Lyric Apps
To address the third challenge of delivering lyric apps to end-users,
our framework enables programmers and musicians to distribute a
lyric app via a website, as shown in Figure 3.

4.3.1 Production-ready Deployment. The distribution of interac-
tive media content has traditionally sufered from interoperability
and scalability issues. We consider the web standard to be the most
practical solution so far, as discussed in the context of mass distri-
bution of interactive music [22].

With our framework, as long as a programmer can build a website
(with client-side HTML and JavaScript code in a minimal case, up to
a full-stack application including client-side stylesheets, static me-
dia content, and server-side code), a production-ready lyric app can
be created for mass distribution. Thus, programmers do not have to
deal with external resources, including musical pieces, lyrics text,
and related analysis results, because music/video sharing services
and our framework servers directly deliver them to the end-user.
Nevertheless, these external resources can be optionally embedded
in a website to avoid access to external services and servers, which
enables deployment to a content distribution network (CDN) for
even higher availability and performance.

4.3.2 Lyric App Customizer. Our framework has a special web in-
terface named TextAlive Lyric App Customizer, through which
programmers and musicians can customize an existing lyric app
(Figure 3). The customizer page opens the lyric app in its <iframe>

Development with our framework1

Web deployment
for mass distribution

2

Lyric App Customizer3

<iframe> to host the lyric app

List of parameters for customization

Song URL to play in the lyric app

Figure 3: Our framework supports deployment and post-
deployment customization to promote new musical pieces.

https://developer.mozilla.org/docs/Web/API/Window/requestAnimationFrame
https://reactjs.org
https://reactjs.org
https://p5js.org
https://threejs.org
https://developer.textalive.jp/app/customize

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

component and maintains communication with the app to enable
interactive customization. When the creator is satisfed, the cus-
tomization results can be stored in the app URL’s query string, e.g.,
?ta_song_url=NewUrl . This enables musicians to use existing lyric
apps to promote their musical pieces. Note that, as explained in Sec-
tion 4.2.1, a lyric app may also be implemented to support specifc
musical pieces, without the customization capabilities.

In addition to the URL of a musical piece to play, the programmer
can defne a list of parameters with types (a number, color, string,
or list of values with optional labels) when initializing the player
instance; then, event listeners can be implemented to respond to
customization events sent by the customizer. The list automatically
appears on the customizer page and enables musicians to make their
own custom versions of lyric apps for more efective promotion.

5 IMPLEMENTATION
In this section, we give a brief overview of the framework’s imple-
mentation (publicly available at https://developer.textalive.jp).

5.1 Framework Web Servers
Two dedicated servers implement the web-based workfow de-
scribed in Section 4.1, one for the web API based on representational
state transfer (REST), and the other for client web applications.
These servers are connected to a database that stores lyric app
information such as authors and URLs. In addition, the REST-based
API server is connected to external servers that are used to analyze
and provide lyric timings and additional musical element informa-
tion. We implemented the external analysis servers by using and
extending our web service named Songle [12, 33] based on music
understanding technologies. The extensions include lyric timing
analysis, POS estimation of lyric words, revision control for timing
information, and an online storage feature for uploading musical
pieces and lyrics. The lyric timing analysis was initially based on
a prior work [9] and later replaced by a machine-learning-based
method with better performance. The POS estimation uses Mecab
[21] for Japanese words and the Natural Language Toolkit (NLTK)
[24] for English words.

The current implementation supports lyrics in Japanese, English,
or a mixture of Japanese and English, and it supports musical pieces
up to ten minutes long (longer than the duration of most songs
with lyrics). Analysis results can be freely corrected by the users of
client applications; the corrections are then recorded with unique
numerical revision identifers. As introduced in Section 4.1.2, pro-
grammers can specify revision identifers to make their lyric apps’
behaviors reproducible.

We initially released our framework for the Japanese community,
and we assumed that lyrics would primarily be in Japanese or a
mixture of Japanese and English. In Japanese writing, each character
forms a complete syllable, and it is completely sensible to analyze
the timing of each character. In contrast, in English writing, each
character is part of a syllable, and people typically care about word-
level timing rather than character-level timing. As such, our current
implementation analyzes character-level timings for Japanese lyrics
and word-level timings for English lyrics. Character-level timings
for English are also provided by linearly interpolating between the
timings of a word’s start and end.

5.2 Framework Web Applications
The framework’s client web applications have three roles. First, they
provide user interfaces for the web-based development workfow,
including registration of existing pairs of musical pieces and lyrics,
uploading of new pairs, and viewing and correction of automatic
analysis results (Section 4.1). Second, they provide tutorial content
and introductory materials, which will be explained in Section 6.1.2.
Third, they provide Lyric App Customizer (Section 4.3.2), which
operates as follows.

First, a programmer can specify a lyric app’s URL and an op-
tional song URL to play in the app. Then, Lyric App Customizer
loads the app’s URL, with an optional query parameter specifying
the song URL, in its <iframe> component. Next, the framework’s
client library in the lyric app triggers an onAppReady event (Fig-
ure 2), and the musical piece becomes playable in the lyric app.
Lyric App Customizer keeps communicating with the lyric app to
update information on the playback position and customization
parameters (triggering onAppParameterUpdate events in the lyric app
when necessary) through the Web Messaging API, which is a web
standard for inter-frame communication.

5.3 Client Library for Building Lyric Apps
To use the TextAlive App API for building lyric apps, a programmer
can use an “npm” package or load the library with a <script> tag.

The media information here comprises metadata that is specifed
upon registration to a framework server (e.g., the musical piece URL,
lyrics URL, artist name, and song title) and runtime information
retrieved from the embedded media. For playing audio, we currently
support audio fles (uploaded to a framework server or hosted
by the musician or programmer) and videos uploaded to video-
sharing services (YouTube and Niconico). Our client library wraps
the original APIs (HTML DOM API for audio elements, YouTube
Player API, and Niconico Video Player API) and provides a unifed
API for playback control. As the original APIs only report playback
positions intermittently, the library stores the last-reported position
along with the UNIX timestamp to enable the programmer to access
the current precise playback position at any time.

The resulting time-coded information is represented as object
instances of lyric and musical element classes. The framework’s au-
tomatic analysis has varying time windows (e.g., lyric vocalization
timings have a 10-ms precision, while valence and arousal anal-
ysis has a 15-s precision), and the classes have internal methods
to appropriately interpolate values for analysis results with larger
time windows. The time-driven API looks for the corresponding
information in the objects, which are stored as sorted arrays, by
using a fast binary search algorithm.

6 DESIGN SPACE EXPLORATION
To explore the design space of the novel media format of lyric apps,
we made the framework publicly available on September 18, 2020
with 11 example applications and collected 52 new applications
through an annual programming contest held twice. This section
describes the procedure for this design space exploration. We also
report the results, which revealed eight representative categories
of lyric apps, and the usage statistics and a user study to briefy
evaluate the framework’s efectiveness.

https://developer.textalive.jp
https://github.com/TextAliveJp/textalive-app-api
https://www.npmjs.com/package/textalive-app-api

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

Interactive lyric sheets Lyric tiles Lyric app danceA B C

6

7

8

119
10

4 5

2

1

3

Figure 4: Three of the 11 example applications that we built and provided on the framework via open-source distribution (more
details in Appendix B).

6.1 Programming Contests
We conducted annual programming contests in 2020 and 2021 in
collaboration with Crypton Future Media, Inc., a music technology
company famous for the singing voice synthesizer Hatsune Miku.
The programming contests were held as part of a larger annual
exhibition called Magical Mirai [7]. The exhibition included live
music and stage performances that attracted people who enjoy
music and participate in creative culture.

The contests had three primary goals: to examine the design
space of lyric apps with open-minded programmers interested in
creative culture, to verify the framework effectively supports non-
author programmers with diverse expertise in programming, and
to enliven the lyric app community.

6.1.1 Rules and Procedures. The contests were called the Magical
Miral 2020 & 2021 Programming Contests [5, 6]. They were open
to the public and held completely online, except for the winner
announcements at the annual exhibition stages. We provided a
dedicated set of musical pieces and lyrics with appropriate permis-
sion for online streaming so that the contestants could focus on
development. We did not hold any in-person or online hands-on
activities during the contests. Instead, we provided introductory
materials as described in Section 6.1.2. We occasionally answered
technical questions on Twitter and Gitter. We asked the contestants
to submit the source code of static web applications and their build
instructions so that the lyric apps could be safely hosted on our
standard web servers and anyone could execute and play with them.

We selected the winners (one winning team and three honorable-
mention teams per year) according to three evaluation criteria: the
aesthetic quality of the lyric-driven performance, innovative use of
technology, and the technical completeness and compatibility of
the implementation. These criteria were listed on the programming
contest websites from the beginning. The contestants voluntarily
attended, and the winners received non-monetary awards: a cer-
tificate, assorted goods, and a ticket to enjoy a live music concert,
with a market price of several hundred dollars.

After announcing the winners at Magical Mirai’s annual ex-
hibition stage [7], we distributed an online questionnaire to the
contestants that asked for feedback on the programming contest.
The questionnaire results will be reported in Section 6.3.3.

6.1.2 Tutorial Content and Example Applications. When we made
the framework available to the public, we also published tuto-
rial content and introductory materials on the framework website

(https://developer.textalive.jp). The tutorial provided an overview of
the framework and a step-by-step walkthrough to start developing
lyric apps. The introductory materials included API documentation,
explanation videos, and open-source examples. We implemented 11
examples to demonstrate the framework’s use, available on GitHub
(https://github.com/TextAliveJp) under an MIT License. Here, we
briefly explain three of them, shown in Figure 4.

The first example, interactive lyric sheets, gradually shows lyrics
text along with the music playback through CSS transitions○1 . For
improved aesthetics and readability, the text has varying font colors
that depend on the POS○2 . Besides reading the lyrics text, the user
can click any part of it to jump to the corresponding position in the
musical piece. With Lyric App Customizer, a user can customize
the background gradation and share the resulting lyrics sheets
with others○3 . This lyric app also has basic playback control and
copyright display○4 , as well as a translucent seekbar○5 . While we
sought to write comprehensible code and inserted many comments,
this app amounts to just 237 lines (160 excluding comments.)

The second example, lyric tiles, shows a two-dimensional grid
of tiled squares via the HTML5 Canvas API ○6 . Each square can
display a single character of lyrics text ○7 . The user can use mouse
or touch interaction to navigate the grid smoothly, and the lyrics
text gradually fills the neighboring tiled squares in response to
navigation ○8 . Every time the user plays a musical piece, he or she
can improvise new paths to navigate the grid and fill the squares,
thus yielding a creative experience similar to drawing pixel art.

The third example, lyric app dance, shows a small, chubby (so-
called “chibi”-style) 3D character model in a stage scene by using
Three.js ○9 . The character dances to the music playback while
particle effects and floating lyrics enliven the scene○10 . The motion
patterns are dynamically generated in response to various musical
elements such as beats and repetitive segments in a musical piece.
With Lyric App Customizer, a user can customize the character
model and multiple color properties of the stage scene. Even when
the customizer is not available (i.e., if the lyric app is executed by
directly specifying its URL), the lyric app shows its own parameter
tuning interface for interactive experience ○11 .

While we carefully designed these examples to demonstrate
the framework’s features, we wanted them to be compatible with
various browser environments on personal computers, tablets, and
smartphones, as they served as introductory materials. This policy
prevented us from using several interesting web-standard APIs for
technologies such as geolocation, accelerometers, and Bluetooth.

https://twitter.com/TextAliveJp
https://gitter.im/textalive-app-api/community
https://developer.textalive.jp
https://github.com/TextAliveJp

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

Extended reality (2021-1) Authoring tool (2020-29) Creative application (2021-7)

Game (2021-19)

Instrument (2021-18)

Interactive lyric video (2020-28)Augmented music video (2021-12) Generative lyric video (2021-5)

1 432

5 876

Figure 5: Representative examples of the eight lyric app categories collected in the programming contests, with screenshots
courtesy of Crypton Future Media, Inc. Details and more examples of the diversity of visual styles are given in Appendix C.

6.2 Eight Lyric App Categories
The two contests lasted 47 and 77 days and attracted 32 and 20 ap-
plications, respectively. It is unclear why the second year attracted
fewer applications despite having a more extended development
period. A possible explanation is that the second-year contestants
saw the quality of the lyric apps by the first-year winners, which
caused some novices to hesitate to submit their applications.

All of the submitted lyric apps were complete and executable. To
understand the characteristics of the surprisingly diverse set of lyric
apps, we wrote short text descriptions of them (see Appendix C). As
a result, we revealed eight representative categories of lyric apps,
which are explained below. Figure 5 shows notable examples of
each category. Later, we provide a more detailed analysis of the
source code (Section 6.3.2).

We generated the eight categories via the following three steps.
First, by picking common keywords that appeared multiple times
while excluding keywords that were too common (e.g., kinetic ty-
pography), we obtained three initial categories of “extended reality,”
“generative lyric video,” and “game.” Then, we carefully examined
the lyric apps that did not fit into any of these categories to ob-
tain the “creative application,” “instrument,” and “augmented music
video” categories. While all examples fell into at least one of these
six categories, we noticed that some categories could be better ex-
plained when they were divided into subcategories based on the
interaction capabilities. Specifically, some generative lyric video
applications did not accept user input, but other generative appli-
cations were interactive and thus fell into a new “interactive lyric
video” category. In addition, some creative applications did not al-
low users to seek or rewind the playback position and instead made
them focus on an improvisational experience. In contrast, other
creative applications allowed users to repetitively listen to musical
pieces and made them focus on content creation, thus yielding a
new “authoring tool” category. In the end, there were nine extended
reality applications, six authoring tools, six creative applications,
three instruments, six games, two augmented music videos, and
five interactive and 16 generative lyric videos.

6.2.1 Extended (virtual or augmented) reality. This sort of applica-
tion focuses on an immersive experience in a virtual 2D/3D scene,
or it adds a visual layer of lyric-driven performance to the real world
with a camera input. Users can thus feel as if they are in the world
of a musical piece. One example was dedicated to a specific musical
piece and showed a classroom in a school, where the user could
freely navigate and find hidden perks related to the story in the
lyrics (2021-1). Another example used the WebVR API and allowed
the user to dive into a virtual space with supported VR headsets
(2020-25). The augmented reality applications used various libraries,
such as AR.js to overlay a cube with lyric characters in front of cam-
era images (2020-8), and Tensorflow.js to detect the user’s posture
and improvise visual effects on a camera image (2020-31).

6.2.2 Authoring tool. This sort of application allows users to cre-
ate and elaborate a derivative work synchronized with a musical
piece, and optionally to share it with others. One example (2021-3)
allowed the user to place various visual components that comprised
lyric videos on the screen, thus creating a music video on the fly.
The components included placeholders for the lyrics text, particle
effects, animated character images, and so on. A more complex
example (2020-29) was an authoring environment for projection
mapping. It allowed the user to place visual components on prede-
fined surfaces in a virtual 3D space. It then showed new browser
windows displaying animations for the predefined surfaces, which
could be used for projection mapping in the real world. Another
example (2020-11) showed a 3D singing character and allowed the
user to configure various properties to animate her.

6.2.3 Creative application. This sort of application allows the user
to interact with a musical piece creatively and actively. Unlike an
authoring tool, this category typically does not allow the seek op-
eration and instead focuses on improvisational experiences. Such
experiences included drawing illustrations (2020-26, 2021-7), touch
interactions to put musical notes on the screen that would start
dancing during the chorus (2021-9), and control of character move-
ments in a virtual space, whose trajectories were visualized with
specific brush-stroke styles (2021-11, 2021-15).

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

6.2.4 Instrument. Here, the application serves as an instrument
that actively participates in the musical performance. One applica-
tion captured the user’s hand motions by analyzing camera images
withMediaPipe.js, and it then rendered virtual glow sticks (2021-18).
Another example used the Web MIDI API to receive MIDI signals
from hardware devices and allowed the user to play musical instru-
ments along with the music playback (2020-3). A more straightfor-
ward approach played prerecorded audio effects in response to user
actions (2021-8).

6.2.5 Game. This sort of application has specific rules and scoring
systems to encourage the user to achieve goals and get high scores.
Through our framework, the user can choose the musical piece to
play. All of the collected examples in this category implemented
a musical rhythm game in which the user had to interact quickly
with lyric characters. One example allowed a player character on a
live performance stage to hit approaching lyric characters (2021-19).
Another example showed lyric phrases on dynamically generated
winding paths and allowed the player to touch lyric characters
(2021-16). Every example had dedicated interaction between the
user and lyric characters.

6.2.6 Augmented music video. This sort of application shows an
original music video and augments its playback with an interactive
experience. One example, which was dedicated to a specific musical
piece, displayed the music video on the bottom right and repro-
duced almost identical scenes with dynamically rendered visual
components (2021-12). The video and the reproduced scenes were
mostly synchronized, and the user could interact with specific visual
components related to the underlying lyrics. For instance, when the
lyrics described a puppet and the video showed a morphing pup-
pet, the reproduction showed a puppet that the user could morph
by mouse or touch interaction. Another example could play any
musical piece with the corresponding music video, and it offered a
theater-like scene in which the lyrics and other visual components
appeared and were animated in synchrony with the music and
video playback (2020-6).

6.2.7 Interactive lyric video. This sort of application dynamically
renders lyric videos and adds some interactivity. In one example,
the lyrics scrolled while the song played, and the user could grab
the lyrics with a mouse or touch operation to change the playback
position (2020-28). In another example, the words of vocalized lyric
characters gradually gathered together in the center of a 3D space,
and the lyrics repeatedly came and went as the music playback
progressed (2020-7). The user could rotate the gathered characters
with a touch operation and view them from any angle.

6.2.8 Generative lyric video. This sort of application dynamically
renders lyric videos and may support variable aspect ratios and
frame rates, depending on the user’s hardware. It typically allows
the seek operation. Otherwise, the user cannot interact with the
content. Many applications in this category provided a similar
experience to lyric videos but in an artistic style that was intrinsic
to the user. The artistic style reflected a tight relationship between
the transformation of visible graphics and the timings of lyrics and
other musical elements. Certain exceptional examples did not look
like ordinary lyric videos. For instance, one example divided the
musical piece and an illustration into equal numbers of segments;

then, it gradually placed the illustration segments on the screen as
the music playback progressed, and the illustration was complete
when the playback ended (2021-5). Another example used an NLP
technique to replace lyric words with different words that had the
same phonetic counts, thus generating a parody song (2020-32).

6.2.9 Limitations of Programming Contests. Regarding the limi-
tations of the programming contests, first, we only observed suc-
cessful applications. They gave evidence that a certain number of
programmers could use the framework to build lyric applications,
but they did not necessarily indicate that novices could use it. Still, it
is noteworthy that several contestants reported in the post-contest
questionnaire that they were indeed novices, in some cases, without
any prior experience in building web applications.

Second, the competitive format of the contests put significant
pressure on the contestants to develop applications that would
appeal to the jury. Here, we saw two potential concerns impacting
the validity of this study: (a) such pressure could have prevented a
fair evaluation of the framework’s effectiveness; and (b) the pressure
could have affected the variety of applications. Regarding issue
(a), as the framework developers, we were members of the jury,
which might have dissuaded the contestants from complaining
about technical issues. We aimed to address this issue in three ways:
(1) We ensured that half of the jury members were not framework
developers. (2) We opened an online forum for open discussion of
technical issues, and we clarified that the contest format did not
evaluate the development process, thereby relieving the contestants
from feeling reluctant to complain about technical issues. (3) We
investigated the submitted source code and found no significant
mitigations for technical issues.

Regarding issue (b), in comparison with immediate or short-term
studies in controlled setups, which were criticized by a recent study
on creativity support tools [38], our case potentially attracted a
wider variety of participants and gave them more opportunity to
master the framework. In other words, this can be considered a lon-
gitudinal study because the framework was publicly available for
over two years. In addition, we carefully considered the evaluation
criteria for the programming contest. If the criteria only focused
on artistic quality, the contest would have been like a creative com-
petition with the contestants focused on aesthetic qualities. On the
other hand, if the criteria only focused on technical completeness,
the contest would have been like a programming competition focus-
ing on technical challenges. Accordingly, we specified the criteria
(Section 6.1.1) to balance these two aspects. We believe this left the
choice to the contestants on how to develop the aesthetic qualities
of their apps and approach the creative and technical challenges.

6.3 Framework Evaluation
In this subsection, we report additional evaluations to understand
the effectiveness of the framework.

6.3.1 Usage Statistics. The public release of our framework was on
September 18, 2020. To measure its use for lyric app development,
since September 22, 2021, we have asked users to generate an access
key to identify each lyric app when they accessed the REST API
server. As of September 13, 2022, the registration database counts

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

448 lyric apps developed by 396 unique users. To maintain compat-
ibility, we allow REST requests without the access key, and as such,
there could be more outdated apps in the wild.

GitHub reports that the framework’s repository has 78 stars
(programmers’ reactions expressing their appreciation and interest),
and that ≥ 67 projects with public code on GitHub depend on the
framework. Moreover, 30 contestants open-sourced their lyric apps
to enliven the community. Overall, these statistics indicate that the
framework has been steadily used without signifcant issues.

6.3.2 Source Code Analysis. We analyzed the source code of all 52
contest submissions, of which 16 had codebases that were partially
derived from our examples. Still, their difs were so signifcant that,
in most cases, they only shared the build pipeline (Parcel to pack
the program) with the original examples. Everything else, such as
the interaction design and visual styling of the lyric apps, was done
by the contestants.

We could confrm that the framework’s time-driven API worked
with various graphics APIs and creative coding libraries, including
p5.js, Three.js, Create.js, PixiJS, glslify, GSAP, PlayCanvas, and
Phaser (see Appendix C for a complete list). In addition, many
contestants used GUI libraries such as jQuery, React, Vue.js, and
Svelte to help make their lyric apps interactive. Some also used
user interface components (e.g., Tweakpane and dat.gui) to allow
end-user customizations. Contestants also embedded static images,
web fonts, and stylesheets to enrich their visual styles, and some
used Lottie, a library to import animations based on Adobe After
Efects. These diverse results demonstrate not only the framework’s
capability but also its low threshold and high ceiling in terms of
development skill.

We investigated the source code further and found that many
contestants implemented their own “scene manager.” In a typical
case, the manager was initialized upon loading a musical piece. It
then analyzed the macro-level musical structure (e.g., intro, repet-
itive segments, and outro) and prepared for music playback by
instantiating visual-efect components. During playback, the scene
manager managed the state transitions between musical scenes and
the switching between visual-efect components. We discuss future
work to support this design pattern in Section 7.1.3.

6.3.3 Qalitative User Feedback. We collected qualitative user feed-
back from the contestants with a web-based questionnaire that
asked for general comments in freeform text. We received 21 and
15 responses in the respective years. The contestants reported that
they greatly appreciated the programming contests as opportuni-
ties to contribute to creative culture. They also provided positive
feedback on the framework, as well as a small number of non-fatal
bug reports that could easily be addressed.

The second year’s questionnaire asked for more details about
the contestants’ application development experience. The answers
were diverse, ranging from no prior experience to six years of pro-
fessional JavaScript programming experience; thus, the answers
aligned with our source code analysis, which indicated a low thresh-
old and a high ceiling of the framework. Notably, one-third of the
respondents had virtually no prior experience with JavaScript pro-
gramming, and we examine their motivations in Section 7.2.

The second questionnaire also asked whether the contestants
were satisfed with the time-driven API, and whether they felt

the need for new event listeners for lyric and musical elements,
such as player.addEventListener("phraseEnter", listener) . The an-
swers were mostly positive regarding the current API design. While
the contestants did use the event listeners for state management
(Section 4.2.1), they considered the time-driven API reasonable and
useful for real-time multimedia performance. One contestant con-
sidered more event types would be better, but the rest did not see
this need. Another contestant mentioned wanting to plan complex
scene changes, for which the current API was insufcient. This
echoed the need for the scene manager, as revealed in the source
code analysis.

7 DISCUSSION
As we are the frst to propose lyric apps, this particular media format
is currently a niche format; however, this work also contributes
unique, generalizable knowledge to three diverse audiences.

First, music-related researchers and the music industry have
discussed the importance of enabling interactive user experiences
around musical content (e.g., [10]), and lyric apps are a promising
solution. Our framework is the frst to provide a streamlined lyric
app development experience, which marks a signifcant technical
milestone in pushing lyric apps toward the cultural mainstream.
Second, we developed the time-driven API, thus providing insights
for future work on general time-sensitive interactions, as explained
below in Section 7.1. Third, our framework allows musicians to
customize and distribute interactive musical applications. As this
makes programming matter to them, it can lead to an exciting line
of future work on connecting programmers and artists through
application development, as discussed in Section 7.2.

7.1 Insights for Time-driven API
As briefy mentioned in Section 6.3.3, we received positive feedback
on the time-driven API, with which programmers could successfully
implement interactive efects along a musical piece’s timeline. The
source code analysis revealed an anti-pattern, a successful design
pattern, and the importance of reusable components, as discussed
below in Section 7.1.1. These observations led us to insights on
potential improvements to support lyric app modularity, as explored
in Section 7.1.2 and Section 7.1.3. These insights have the potential
for application in programming general time-sensitive interactions,
such as synchronized audio and visual performances and physical
interactions using sensors and actuators.

7.1.1 Reusable Components in Lyric Apps. Almost all of the col-
lected lyric apps generated visuals with rendering functions pro-
vided by graphics APIs and creative coding libraries (see Sec-
tion 4.2.2). Such generative algorithms could be implemented via
a single, huge rendering function composing various kinds of in-
formation, but we consider this an anti-pattern because it typically
results in monotonous visuals. Among the analyzed codebases, we
observed a successful design pattern that implemented that func-
tionality through many subfunctions, which served as reusable
components and improved the code’s modularity.

7.1.2 Time-range-driven API. In implementing reusable compo-
nents for lyric apps, it is noteworthy that a component’s lifecycle is
often tied to a specifc time range when a musical element is audible,

https://parceljs.org
https://p5js.org
https://threejs.org
https://createjs.com
https://pixijs.com
https://github.com/glslify/glslify
https://greensock.com/gsap
https://playcanvas.com
https://phaser.io
https://jquery.com
https://reactjs.org
https://vuejs.org
https://svelte.dev
https://cocopon.github.io/tweakpane
https://github.com/dataarts/dat.gui
https://airbnb.io/lottie

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

such as a beat or a singing voice in a phrase. In the submitted code,
we found a recurring pattern of checking whether the playback
position entered or left such ranges. In one example, a particle
manager stored the result of a previous call of player.findBeat and
compared it with the last call to decide whether to instantiate or
destroy particle efects.

Hence, we can generalize this design pattern and support it in
our framework with a new API to calculate changes like this:

player . findBeatChange (previousPosition , currentPosition);
// returns the following tuple :
// { currentBeat , enteredBeats , leftBeats }

While common event-driven APIs notify an application of the occur-
rence of a one-time event, this novel time-range-driven API would
look for all the time-coded information relevant to the specifed
time range (see Appendix A for illustrated explanations).

Such an extension of the proposed time-driven API would have
additional benefts for lyric apps. First, it would maintain the
framework-agnostic nature of the getter methods, thus support-
ing the use of various graphics APIs. Second, it would naturally
support querying of changes in a custom time range, which would
be useful for implementing animated transitions. For instance, to
start a transition, a query to search for a chorus 5 seconds after the
current playback time could be written like this:

player . findChorusChange (previousPosition , currentPosition
+ 5000) ;

7.1.3 User-defined Time Ranges. Finally, many of the submitted
applications divided a musical piece into multiple time ranges corre-
sponding to specifc scenes in a lyric-driven performance. Typically,
a scene manager was implemented to manage the lifecycles of
reusable components in response to scene changes. Our framework
cannot predefne such time ranges, because they are the creative
outcome of the programmer’s efort to understand the structure of a
musical piece. To aid such scene management, we could extend the
framework with an API to defne time ranges and to query changes
in their status, e.g., player.createTimeRange(startTime, endTime) and

player.findTimeRangeChange(timeRange, curPos, prevPos) .

7.2 Addition of Interactivity to Existing Media
Lyric apps are not built from the ground up but add novel interactive
capabilities to existing musical pieces. Here, we discuss the benefts
of this augmenting approach and interesting topics for future work.

7.2.1 Kickstarting of Creativity. We observed that the framework
appealed to a wider community than the typical creative coding
community, and it encouraged the contestants to publicly present
their outcomes. One contestant (2020-10) commented that they
usually did not (or even could not) participate in this kind of com-
petition. However, their love for music drove them to develop and
submit a lyric app. While there is increasing interest in creative
coding culture, not all programmers feel confdent that they are
“creative” enough to enjoy creative coding.

Lyric apps allow such programmers to rely on existing musical
pieces for the “creative” part and thus kickstart their programming
activities. Programming itself is a creative activity, and we were
pleased to see that lyric apps gave opportunities for more people

to unleash their creativity. We believe that lyric app development
could form a useful part of a computer science education curriculum.
Furthermore, our future work could also investigate mixtures of
creative coding and other kinds of static media content.

7.2.2 Programming as Communication. In developing lyric apps,
programmers may listen to musical pieces and read lyrics many
times. This experience may inspire them to come up with ideas for
compelling, lyric-driven performances. Just as lyric videos enable
collaborations between musicians and motion graphic designers,
lyric apps present a novel opportunity for musicians to collaborate
with programmers. Programming environments are often designed
as mere computational artifacts, but they can be far more social
and collaborative when programming activities are part of commu-
nication [18]. Indeed, one contestant who developed an augmented
music video (2021-12) contacted the original songwriter and video
author, and together, they enjoyed creating derivative work.

During one of the Magical Mirai’s exhibition stages to announce
the winners of the programming contest, Hiroyuki Itoh, the CEO
of Crypton Future Media, Inc. and an expert on the music industry,
commented on the tight relationship between music and technol-
ogy: The way musicians deliver music to audiences has always been
afected by inventions, from woodworking technology to manufac-
ture pianos to networking and encoding technologies to stream music.
These technologies challenge musicians, and musical content has al-
ways adapted to technological shifts. I look forward to the future
of music and lyric apps co-created by musicians, programmers, and
audiences. It is not uncommon for musicians today to take on the
role of a producer who envisions the best way to deliver musical
content, and we foresee that musicians will be positively involved
in collaborative lyric app development.

7.2.3 Future Work on Creative Culture. In the age of media con-
vergence [14], the value of media content is not self-contained
but should be considered holistically, by including the value chain
of relevant derivative work created by amateur artists and social
engagement by audiences.

Research on creativity support has been long criticized for the
lack of studies in the wild [8]. Our framework can potentially serve
as a socio-technical testbed for such phenomena, but as discussed
in Section 6.2.9, the programming contest format made the contes-
tants conservative in their technical choices, such as avoiding the
use of web APIs for social interaction. Additionally, they avoided
experimental web APIs (there were a few exceptions, such as the
Web MIDI API (2020-3) and WebVR API (2020-25)), and they could
not use server-side JavaScript engines such as Node.js. We believe
that keeping testing the framework in the wild would be an inter-
esting future work, potentially leading to novel lyric app categories
and new studies on creative culture.

8 CONCLUSION
This paper has proposed a novel media format called lyric apps,
examined the format’s characteristics, and highlighted the technical
challenges in developing such apps. We developed a framework to
address the technical challenges and deployed it in the wild through
two programming contestants, which revealed eight representative
categories of lyric apps and insights for future work.

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

ACKNOWLEDGMENTS
The programming contests were administered by Crypton Future
Media, Inc. We sincerely appreciate our collaboration with them,
which was based on a shared belief in the potential of novel tech-
nology to support creativity. The contests were only successful
because of the passionate participants. We sincerely appreciate
efforts and are happy to share their creations as part of this first
academic exploration in the design space of lyric apps.

We thank our collaborators at AIST for their development that
contributes to the web-based workflow of the framework: Tomoy-
asu Nakano for lyric timing analysis, Kento Watanabe for POS
estimation, and Yuta Kawasaki and Takahiro Inoue for external
servers for semiautomatic analysis.

This work was supported in part by JST CREST Grant Number
JPMJCR20D4, JST ACCEL Grant Number JPMJAC1602, and JST
ACT-X Grant Number JPMJAX22A3, Japan.

REFERENCES
[1] björk. 2011. björk: full biophilia app suite. https://www.youtube.com/watch?v=

dikvJM__zA4. Accessed on September 13th, 2022.
[2] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-Driven

Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(Dec. 2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[3] Matthew Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Authoring
and Publishing Interactive Articles on the Web. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). Association for Computing Machinery, New York, NY, USA, 977–989.
https://doi.org/10.1145/3242587.3242600

[4] SyncPower Corporation. 2022. SyncPower. https://syncpower.jp/en. Accessed
on September 13th, 2022.

[5] Crypton Future Media, Inc. 2020. Hatsune Miku “Magical Mirai” Programming
Contest 2020. https://magicalmirai.com/2020/procon. Accessed on January 23rd,
2023.

[6] Crypton Future Media, Inc. 2021. Hatsune Miku “Magical Mirai” Programming
Contest 2021. https://magicalmirai.com/2021/procon. Accessed on January 23rd,
2023.

[7] Crypton Future Media, Inc. 2023. Hatsune Miku “Magical Mirai”. https:
//magicalmirai.com/. Accessed on January 23rd, 2023.

[8] Jonas Frich, Michael Mose Biskjaer, and Peter Dalsgaard. 2018. Twenty Years of
Creativity Research in Human-Computer Interaction: Current State and Future
Directions. In Proceedings of the 2018 Designing Interactive Systems Conference
(Hong Kong, China) (DIS ’18). Association for Computing Machinery, New York,
NY, USA, 1235–1257. https://doi.org/10.1145/3196709.3196732

[9] Hiromasa Fujihara, Masataka Goto, Jun Ogata, and Hiroshi G. Okuno. 2011.
LyricSynchronizer: Automatic Synchronization System Between Musical Audio
Signals and Lyrics. IEEE Journal of Selected Topics in Signal Processing 5, 6 (2011),
1252–1261. https://doi.org/10.1109/jstsp.2011.2159577

[10] Masataka Goto and Roger B. Dannenberg. 2019. Music Interfaces Based on
Automatic Music Signal Analysis: New Ways to Create and Listen to Music. IEEE
Signal Processing Magazine 36, 1 (Jan. 2019), 74–81. https://doi.org/10.1109/MSP.
2018.2874360

[11] Masataka Goto, Jun Ogata, and Kouichirou Eto. 2007. PodCastle: a web 2.0
approach to speech recognition research. In Proceedings of the 8th Annual Confer-
ence of the International Speech Communication Association (Antwerp, Belgium)
(INTERSPEECH ’07). ISCA, 2397–2400. https://doi.org/10.21437/Interspeech.2007-
183

[12] Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara, Matthias Mauch, and
Tomoyasu Nakano. 2011. Songle: A Web Service for Active Music Listening
Improved by User Contributions. In Proceedings of the 12th International Society
for Music Information Retrieval Conference (Miami, Florida, USA) (ISMIR ’11),
Anssi Klapuri and Colby Leider (Eds.). University of Miami, 311–316. https:
//ismir2011.ismir.net/papers/OS4-1.pdf

[13] Masataka Goto, Kazuyoshi Yoshii, and Tomoyasu Nakano. 2015. Songle Widget:
Making Animation and Physical Devices Synchronized with Music Videos on
the Web. In 2015 IEEE International Symposium on Multimedia (ISM). 85–88.
https://doi.org/10.1109/ISM.2015.64

[14] Henry Jenkins. 2006. Convergence Culture: Where Old and New Media Collide.
New York University Press.

[15] Henry Jenkins. 2009. Confronting the challenges of participatory culture: Media
education for the 21st century. The MIT Press.

[16] Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015. TextAlive: Integrated
Design Environment for Kinetic Typography. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
3403–3412. https://doi.org/10.1145/2702123.2702140

[17] Jun Kato, Masa Ogata, Takahiro Inoue, and Masataka Goto. 2018. Songle Sync: A
Large-Scale Web-Based Platform for Controlling Various Devices in Synchroniza-
tion with Music. In Proceedings of the 26th ACM International Conference on Multi-
media (Seoul, Republic of Korea) (MM ’18). Association for Computing Machinery,
New York, NY, USA, 1697–1705. https://doi.org/10.1145/3240508.3240619

[18] Jun Kato and Keisuke Shimakage. 2020. Rethinking Programming “Environ-
ment”: Technical and Social Environment Design toward Convivial Comput-
ing. In Conference Companion of the 4th International Conference on Art, Sci-
ence, and Engineering of Programming (Porto, Portugal) (<Programming> ’20).
Association for Computing Machinery, New York, NY, USA, 149–157. https:
//doi.org/10.1145/3397537.3397544

[19] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery,
New York, NY, USA, 280–290. https://doi.org/10.1145/2807442.2807446

[20] Clemens N. Klokmose, Christian Remy, Janus Bager Kristensen, Rolf Bagge,
Michel Beaudouin-Lafon, and Wendy Mackay. 2019. Videostrates: Collaborative,
Distributed and Programmable Video Manipulation. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
233–247. https://doi.org/10.1145/3332165.3347912

[21] Taku Kudo. 2013. MeCab: Yet Another Part-of-Speech and Morphological Ana-
lyzer. https://taku910.github.io/mecab/. Accessed on November 11th, 2022.

[22] Yuli Levtov. 2018. Algorithmic Music for Mass Consumption and Universal
Production. In The Oxford Handbook of Algorithmic Music, Alex McLean and
Roger T. Dean (Eds.). Oxford University Press, Chapter 34, 627–644. https:
//doi.org/10.1093/oxfordhb/9780190226992.013.15

[23] Jen-Chun Lin, Wen-Li Wei, Yen-Yu Lin, Tyng-Luh Liu, and Hong-Yuan Mark Liao.
2020. Learning From Music to Visual Storytelling of Shots: A Deep Interactive
Learning Mechanism. In Proceedings of the 28th ACM International Conference on
Multimedia (Seattle, WA, USA) (MM ’20). Association for Computing Machinery,
New York, NY, USA, 102–110. https://doi.org/10.1145/3394171.3413985

[24] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit. CoRR
cs.CL/0205028 (2002). https://arxiv.org/abs/cs/0205028

[25] LyricFind Inc. 2022. LyricFind. https://www.lyricfind.com/. Accessed on
September 13th, 2022.

[26] LyricsTraining.com. 2011. Learn Languages with Music Videos, Lyrics and
Karaoke! https://lyricstraining.com/. Accessed on September 13th, 2022.

[27] Alex McLean and Roger T. Dean. 2018. The Oxford Handbook of Algorithmic Music.
Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190226992.001.
0001

[28] Musixmatch s.p.a. 2022. Musixmatch Developer API. https://developer.
musixmatch.com/. Accessed on September 13th, 2022.

[29] Opal Limited. 2016. Brian Eno : Reflection. https://apps.apple.com/us/app/brian-
eno-reflection/id1180524479. Accessed on September 13th, 2022.

[30] Justin Paterson and Rob Toulson. 2015. Interactive digital music: enhancing
listener engagement with commercial music. In Innovation in Music II, Justin
Paterson, Rob toulson, Jay Hodgson, and Russ Hepworth-Sawyer (Eds.). KES
Transactions on Innovation in Music, Vol. 2. Future Technology Press, Shoreham-
by-Sea, UK, 193–209. https://repository.uwl.ac.uk/id/eprint/2526/

[31] Amy Pavel, Colorado Reed, Björn Hartmann, andManeesh Agrawala. 2014. Video
Digests: A Browsable, Skimmable Format for Informational Lecture Videos. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and
Technology (Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Ma-
chinery, New York, NY, USA, 573–582. https://doi.org/10.1145/2642918.2647400

[32] Matt Pearson. 2011. Generative Art: A Practical Guide Using Processing. Manning
Publications Co., Shelter Island, NY, USA.

[33] AIST Songle Project. 2023. Songle. https://songle.jp. Accessed on February 6th,
2023.

[34] AIST TextAlive Project. 2023. TextAlive – Create, Watch, and Write Code for
Lyric Videos Online. https://textalive.jp. Accessed on February 6th, 2023.

[35] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and
Clemens N. Klokmose. 2017. Codestrates: Literate Computing with Webstrates.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 715–725. https://doi.org/10.1145/3126594.3126642

[36] Reality Jockey Ltd. 2012. RjDj. https://web.archive.org/web/20120730133514/http:
//rjdj.me/. Accessed on September 13th, 2022 (Archived on July 30th, 2012).

[37] Casey Reas and Ben Fry. 2014. Processing: A Programming Handbook for Visual
Designers and Artists, Second Edition. The MIT Press.

[38] Christian Remy, Lindsay MacDonald Vermeulen, Jonas Frich, Michael Mose
Biskjaer, and Peter Dalsgaard. 2020. Evaluating Creativity Support Tools in HCI

https://www.youtube.com/watch?v=dikvJM__zA4
https://www.youtube.com/watch?v=dikvJM__zA4
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3242587.3242600
https://syncpower.jp/en
https://magicalmirai.com/2020/procon
https://magicalmirai.com/2021/procon
https://magicalmirai.com/
https://magicalmirai.com/
https://doi.org/10.1145/3196709.3196732
https://doi.org/10.1109/jstsp.2011.2159577
https://doi.org/10.1109/MSP.2018.2874360
https://doi.org/10.1109/MSP.2018.2874360
https://doi.org/10.21437/Interspeech.2007-183
https://doi.org/10.21437/Interspeech.2007-183
https://ismir2011.ismir.net/papers/OS4-1.pdf
https://ismir2011.ismir.net/papers/OS4-1.pdf
https://doi.org/10.1109/ISM.2015.64
https://doi.org/10.1145/2702123.2702140
https://doi.org/10.1145/3240508.3240619
https://doi.org/10.1145/3397537.3397544
https://doi.org/10.1145/3397537.3397544
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3332165.3347912
https://taku910.github.io/mecab/
https://doi.org/10.1093/oxfordhb/9780190226992.013.15
https://doi.org/10.1093/oxfordhb/9780190226992.013.15
https://doi.org/10.1145/3394171.3413985
https://arxiv.org/abs/cs/0205028
https://www.lyricfind.com/
https://lyricstraining.com/
https://doi.org/10.1093/oxfordhb/9780190226992.001.0001
https://doi.org/10.1093/oxfordhb/9780190226992.001.0001
https://developer.musixmatch.com/
https://developer.musixmatch.com/
https://apps.apple.com/us/app/brian-eno-reflection/id1180524479
https://apps.apple.com/us/app/brian-eno-reflection/id1180524479
https://repository.uwl.ac.uk/id/eprint/2526/
https://doi.org/10.1145/2642918.2647400
https://songle.jp
https://textalive.jp
https://doi.org/10.1145/3126594.3126642
https://web.archive.org/web/20120730133514/http://rjdj.me/
https://web.archive.org/web/20120730133514/http://rjdj.me/

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

Research. In Proceedings of the 2020 ACM Designing Interactive Systems Conference
(DIS ’20). Association for Computing Machinery, New York, NY, USA, 457–476.
https://doi.org/10.1145/3357236.3395474

[39] SEGA Games Co., Ltd. 2012. MikuFlick Ofcial Site | Hatsune Miku comes to the
iPhone! https://miku.sega.jp/fick/en. Accessed on January 23rd, 2023.

[40] David A. Shamma, Bryan Pardo, and Kristian J. Hammond. 2005. MusicStory:
A Personalized Music Video Creator. In Proceedings of the 13th Annual ACM
International Conference on Multimedia (Hilton, Singapore) (MM ’05). Association
for Computing Machinery, New York, NY, USA, 563–566. https://doi.org/10.
1145/1101149.1101278

[41] Valerie N. Stratton and Annette H. Zalanowski. 1994. Afective Impact of Music
Vs. Lyrics. Empirical Studies of the Arts 12, 2 (1994), 173–184. https://doi.org/10.
2190/35T0-U4DT-N09Q-LQHW

[42] TuneWiki, Inc. 2011. Lyric Legend. https://web.archive.org/web/20110208002254/
http://www.lyriclegend.com/. Accessed on September 13th, 2022 (Archived on
February 8th, 2011).

[43] Haijun Xia, Jennifer Jacobs, and Maneesh Agrawala. 2020. Crosscast: Adding
Visuals to Audio Travel Podcasts. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 735–746.
https://doi.org/10.1145/3379337.3415882

[44] Theodore Watson Zach Lieberman and Arturo Castro. 2022. openFrameworks.
https://openframeworks.cc/. Accessed on September 13th, 2022.

A EVENT-DRIVEN, TIME-DRIVEN, AND
TIME-RANGE-DRIVEN APIS

To supplement Section 4.2.2 and Section 7.1.2, we show Figure 6
and provide a detailed comparison between the ○a event-driven
(typical implementation), ○b time-driven (our proposal), and ○c
time-range-driven (novel fnding in our study) APIs in their ways
of utilizing time-coded information for time-sensitive interactions.

A.1 Event-driven API
An event-driven API fres an event and notifes its listeners as soon
as something happens. This “push” API design suits a simple use

Time-range-driven API (novel finding in our study)c

Beat

findBeatChange(A, B)
findBeatChange(C, D)
findBeatChange(A, D)

Beat[1]
Beat[2]

Beat[3]

A B C D

Beat[4]

{ current: Beat[1], entered: [], left: [] }{ current: Beat[1], entered: [], left: [] }
{ current: Beat[4], entered: [Beat[4]], left: [Beat[3]] }{ current: Beat[4], entered: [Beat[4]], left: [Beat[3]] }
{ current: Beat[4], entered: [Beat[2]~[4]], left: [Beat[1]~[3]] }{ current: Beat[4], entered: [Beat[2]~[4]], left: [Beat[1]~[3]] }

Beat

Word

Vocal
amplitude

Rendering
function

Beats played during resource shortages can be simply ignored

Programmers can query time-coded information at any specific time during playback,
take multiple types of information into account, and always generate up-to-date visuals

“I”“I” “of”“of”“think”“think”

findBeat(position)

findWord(position)

getVocalAmplitude(position)

Time-driven API (our proposal)b

onBeat

Beat

Word

Vocal
amplitude

onWordEnter onWordEnter
onWordLeaveonWordLeave

onBeat
onBeat
(7 events)

External factors (e.g., CPU overload)
might prevent from firing events constantly

Time-coded information often needs to split into
on{Type}Enter and on{Type}Leave events

Some types of time-coded information have dynamic values
and thus need to trigger events frequently

onBeatonBeat

onVocalAmplitudeUpdate
onVocalAmplitudeUpdateonVocalAmplitudeUpdate

“I”“I” “of”“of”“think”“think”

Event-driven API (typical implementation)a

Figure 6: Three diferent API designs to utilize time-coded
information in time-sensitive interactions.

case in which animations are triggered by specifc timings in music
playback. For instance, programmers can defne a musical beat
listener that gets executed every time music playback reaches a
musical beat, and that listener can trigger a ripple animation.

However, as discussed in Section 4.2.2, this design has dif-
culty in future planning, accounting for multiple types of musi-
cal elements, and achieving high timing accuracy. Furthermore,
the time-coded information cannot always be represented well
as events with specifc timings. This representation-level incon-
sistency would force programmers to write verbose listeners. For
instance, some analysis types in Table 1 represent specifc time
ranges, such as lyric timings and chords, and therefore need to
split into two events per each (e.g., onWordEnter and onWordLeave ,
onChordEnter and onChordLeave). Other types change values along
time, such as vocal amplitude, and therefore might need to trigger
events frequently (e.g., onVocalAmplitudeUpdate fring every 10-ms).

A.2 Time-driven API
In Section 4.2.2, we proposed a time-driven API that enables query-
ing relevant time-coded information by passing a specifc time
argument. The framework stores the information so that it can
return the query results quickly (e.g., binary tree sorted by times-
tamps in our implementation), and programmers write programs
to “pull” the information at their discretion.

As opposed to the event-driven API that represents every time-
coded information as discrete events with specifc timings, this time-
driven API design represents each type of information as a segment
with a specifc time range. This representation suites the nature
of the time-coded information, addressing the representation-level
inconsistency present with the event-driven API. For instance, a
lyric word is represented as a segment with a start time (when the
word starts being vocalized) and an end time (when it ends being
vocalized). A musical beat is also represented as a segment with a
start time (when the beat is hit) and an end time (when the next
beat is hit). Other types with continuously changing values, such
as vocal amplitude, can be considered as a segment that spans the
entire playback of the music piece.

A.3 Time-range-driven API
Given the user feedback and source code analysis, we discussed a
novel time-range-driven API in Section 7.1.2. While the time-driven
API looks for a segment that overlaps with the given playback
position, the time-range-driven API looks for all the segments that
overlap with the given time range. In a typical case, programmers
save the current playback position at the end of the rendering
function, and in the next function call, they use this API to look for
what have happened since the last call.

The result of the time-range-driven API is a tuple of current ,
entered , and left . Programmers can generate graphical objects
corresponding to the entered segments, pass the current segment
information to the graphical objects to render graphics, and destroy
the graphical objects of the left segments. Note that the current

property is either null or a single segment while the entered

and left properties are variable-length arrays. For instance, in an
extreme case, passing (0, duration) to the API returns a tuple like

{ current: null, entered: [all segments], left: [all segments] } .

https://doi.org/10.1145/3357236.3395474
https://miku.sega.jp/flick/en
https://doi.org/10.1145/1101149.1101278
https://doi.org/10.1145/1101149.1101278
https://doi.org/10.2190/35T0-U4DT-N09Q-LQHW
https://doi.org/10.2190/35T0-U4DT-N09Q-LQHW
https://web.archive.org/web/20110208002254/http://www.lyriclegend.com/
https://web.archive.org/web/20110208002254/http://www.lyriclegend.com/
https://doi.org/10.1145/3379337.3415882
https://openframeworks.cc/

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

B DETAILS OF EXAMPLE APPLICATIONS
To supplement Section 6.1.2, Table 2 summarizes the 11 example
applications that we developed with the framework. Three of the
examples are illustrated in Figure 7.

Every example has a public demo website on GitHub Pages,
through which programmers can instantly check the behavior.
Some examples (e.g., interactive lyric sheets) are duplicated on
CodePen, the web-based integrated development environment, to
enable programmers to immediately edit the source code via a web
browser.

C ALL PROGRAMMING CONTEST RESULTS
To supplement Section 6.2, Table 3 summarizes the 52 lyric app
examples collected from the programming contests. For each exam-
ple, the lyric app category, a short summary, any notable creative
coding libraries used, and a link to the demonstration video on
YouTube (if available) are reported.

To supplement Figure 5, more example screenshots are shown
in Figure 8. The lyric apps in these figures can be seen in action on
YouTube, via the links given in Table 3.

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 2: Summary of the 11 example applications that we developed.

ID Title and short summary Dependencies

A Interactive lyric sheets. (Section 6.1.2, Figure 4 A○, and GitHub:TextAliveJp/textalive-app-lyric-sheet)
No build tool; DOM
operations and CSS
transitions

B Lyric tiles. (Section 6.1.2, Figure 4 B○, and GitHub:TextAliveJp/textalive-app-lyric-tiles)
Parcel (build tool)
andHTML5Canvas
API

C Lyric app dance. (Section 6.1.2, Figure 4 C○, and GitHub:TextAliveJp/textalive-app-dance) Parcel and Three.js

D

Lyric char cube. (Figure 7 D○; GitHub:TextAliveJp/textalive-app-char-cube) A simple wireframe cube appears
at the center and rotates, with the six faces showing the same animated character from the lyrics text being
vocalized. This was intended to be the simplest demonstration of the framework’s use with a 3D CG creative
coding library.

Parcel and Three.js

E

Lyric mosaic. (Figure 7 E○; GitHub:TextAliveJp/textalive-app-mosaic) The lyric character being vocalized
is rendered in a mosaic-like pattern using the letters in the lyrics text. First, each character is drawn on a
dedicated, square frame buffer, and the number of filled pixels is calculated. By using the calculated results,
the characters are sorted in order of pixel fill density, and then the screen is divided into a grid of the specified
size. Each grid cell is periodically updated to show a random character that can reproduce the density in the
corresponding pixel of the vocalized character’s frame buffer.

Parcel and HTML5
Canvas API

F
p5.js example. (Figure 7 F○; GitHub:TextAliveJp/textalive-app-p5js) A canvas controlled by p5.js is populated
at the center of the screen, and a simple animation of lyrics text is shown on the canvas. This was intended to
be the simplest demonstration of the use of a popular creative coding library.

Parcel and p5.js

G

Basic example. (GitHub:TextAliveJp/textalive-app-basic) A huge DOM element is placed at the center of the
screen and shows a lyric character being vocalized. Basic playback control and several other interesting controls
are available, such as a button to jump to the position when the first lyric character starts being vocalized
and a button to jump to the beginning of the chorus. This was intended to be the simplest demonstration for
novices.

Parcel and DOM op-
erations

H

Lottie example. (GitHub:TextAliveJp/textalive-app-lottie) This example was built on the previous basic example
by adding an attractive animation in the background of the lyric character, which is drawn by loading a Lottie
file. Lottie is an animation format that is compatible with Adobe After Effects, and Lottie files can be created
by motion graphic designers. This was intended to be an example of the use of conventional motion graphic
tools in lyric app development.

Parcel and Lottie

I Parameter customization example. (GitHub:TextAliveJp/textalive-app-params) This example was built on the
previous basic example by adding the capability for customization with Lyric App Customizer (Section 4.3.2).

Parcel and DOM op-
erations with React

J Phrase and beat example. (GitHub:TextAliveJp/textalive-app-phrase.) This example was built on the previous
basic example by adding visual effects synchronized with musical beats.

Parcel and DOM op-
erations

K
Phrase and beat (script tag) example. (GitHub:TextAliveJp/textalive-app-script-tag.) This example was the
same as the previous one but was written in plain HTML/JavaScript/CSS so that no build tool was needed to
edit and publish the lyric app.

No build tool; DOM
operations

Lyric char cubeD Lyric mosaicE p5.js exampleF

Figure 7: Screenshots of three example applications listed in Table 2.

https://github.com/TextAliveJp/textalive-app-lyric-sheet
https://github.com/TextAliveJp/textalive-app-lyric-tiles
https://parceljs.org
https://github.com/TextAliveJp/textalive-app-dance
https://parceljs.org
https://threejs.org
https://github.com/TextAliveJp/textalive-app-char-cube
https://parceljs.org
https://threejs.org
https://github.com/TextAliveJp/textalive-app-mosaic
https://parceljs.org
https://github.com/TextAliveJp/textalive-app-p5js
https://parceljs.org
https://p5js.org
https://github.com/TextAliveJp/textalive-app-basic
https://parceljs.org
https://github.com/TextAliveJp/textalive-app-lottie
https://parceljs.org
https://airbnb.io/lottie
https://github.com/TextAliveJp/textalive-app-params
https://parceljs.org
https://reactjs.org
https://github.com/TextAliveJp/textalive-app-phrase
https://parceljs.org
https://github.com/TextAliveJp/textalive-app-script-tag

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

Table 3: Summary of the 52 example applications collected from the programming contests (32 from 2020, 20 from 2021).

ID Category Short summary (notable creative coding libraries used and video link, if any)
Generative kinetic typography and character performance with no interactivity (PixiJS, Three.js,2020-1 Generative lyric video three-vrm, ammo.js).

2020-2 Generative lyric video Very simple kinetic typography video with glowing visual effects.
Connection to an external MIDI device via the Web MIDI API and synthesis of chords and drum2020-3 Instrument sounds along with music playback.
Interactive fireworks animation generator synchronized with music playback, with various cus-2020-4 Creative application tomization parameters (Three.js, anime.js; Figure 8 13○, https://youtu.be/KQc3FCelKNo).

2020-5 Generative lyric video Very simple kinetic typography video using chord information (p5.js).
Theater-like spacewith themusic video embedded at the center to provide a virtual party experience2020-6 Augmented music video (React; Figure 8 17○, https://youtu.be/-t9AVVgZo5k).
Lyrics rendered in an immersive 3D space, with motions programmed to respond to the music2020-7 Interactive lyric video structure and touch interaction (PlayCanvas; https://youtu.be/mfCFLvb9IS8).

2020-8 Extended reality Augmented reality application to overlay lyrics on camera images (Three.js, AR.js).
Virtual roller coaster whose course and stable camera control are dynamically generated (Three.js;2020-9 Extended reality Figure 8 9○, https://youtu.be/sYyGA_4YbwM).
Colorful kinetic typography video in which lyrics gradually appear and disappear in synchrony2020-10 Generative lyric video with the music playback (Three.js).
A virtual singer on a stage sings a given musical piece, and various options (e.g., appearance,

2020-11 Authoring tool motion patterns) can be customized with a dedicated GUI (Three.js, three-vrm; Figure 8 11○, https:
//youtu.be/LiHmw7m5bCs).

2020-12 Generative lyric video Simple karaoke-style kinetic typography video (jQuery).
Various animations appear with lyrics text; the animation content is in the Lottie format, indicating2020-13 Generative lyric video that it was created with an external authoring tool (Lottie).
Interactive lyric sheets with vibrant animation effects on an animated background where lyrics2020-14 Generative lyric video text flows from left to right (dat.gui; Figure 8 18○, https://youtu.be/W-Sb5FbnvZI).
Fully customizable interactive graphics; a piano keyboard allows the user to touch and trigger

2020-15 Authoring tool animating effects; default values for certain parameters are calculated from a musical piece’s
information (jQuery, Lottie; https://youtu.be/ON3lUgub8ws).
Shooting game to hit characters in the lyrics text (jQuery, Bootstrap; Figure 8 15○, https://youtu.be/2020-16 Game 10qkhB_NYEw).
Lyrics rendered in a 3D environment; various kinetic typography techniques; fully responsive2020-17 Interactive lyric video design optimized for smartphones (Three.js, anime.js; Figure 8 19○, https://youtu.be/cs9qxULFARg).
Simple kinetic typography video with the style, visual effects, and background graphics reflecting2020-18 Generative lyric video the stories and settings of a specific musical piece (jQuery).
Interactive kinetic typography generator with various customization parameters (Vue.js (Nuxt.js),2020-19 Authoring tool jQuery, p5.js).
Virtual roller coaster whose course is dynamically generated from the structure of a musical piece2020-20 Extended reality (React (Create React App), Babylon.js).
Musical rhythm game to control the horizontal movement of a player-controlled bar and collect2020-21 Game characters dropping from the top of the screen (PixiJS).
Various animations appear with lyrics text and chord information; animation content in the Lottie2020-22 Generative lyric video format (Lottie).
Kinetic typography in an immersive 3D space where the camera moves forward and lyrics text is2020-23 Extended reality lit with glowing effects (glslify).

2020-24 Generative lyric video Simple kinetic typography video; visual effects become vibrant during the chorus.
Simple kinetic typography in an immersive 3D space; implemented with the WebVR API, allowing2020-25 Extended reality users with supported head-mounted displays to dive into the space (AFrame.js, Three.js).

2020-26 Creative application Simple paint tool combined with a simple kinetic typography video.
2020-27 Generative lyric video Simple kinetic typography in a deep sea; random bubbles occasionally float up from the bottom.

Lyrics move from right to left in an abstract 3D scene; grabbing lyrics triggers the seek operation,
2020-28 Interactive lyric video enabling the user to scroll the lyrics and easily navigate to a target position in a musical piece

(Three.js; Figure 5 7○, https://youtu.be/_yAlLiIGByI).

https://pixijs.com
https://threejs.org
https://github.com/pixiv/three-vrm
https://github.com/kripken/ammo.js
https://threejs.org
https://animejs.com
https://youtu.be/KQc3FCelKNo
https://p5js.org
https://reactjs.org
https://youtu.be/-t9AVVgZo5k?t=3061
https://playcanvas.com
https://youtu.be/mfCFLvb9IS8
https://threejs.org
https://ar-js-org.github.io/AR.js-Docs
https://threejs.org
https://youtu.be/sYyGA_4YbwM
https://threejs.org
https://threejs.org
https://github.com/pixiv/three-vrm
https://youtu.be/LiHmw7m5bCs
https://youtu.be/LiHmw7m5bCs
https://jquery.com
https://airbnb.io/lottie
https://github.com/dataarts/dat.gui
https://youtu.be/W-Sb5FbnvZI
https://jquery.com
https://airbnb.io/lottie
https://youtu.be/ON3lUgub8ws
https://jquery.com
https://getbootstrap.com
https://youtu.be/10qkhB_NYEw
https://youtu.be/10qkhB_NYEw
https://threejs.org
https://animejs.com
https://youtu.be/cs9qxULFARg
https://jquery.com
https://vuejs.org
https://nuxtjs.org
https://jquery.com
https://p5js.org
https://reactjs.org
https://create-react-app.dev
https://www.babylonjs.com
https://pixijs.com
https://airbnb.io/lottie
https://github.com/glslify/glslify
https://aframe.io
https://threejs.org
https://threejs.org
https://youtu.be/_yAlLiIGByI

Lyric App Framework CHI ’23, April 23–28, 2023, Hamburg, Germany

(Continued from the previous page.)

ID Category Short summary (notable creative coding libraries used and video link, if any)

2020-29 Authoring tool

Authoring environment for projection mapping of kinetic typography videos onto virtual scenes
with dedicated styles for a specific set of musical pieces; when the user prepares physical scenes
with the same geometry as the virtual scenes, the tool can be used for actual projection (Svelte;
Figure 5 2○, https://youtu.be/z_M1uBCV0tc).

2020-30 Generative lyric video Very simple kinetic typography video with hard-coded visual effects (p5.js).

2020-31 Extended reality Use of Tensorflow.js to detect human motion from a camera input in real time and overlay cus-
tomizable generative visuals and kinetic typography of lyrics in front (Tensorflow.js).

2020-32 Interactive lyric video Use of an NLP technique to automatically generate parody lyrics from the original lyrics (kuro-
moji.js).

2021-1 Extended reality Immersive 3D environment in which many perks are hidden and various animations are played in
synchrony with the music playback (PlayCanvas; Figure 5 1○, https://youtu.be/NqszHM1g9xE).

2021-2 Generative lyric video
Various kinetic typography techniques implemented in a 3D scene, with a binary toggle-switch
user interface to customize the background animation (anime.js, glMatrix, glslify; Figure 8 20○,
https://youtu.be/hvmDxCeyWU8).

2021-3 Authoring tool
Authoring environment for generative lyric videos; placeholders for lyrics text, anime-style human
characters, and several other animated illustrations can be placed anywhere on the screen (Figure 8
12○, https://youtu.be/2dopnxQrWGc).

2021-4 Authoring tool Authoring environment for simple generative lyric videos; only the kinetic typography part is
customizable, and the parameters are very simple (React, tsParticles, Semantic UI React).

2021-5 Generative lyric video
Colored lyric characters gradually populate and jump into the canvas; the synthesized picture looks
like it was drawn with a crayon, through algorithmic conversion from a specified raw illustration
(PixiJS, Jimp; Figure 5 8○, https://youtu.be/bvRqBNwZBEM).

2021-6 Game Simple game showing bubbles floating downward, each of which contains a single lyric character
and is clickable to add to the user’s score (p5.js).

2021-7 Creative application
Customizable pen tool on a blackboard-like user interface showing lyrics text, allowing the user to
share screenshots of lyrics and user-drawn illustrations (Three.js, opentype.js, Troika 3D Text for
Three.js, Tweakpane; Figure 5 3○, https://youtu.be/XzYZr_urn3I).

2021-8 Instrument Generative kinetic typography and animated human character performance with minor interactiv-
ity to click a button and generate sound effects (jQuery, Canvas Confetti).

2021-9 Creative application
The user is encouraged to touch the screen and put musical note icons in any location; the icons
start dancing when the playback reaches the chorus; simple kinetic typography is displayed next
to the notes (p5.js, Lottie; https://youtu.be/Cf5zhup_Bqo).

2021-10 Generative lyric video Generative kinetic typography and animated character performance with no interactivity.

2021-11 Creative application
Improvisational experience to control horizontal character motion in a 3D scene, with grass
gradually growing around the character, allowing drawing of simple illustrations (Three.js, Tween.js,
XState; Figure 8 14○, https://youtu.be/hvmDxCeyWU8).

2021-12 Augmented music video
Reproduction of the same scene as the original music video, showing lyrics text and adding various
interaction effects to visible components that can be triggered by touch or keyboard events (Next.js
(React), clsx; Figure 5 6○, https://youtu.be/5BlFr6Ma70w).

2021-13 Generative lyric video Very simple kinetic typography video with lyrics scrolling from right to left.

2021-14 Extended reality
Immersive 3D environment where an animated human character behaves in a lively way in
response to musical elements; colors and animation patterns can be customized (Three.js; Figure 8
10○, https://youtu.be/vnginTMqg0Y).

2021-15 Creative application Similar to 2021-11, but with a grid of squares on the ground, making the creation more like pixel
art (Three.js).

2021-16 Game
Musical rhythm game highly optimized for touch operation; lyrics are drawn on dynamically
generated paths, and the user traces them to achieve a high score (Next.js (React), PixiJS, GSAP;
Figure 8 16○, https://youtu.be/VaCmJWSiNBg).

2021-17 Game Musical rhythm game in which lyric characters are displayed in front of a music video; the arc
around each character gets shorter, and the user touches it at the end of the arc animation (Create.js).

https://svelte.dev
https://youtu.be/z_M1uBCV0tc
https://p5js.org
https://www.tensorflow.org/js
https://github.com/takuyaa/kuromoji.js
https://github.com/takuyaa/kuromoji.js
https://playcanvas.com
https://youtu.be/NqszHM1g9xE
https://animejs.com
https://glmatrix.net
https://github.com/glslify/glslify
https://youtu.be/hvmDxCeyWU8?t=3802
https://youtu.be/2dopnxQrWGc
https://reactjs.org
https://particles.js.org
https://react.semantic-ui.com
https://pixijs.com
https://github.com/jimp-dev/jimp
https://youtu.be/bvRqBNwZBEM
https://p5js.org
https://threejs.org
https://opentype.js.org/
https://protectwise.github.io/troika/troika-three-text/
https://protectwise.github.io/troika/troika-three-text/
https://cocopon.github.io/tweakpane
https://youtu.be/XzYZr_urn3I
https://jquery.com
https://www.kirilv.com/canvas-confetti
https://p5js.org
https://airbnb.io/lottie
https://youtu.be/Cf5zhup_Bqo
https://threejs.org
https://createjs.com/tweenjs
https://xstate.js.org
https://youtu.be/hvmDxCeyWU8?t=3859
https://nextjs.org
https://reactjs.org
https://github.com/lukeed/clsx
https://youtu.be/5BlFr6Ma70w
https://threejs.org
https://youtu.be/vnginTMqg0Y
https://threejs.org
https://nextjs.org
https://reactjs.org
https://pixijs.com
https://greensock.com/gsap
https://youtu.be/VaCmJWSiNBg
https://createjs.com

CHI ’23, April 23–28, 2023, Hamburg, Germany Kato et al.

(Continued from the previous page.)

ID Category Short summary (notable creative coding libraries used and video link, if any)

2021-18 Instrument

Use of MediaPipe.js to track the user’s hand motions and generate virtual glow sticks that the
user can manipulate; the user can freely operate the sticks and cheer virtual human charac-
ters dancing to a musical piece (MediaPipe.js, React, Three.js, Konva, Tweakpane; Figure 5 4○,
https://youtu.be/hvmDxCeyWU8).

2021-19 Game
Musical rhythm game in which the player moves a dancing character on a stage at the right side
of the screen and aims to enliven the character’s performance by catching lyrics text that flows
from left to right at random heights (Phaser; Figure 5 5○, https://youtu.be/r26c6Og7r9k).

2021-20 Extended reality
Three completely different visual performances synchronized with musical pieces: a live stage,
a computer console screen, and a world map (p5.js, ztext.js, Hammer.js; https://youtu.be/
prDvCzQ1HfI).

Extended reality (2020-9)9 Extended reality (2021-14)10 Authoring tool (2020-11)11

Authoring tool (2021-3)12

Game (2020-16)15

Interactive lyric video (2020-14)18

Creative application (2020-4)13

Game (2021-16)16

Interactive lyric video (2020-17)19

Creative application (2021-11)14

Augmented music video (2020-6)17

Generative lyric video (2021-2)20

Figure 8: Screenshots of 12 submitted applications to illustrate the diversity of visual styles found in the programming contests;
screenshots courtesy of Crypton Future Media, Inc.

https://google.github.io/mediapipe/getting_started/javascript.html
https://reactjs.org
https://threejs.org
https://konvajs.org
https://cocopon.github.io/tweakpane
https://youtu.be/hvmDxCeyWU8?t=3911
https://phaser.io
https://youtu.be/r26c6Og7r9k
https://p5js.org
https://bennettfeely.com/ztext
https://hammerjs.github.io
https://youtu.be/prDvCzQ1HfI
https://youtu.be/prDvCzQ1HfI

	Abstract
	1 Introduction
	2 Lyric Apps
	2.1 From Lyric Videos to Lyric Apps
	2.2 Representative Example of Lyric App
	2.3 Development Challenges and Support Needs

	3 Related Work
	3.1 Early Examples of Lyric Apps
	3.2 Automatic Synchronization Techniques
	3.3 Creative Coding and Interactive Multimedia

	4 Lyric App Framework
	4.1 Web-based Development Workflow
	4.2 APIs for Building Lyric App Interactions
	4.3 Mass Distribution of Lyric Apps

	5 Implementation
	5.1 Framework Web Servers
	5.2 Framework Web Applications
	5.3 Client Library for Building Lyric Apps

	6 Design Space Exploration
	6.1 Programming Contests
	6.2 Eight Lyric App Categories
	6.3 Framework Evaluation

	7 Discussion
	7.1 Insights for Time-driven API
	7.2 Addition of Interactivity to Existing Media

	8 Conclusion
	Acknowledgments
	References
	A Event-driven, Time-driven, and Time-range-driven APIs
	A.1 Event-driven API
	A.2 Time-driven API
	A.3 Time-range-driven API

	B Details of Example Applications
	C All Programming Contest Results

