
T

A
T
in
ly
c
a
m
a
o
im
w
d
to
s
im
b
p
c
k

A
K
in

A
H
U
P

IN
K
te
c
w
te
u
s
a
li

K
p
A

P
o
d
a
o
p
to
fr
C
C
A
h

TextAliv

Natio

ABSTRACT
This paper pres
nteractive edit
yrics or trans

corresponding m
allowed the de
most of them d
audio signals. T
objects and pa
mpossible to ex

within these sy
design environm
o create and

signals, (2) int
mplement anim

bridging the in
preliminary use
casual users de
kinetic typograp

Author Keywo
Kinetic typogra
ntegrated desig

ACM Classifica
H.5.2. Informat
User interfaces
Programing Env

NTRODUCTIO
Kinetic typogra
ext in a video

commercial vid
way. It can del
ext in addition

used in music
synchrony with
augments the li
isteners better c

Kinetic typogra
purpose tools f
After Effects [1

Permission to make
or classroom use is
distributed for profi
and the full citation
owned by others t
permitted. To copy
o lists, requires pri

from Permissions@a
CHI 2015, April 18
Copyright is held by
ACM 978-1-4503-3
http://dx.doi.org/10.

ve: Integ
Jun Kato
nal Institute

sents TextAliv
ting of kinetic
cripts are anim
music or speec
esigner and cas
do not take into
They allow pred
arameters to b
xtend the prede
ystems. We th
ment featuring

edit animatio
tegrated tools
mation algorith
nterfaces for d
er study with
monstrated its
phy videos.

rds
aphy; animation
gn environment

ation Keyword
tion interfaces a
– GUI; D.2.6.
vironments – In

ON
aphy, a techniq
o, is widely u
deos to deliver
liver the emoti

n to the text’s l
and narrative

h vocal music
stening experie
comprehend wh

aphy videos hav
for creating ani
]). While such

digital or hard copi
granted without fe

t or commercial ad
on the first page. C

han ACM must b
otherwise, or repub
ior specific permis
acm.org.
- 23 2015, Seoul, R

y the owner/author(s
145-6/15/04…$15.
1145/2702123.2702

grated D

of Advance
{jun

ve, a graphical
c typography v
mated in sync

ch. While existi
sual user to cr
o account sync
defined motion
be tweaked, b
efined set of m
herefore propo
(1) GUIs that d
ons synchroni
that programm

hms, and (3) a
designers and p

designers, pr
capability in a

n; creativity sup
t; live programm

ds
and presentatio
Software Engin
ntegrated envir

que for movin
used in music
text informati

ional feeling a
iteral meaning
e videos, text
or speech. Th

ence with visua
hat is being voc

ve been produc
imations (e.g.,
tools provide a

ies of all or part of t
ee provided that co
dvantage and that co
Copyrights for com
be honored. Abstra
blish, to post on serv
ssion and/or a fee.

Republic of Korea
s). Publication right
00
2140

Design E
Tomo

ed Industrial
n.kato, t.naka

tool that allow
videos in whi
chrony with th
ing systems hav
reate animation
chronization wi
s to be applied

but it is usual
motion algorithm

se an integrat
designers can u
zed with aud

mers can use
a framework f
programmers.

rogrammers, an
authoring vario

pport tool;
ming.

n (e.g., HCI):
neering:
ronments.

ng and reshapin
c, narrative, an
ion in a dynam
associated with

[17]. When it
is animated

he animated te
al effects, helpin
calized.

ced with genera
Adobe Flash

a fine granulari

this work for person
opies are not made
opies bear this noti

mponents of this wo
acting with credit
vers or to redistribu
Request permissio

ts licensed to ACM

Environm
oyasu Nakan

Science and
ano. m.goto}

ws
ch
he
ve
ns,
ith
to

lly
ms
ed

use
dio
to

for
A

nd
ous

ng
nd

mic
h a

is
in

ext
ng

al-
or
ity

of con
takes
manual
tedious
guideli
Tools
videos
predefi
user ca
had a
program
to be d

With t
kinetic
tool th
videos
program
TextAl
integra
environ
Thanks
researc
consist
automa
that ser
provide
synchro
live pr
develop
feedbac
allows
program
the par

The rem
work i
Next,
interac

nal
or

ice
ork

is
ute
ons

.

Figure

ment for
no
d Technology
}@aist.go.jp

ntrol over the
long time eve

al synchronizati
s. In addition
ines to help no
specifically de

(e.g., Active
ined templates
an choose. Suc

certain limita
mming needed

done in separate

the goal of pu
c typography de
hat allows inte

(Figure 1)
mmers have
live is designed
ated design en
nment is one
s to its duality
ch contribution
ting of audio
atically compo
rves as a concr
es interactive u

rony with the a
rogramming of
pment environm
ck to the prog
the programm

mmer or desig
rameters of anim

mainder of this
is introduced t
the design

ction for the de

1. Overview of

r Kinetic
Masa

y (AIST), T
p

animations, pr
en for the ex
ion of the text

n, general too
ovice users pro
esigned for ma
eText [18] o
of effective an
ch domain-spe
ation in their
d to create new
e development

ushing forward
esign, we prese
eractive editin
. While too

usually bee
d to benefit bot
nvironment (an

designed onl
y for the desig
n is three-fold.

and text info
ose a playable
rete starting poi
user interfaces

audio signals. S
f animation te

nment that prov
grammer. Thir

mer to easily ex
gner can intuiti
mation templat

s paper is orga
to highlight o
and impleme

esigner and pro

f the TextAlive s

c Typog
ataka Goto
sukuba, Japa

roducing the f
xperienced use
t animation an

ols do not pr
oduce convinci
aking kinetic t

or Kinedit [7
nimations, from
ecific tools, tho

flexibility. Th
w animation tem

environments.

d the state of
ent TextAlive,
ng of kinetic t
ols for desig
en designed
th. We therefor
n integrated de
ly for the pro
gner and progr

First, from an
ormation, Tex
kinetic typogra
int for the desig
s for editing th
Second, TextA
emplates with
vides continuou
rd, its unique
xtend its GUI
ively debug or
tes.

anized as follow
our research co
entation of T
ogrammer are i

system.

raphy

an

final result
er because
nd audio is
rovide any
ing effects.
typography
]) provide

m which the
ough, have
hat is, the
mplates has

f the art in
a graphical
typography
gners and
separately,

re call it an
evelopment
ogrammer).
rammer, its
n input pair
tAlive can
aphy video
gner. It also
he video in

Alive allows
its built-in

us graphical
framework
so that the

r customize

ws. Related
ontribution.
TextAlive’s
introduced.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3403

Then, the results of a preliminary user study are discussed.
Finally, the conclusion and future work are presented. For
better understanding, readers are encouraged to see the
demonstration video and/or visit http://textalive.jp to try out
the system before further reading.

RELATED WORK
Tools for Creating Kinetic Typography
Various tools for creating kinetic typography videos have
been proposed. However, they focus on graphical aspects of
creating videos. To our knowledge, none of them deals with
audio signals synchronized with the videos. This is because
their primary use of kinetic typography is for augmenting
text-based communication. TextAlive, in contrast, aims to
augment audio listening experience with dynamic graphical
representation of text information. Prior work on editing
time-series multimedia includes synchronized editing of
transcription and narration [21]. This is a complementary
technique and can be integrated into TextAlive.

The existing tools for kinetic typography videos target
programmers, designers, or casual users, not all three.
TextAlive is built on top of these. For instance, a framework
to help programmers create kinetic typography videos by
writing Java source code has been proposed [16]. TextAlive
shares some concepts with this framework, such as the
hierarchical structures of phrases, words, and characters for
representing text information. The ActiveText [18] and
Kinedit [7] systems allow designers and casual users to input
text, choose animations from several templates, and edit their
parameters by using sliders and other standard GUIs.
TextAlive also provides similar features. A combination of
natural language processing (NLP) and heuristics enables the
extraction of emotional information from text and automatic
generation of the associated videos [20]. While the existing
techniques benefit from NLP, they do not allow user
interaction, which is essential if the user is to express his/her
creativity.

The existing tools have limitations because of their targeting
certain users. While tools for designers and casual users
provide interactive GUIs, they typically force the user to use
a predefined set of motion algorithms and do not allow any
extensions to be implemented. The tools for programmers, on
the other hand, have extendibility based on their APIs, but
their development environments are usually equipped with
text-based user interfaces and do not provide interactive
feedback on the source code changes.

There is a visual programming environment that overlays
code elements on top of the animation and allows binding a
set of elements to text units [3]. Each element represents one
typography property (font size, color, style, or scaling), and
the set of elements affects the properties of nearby text in a
way that depends on the distance between a set element and a
text unit. It does not allow precise control of properties, nor
does it provide any abstraction, preventing reuse of the
created animations. Instead of using visual programming,
TextAlive integrates text-based programming into a graphical

tool. It provides more precise and flexible control over the
text animation and an abstraction of an animation template
that is reusable not only by the programmer but also by
designers and casual users.

Tools for Creating Animations
While this work focuses on text animation, it is closely
related to prior work on tools for general animation. Adobe
Flash and After Effects [1] are professional tools used to
create various kinds of animation. The user specifies key
frames for objects, and the system smoothly interpolates the
motion between the frames. These tools have good support
for direct manipulation, such as visualizing object trajectories
and using drag-and-drop to change the motion or seek time
periods. Compared with these professional tools, TextAlive
has a limited, or rather focused, GUI for editing text
animations synchronized with audio signals, including a
timeline interface. The user does not specify key frames, but
rather timings of each text unit being vocalized. The timing
information is then passed to animation templates that output
fluid motions. TypeMonkey [2] is a plug-in for After Effects
that has additional user interfaces for choosing text
animations from templates and editing their parameters for
the purpose of making kinetic typography videos. While it
reduces the pain of key-framing, it still requires manual
synchronization of the animation and audio. In addition, it
has the same issue as other tools for kinetic typography: the
limited number of templates restricts the user’s expressivity.

Tools that let casual users make animations, such as
Microsoft PowerPoint and Movie Maker, do not require key-
framing. However, the resulting motions are usually limited
to those following simple trajectories. In particular, various
sketching interfaces allowing the casual user to create
animations have been proposed. K-Sketch [4] allows users to
specify the motion of objects by drawing trajectories, which
is implemented as our “Trace Path” animation. Draco [15] is
a sketch-based tool to animate multiple objects. We also
target casual users who make animations of multiple objects
(text units) but with more finely grained control for each
object. In addition, TextAlive integrates a programming
environment that allows authoring of reusable animation
templates.

Tools for Live Programming
Live programming [19] is a technique to provide the
programmer with continuous feedback about the program
being developed. It aims to get rid of the gulf of execution by
providing a seamless programming experience with regard to
writing code, executing the program, and debugging it.

Live programming in TextAlive is inspired by Victor’s demo
[23] that allows the programmer to dynamically rewrite
parameters of graphical applications during their execution.
In our system, the programmer can simply click the “update”
button, and there is no need to re-launch the entire program
and reconfigure the parameters. It allows the programmer to
rewrite the logic of animation templates without losing their
parameter information. VisionSketch [13] uses a similar

Programming Environments CHI 2015, Crossings, Seoul, Korea

3404

te
c
s
c
c
e
a
b
v

P
s
e
p
a
m
th
a
o
b
to
e

F

F
t

echnique, whe
can be dynami
state informatio
continuously r
compilation. It u
each character
avoided such i
button because
very often and i

Professional too
scripting engine
example, have
properties of ob
as Microsoft P
most scripting
hese tools do

activities of wr
other hand, Jux
bound to a vari
o extend its GU

environments,

Figure 2. Timeli

Figure 3. Edito
he user can swi

ere the logic o
ically replaced
on when the
revalidates th
updates the pro
in the source

implicit revali
 the implicit r
is distracting.

ols for animati
es. Adobe Flas

a built-in sc
bjects. Some too
PowerPoint, als

engines allow
not have dec

riting code and
xtapose [12] is
iable value, and
UI for runtime
GUI widgets

ine interface.

r interface and
itch between th

f image proce
d, but it does n

logic is updat
he program w
ogram output up

code editor. W
dation and ke
revalidation flu

ion are typicall
sh and Adobe A
cripting engine
ols meant for c
so allow such

w conversationa
cent support f
d running the p

capable of ge
d Unity allows
parameter tuni
bridge that g

d integrated sou
em by clicking

essing algorithm
not preserve th
ted. Subtext [
without explic
pon the typing
We intentional
ept the “updat
ushes the scre

ly equipped wi
After Effects, f
e to control th
casual users, su

scripting. Whi
al programmin
for bridging th
program. On th
enerating a slid

the programm
ing. Within the
gap between th

urce code edito
the buttons (f).

ms
he
[6]
cit
of
lly
te”
en

ith
for
he
ch
ile

ng,
he
he

der
mer
ese
he

static d
TextAl
widget
than U
animat
for eas
visualiz
Wherea
such vi
only fo

TEXTA
This se
The fir
typogra
editing
typogra
describ
novice
designe
program
control
Adobe
enable
control
but also

Interac
TextAl
video w
the exi
scratch
of audi
require
that it m

Automa
The us
or a
estimat
vocaliz
also wo
of word
to have
the voc
templa
synthes
parts a
templa
inform
the Tim
video i
always
Timelin
carried
updated

TextAl
is an eor;

definition and
live takes the s
ts (more than
Unity). More
tion authoring.
sily animating
ze object traje
as the prior wo
isualizations [2
or visualization

ALIVE: AN INT
ection introduc
rst subsection
aphy videos by

g does not r
aphy or pro
bes live progr

programmers.
er to have
mming skills
l many object
 After Effects [
designers and

l not only the
o their later reu

ctive Editing o
live can autom
when given an
isting tools re

h and to spend
io and text, Te

ed. The compo
matches the use

atic Video Com
ser first inputs a
narration and
tes the timing
zed [8]. Throug
ords that consi
rds and corresp
e timing inform
calization. The
ate to each text
sizes a playable

are detected an
ate (explained

mation is also a
meline (Figure
is shown on th
s be playable
ne interface. A

d out interactiv
d.

live cannot alw
error in the est

the runtime b
same approach
Juxtapose) and

eover, TextAl
For instance,

g text units. T
ectories calcula
ork intended fo
23, 9], TextAliv
n but also for se

TEGRATED DE
ces the interact
describes inter

y designers or
require prior

ogramming. T
ramming of
 These days, it
programming

in scripting a
ts when using
[1]. In TextAliv
casual users a
currently prese

use and custom

of Kinetic Typo
matically crea
audio file and

equire the user
much time on

extAlive signif
sed video can
er’s style.

mposition and T
a pair consistin

d its transcrip
gs of each cha
gh this process
ist of characters
ond to one line
mation about th
system then as

t unit (a charac
e video. If a so

nd assigned a m
in the implem

analyzed, and th
e 2). After this
he Stage interfa

by clicking t
Any operation d
vely so that th

ways estimate co
timation, the ti

behavior of the
h, balancing the
d the lines of
live is speci
a set of APIs i
The Stage int
ated from the
or game develo
ve uses the traje
eeking time peri

ESIGN ENVIRO
tion design of
ractive editing
casual users. T

knowledge
The second
animation tem

t is not uncomm
g skills. For
are required to
g existing too
ve, programmi

as well as progr
ent objects on

mization.

ography Video
ate a kinetic t
its transcription

r to create a v
n manual synch
ficantly reduces
be interactivel

Timing Correctio
ng of a song an
ption. Then, t
aracter in the
s, not only cha
s and phrases t
e in the origina
he starting and
ssigns a default
cter, word, or p
ong is provided
more gorgeous
mentation sect
the result is vis
s automatic syn
ace (Figure 1),
the “play” but
described herea
he video can b

orrect paramete
iming informat

e program.
e variety of

code (less
alized for
is provided
terface can
user code.

opment has
ectories not
iods.

ONMENT
TextAlive.

g of kinetic
This sort of
of kinetic
subsection

mplates by
mon for the
r instance,
o precisely
ls such as
ing abilities
rammers to
the screen

os
typography
n. Whereas
video from
hronization
s the effort
y edited so

on
nd its lyrics
the system

text being
aracters but
that consist
l text come

d ending of
t animation
phrase) and
d, its chorus
s animation
tion). Beat
sualized on
nthesis, the
and it will

tton in the
after can be
be instantly

ers. If there
tion can be

Programming Environments CHI 2015, Crossings, Seoul, Korea

3405

interactively corrected in many ways before being saved for
use the next time the same pair of audio and text is loaded.
For instance, text units in the Timeline can be drag-and-
dropped to instantly fix their timing information. Drawing a
rectangle in the Timeline selects multiple text units that
overlap the rectangle. Chorus parts are highlighted in the
bottom row of the Timeline, and clicking them selects the
text units vocalized during the chorus. Once the text units are
selected, the “align left,” “center,” “right,” and “justify”
buttons in the Editor interface (Figure 3b) can be used to fix
their timings collectively. Timing information can also be
copied and pasted (Figure 3c), and this is quite useful for
groups of text units with the same structure, such as repeating
chorus parts.

The seek bar in the Timeline visualizes the sequential
changes in vocal volume information extracted from the
original audio signals, thereby helping the user to estimate
correct timings visually. The seek bar allows one to select a
specific time region. While a region is selected, the “play”
button plays the corresponding part repeatedly, allowing one
to concentrate on correcting the timing and editing the
animation of the specific part. Automatic synchronization
estimating the timings of the text units contained in the
selected region can be applied again by clicking “auto-sync”
in the Editor interface (Figure 3a).

Font and Animation Template Assignment
An automatically created video does not at all reflect the
user’s intention. To make it his/her own, the user selects text
units in the Timeline and changes their properties, including
fonts, and animation templates with the Editor interface
(Figure 3d, e). As in timing correction, property changes can
be collectively made on multiple text units. For instance,
when a phrase is selected, changes in the font style and size
are applied to all of the characters in the phrase.

Predefined animation templates allow novice users to create
aesthetic kinetic typography. To avoid implausible visual
effects, they are not always applicable to every type of text
unit: phrases, words, and characters have different sets of
assignable animation templates. In addition, multiple
templates can be assigned to a single text unit at the same
time. For example, “Sliding Animation” can be assigned to a
phrase, and “Hopping Animation” can be assigned to the
characters in that phrase. “Karaoke Animation” that changes
the text color before/after vocalization can also be assigned to
the characters (Figure 4). Combinations of different

templates that can be assigned to suitable types of text units
allow flexible yet effective kinetic typography design.

Animation Customization
Each animation template has parameters for customizing its
appearance, and these parameters can be interactively
manipulated with the GUI widgets shown on the Editor
(Figure 3g) or the Stage. These widgets are dynamically
generated by the template implementation, which is
described in detail in the next subsection. They appear when
the corresponding template is selected in the Editor interface.

While the Stage can usually show only the current frame of
interest in the video, it would be desirable that the user can
instantly see how an object’s motion is affected by parameter
tuning. To make this possible, the trajectories of the selected
text units can be visualized on the Stage (Figure 1). The
trajectories can be used to seek time periods in the way
shown in prior work [5].

Live Programming of Animation Templates
While each animation template can be customized to meet
the user’s needs, it still limits the resulting animation to a
certain extent. General tools for creating animations are often
equipped with scripting engines with which the animation of
lots of objects can be controlled in a mathematically precise
way. Such scripting, though, typically does not allow later
reuse because it lacks an abstraction mechanism. There is not
much graphical feedback while the user is writing code either.

TextAlive aims to address this issue by enabling “live
programming” of animation templates: the user can
seamlessly go back and forth between editing animation and
implementing templates (Figure 3f). The implementation can
be updated by just one click and there is no notion of
compilation or execution. The program that creates the
animations continues running virtually. The update process
updates not only the behavior of the text units but also the
GUI widgets specific to the template (Figure 3g). These
widgets help the programmer debug the template and help
the user interactively customize it.

Implementation of Animation Templates
To read the implementation of an existing animation template,
the user selects the template and clicks the “edit” button in
the Editor interface. TextAlive then shows the code editor,
with which the source code written in Java can be edited
(Figure 3h). Each template is defined as a Java class that
implements a specific Java interface. The template
implementation can be updated by clicking the “update”
button, which instantly updates animations of the text units
that use the template. This update can be done at any moment,
such as during the playing of a song or when the user is
observing the motion of text units. To create a new template,
the user can either click the “new” button or change the class
name in the source code of any existing template and click
the “update” button.

Updating running software is generally called a hot swap. It
replaces existing objects using old code with dynamically Figure 4. A simple example of kinetic typography effects

generated from different sets of preset animation templates.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3406

generated new objects using new code. Since such a process
simply discards the state information of the old objects, the
state information (in our case, customized parameters of an
animation template) usually needs special care, such as by
the programmer writing some code to store and restore it.
TextAlive handles this transparently, which frees the
programmer from having to write boilerplate code and allows
him/her to concentrate on the algorithm.

Implementation of GUI Widgets for Each Template
As discussed in Animation Customization, each template has
dedicated GUI widgets to customize its appearance. “Sliding
Animation,” for instance, has a box of radio buttons to select
its horizontal alignment and a slider to control its sliding
angle. In order to implement a GUI widget, the programmer
should declare a Java public field and write a comment block
right before the field declaration in the source code. The
comment should be written in a simple format: “@ui
WidgetName([options]).” The generated GUI widget is
bound to the public field; GUI operations on the widgets
change the field values.

The widgets are not only meant to help designers and casual
users manipulate the parameters intuitively. They can also
help the programmer debug and test the template during the
development process. For instance, the programmer can
temporarily create a box of radio buttons for switching
between multiple implementations having a similar effect
and check which one works best. Once he/she knows which
one is best, he/she removes the radio buttons and publishes it
for other users.

Below is the list of preset GUI widgets available in the
current implementation of TextAlive (Figure 5). Other
widgets can be easily added by writing Java source code.

@ui Slider(min, max) shows a slider to change the value of
the corresponding integer field between min to max.
@ui Check() shows a check box to switch between true and
false values of the corresponding boolean field.

@ui Radio(“label1”, v1, “label2”, v2, …) shows a box of
radio buttons used to select a value.
@ui Color() shows a button with a colored rectangle so that
the user can choose a color with the color picker dialog.
@ui File() shows a button used to choose a file whose path is
stored in the corresponding String field.
@ui Track() shows a check box used to enable/disable
drawing a path by dragging the mouse on the Stage. When a
path is drawn, its data is represented as a list of (x, y)
coordinates and stored in the corresponding List field. This is
used to implement the “Follow Path” animation template that
makes text move along the specified path.

IMPLEMENTATION
This section introduces the current implementation of the
TextAlive system. It first gives an overview of the system
along with the techniques used in the implementation, and
then it explains the system in more detail. The first
subsection explains how the creation of plausible kinetic
typography videos is supported, and the second explains how
a live programming experience is provided.

Overview
The architecture of TextAlive is shown in Figure 6. It is
currently implemented with Java 7 (64-bit) and tested on a
personal computer with a Windows 8.1 (64-bit) OS. Input
sound files should use the MPEG-2 Audio Layer III format
for playback in the system and are converted to the monaural
MS WAV format using FFmpeg for further audio signal
processing. Input text is written in a natural language (either
Japanese or English) and is converted into a series of
phoneme information by using MeCab, open-source software
for morphological analysis and part-of-speech tagging.

The audio signal is synchronized with the corresponding
phoneme information [8] by attaching timing information to
the phrases, words, and characters of the original text. If the
input sound file is a song, the beat information and the chorus

Figure 5. Comments and GUI widgets generated from them. Figure 6. Software architecture of the TextAlive system.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3407

Figure 7. Example implementation of an animation template.

Figure 8. Pseudocode for rendering each frame.

part are detected [10]. This information is referenced for
automatic video composition. The Java source code of
animation templates is dynamically compiled with the
Eclipse Compiler for Java and loaded into the Java VM with
the Java Reflection API. In order to store and restore the state
information of the animation templates, a text-based JSON
format is used as a temporary backup. The animation data is
also saved as a JSON file (Figure 9).

Implementation for Kinetic Typography Design

Automatic Video Composition
Given the automatically estimated parameters, TextAlive
automatically assigns animation templates to text units and
generates a playable kinetic typography video. By default, it

simply assigns the “Sliding Animation” to all phrases and the
“Karaoke Animation” to all characters. If the input sound is a
song, phrases in the chorus part are assigned the “Sliding and
Rotating Animation” and characters in the chorus part are
additionally assigned “Hopping Animation” so that the
chorus part looks more prominent than the other parts.

The strategy that defines how to assign animation templates
is currently written as Java source code and can be easily
customized. We plan to implement a GUI for choosing and
implementing new strategies.

Text Animation
In a lot of kinetic typography videos, phrases, words, and
characters have their own motion algorithms independent
from the others. In order to animate text information in a
human-readable way, characters often keep their positions
relative to each other and are aligned horizontally or
vertically. Multiple words are often organized into a phrase
that is prevented from overlapping with other phrases. Such
motion algorithms can be described in a simple and clean
way by using the coordinate system relative to the parent text
units (e.g., characters to words and words to phrases).

Given the characteristics of text animation, each text unit
holds its timing information (when it starts and ends being
vocalized), a list of assigned animation templates, a font
name, and one or more characters contained in the unit. Each
animation template is required to implement a method named
animate(time) whose argument is the current time. An
example implementation is shown in Figure 7. The template
has access to its assigned text unit, and the animate method
modifies the rendering parameters of the text unit. The
parameters include font color, an alpha compositing rule
(how to blend the text graphic with the existing pixel values),
and an affine transform matrix (a three-by-three matrix that
defines how to transform the text graphic and includes
translation, rotation, and scaling) relative to the parent text
unit. Since the animate method can be called with any time
value at any time, the method is usually expected to be a pure
function – in other words, it should return a value without
modifying the state of the animation template object.

While changing the rendering parameters can reshape the
appearance of the text unit as a vector graphic, there are
kinetic typography effects that cannot be supported by such
reshaping and instead demand pixel-based operations. They
include adding blur or shadows to the text graphics. To
support such effects, an animation template can implement
background(graphic context, time) and foreground(graphic
context, time) methods that render graphics behind and in
front of the text units. Since these methods are called after
rendering all text units in the off-screen buffer by using the
animate(time) method, they have access to the pixel-based
representation of the text units.

TextAlive plays and renders the video in a 30-frames-per-
second format. The pseudocode for rendering each frame is
shown in Figure 8. Graphic units are optional units that hold

Programming Environments CHI 2015, Crossings, Seoul, Korea

3408

the start and end times as well as a list of animation templates
mainly used for rendering the background or foreground to
complement or emphasize text information.

Trajectory Rendering
Trajectory rendering allows the user to see the past and future
motion at a glance. The same procedure as used for rendering
frames is repeatedly called without actually using rendering
graphics, and the absolute time-series positions of the
selected text units are visualized as their trajectories.

The trajectory can also be used as an interface to seek time
periods. Since the system knows the correspondence between
a specific point in the trajectory and timing, the current
mouse position can easily be converted into timing
information by finding the closest point in the trajectory.
When the trajectory is not straight-forward, though,
following the closest point sometimes results in a big jump in
time, which is not desired. To avoid this problem, the
distances between the mouse position and the next or
previous point in the trajectory are calculated.

Implementation for Live Programming Experience

Hot-swap for Updating Animation Templates
Animation templates are represented by Java classes that are
compiled and dynamically loaded into the Java VM when
TextAlive launches. After the user edits their source code, the
corresponding classes are recompiled and the resulting Java
bytecode is reloaded into the VM.

Such a process, i.e., replacing classes without restarting the
VM, is called a hot-swap. A general hot-swap simply
replaces an old class definition with a new one and is not
sufficient for updating animation templates. If the updating
process only updated the class definition, existing objects
with old definitions would not be updated. To see the
updated motion, the user would need to remove the objects,
re-assign the animation template, and reconfigure parameters.

To avoid such hassle, TextAlive automatically extracts state
information from old objects, creates new objects with the
updated implementation, and makes its best effort to restore
the state information. Before a hot-swap, a backup of the
state information of the existing objects is created by calling
the Java Reflection API to serialize all public fields of each
object. It is used after the hot-swap to construct objects with
the updated class definition, in effect replacing the old
objects. The process of restoring state information is identical
to that of loading videos, which is described later.

Static Code Analysis for Generating GUI Widgets
The GUI widgets for customizing animation templates are
generated by static code analysis upon compilation of the
class definition. The widgets can collectively change the
values of multiple variables (i.e., the same parameters of
multiple animation template objects) when multiple text units
are selected in the Timeline.

Each comment that begins with @ui and is located right
before a public field declaration is parsed and divided into

the widget class name and its options. The option values are
evaluated using a subset of the Java programming language,
thereby providing dynamic parameters to widgets. The
language supports simple mathematical calculations and
read-only access to useful parameters such as the resolution
of the video (the size of the Stage). For instance, a slider
with the maximum value of the height of the Stage can be
generated by writing “@ui Slider(0, stageHeight)” as shown
on line 17 of Figure 7.

Saving and Loading Videos
TextAlive saves a kinetic typography video in plain text
JSON format. It consists of a hierarchical architecture of
phrases, words, and characters. Each text unit has the
vocalization start and end times and a list of information
about the assigned animation templates. Unlike phrases and
words, characters are also saved with their font name and size.
Each animation template is represented by its name and the
customized parameters. Figure 9 shows an example of a
JSON object of a video.

Loading videos is exactly the reverse of saving them, except
for the chance of animation templates being updated. If an
animation template has an updated definition, one or more
public fields might be added or removed. To construct an
animation template object with an updated definition,
TextAlive makes its best effort to maintain the state
information; newly added fields have their default values,
and old values of removed fields are simply discarded.

PRELIMINARY USER STUDY
We conducted a preliminary study to gain user feedback on
the TextAlive system and to investigate the capabilities,
limitations, and potential of our interaction design. Seven
users with varying levels of expertise in authoring videos and
programming graphical applications participated in the study.
They were asked to use the system and to create a kinetic
typography video with one favorite song or narration. They
were asked to compare their use of the system against their
prior experience on tools for creating videos and graphical
applications.

Participants
Seven participants aged 23 to 30 years old (mean 27) took
part in the study. Each was paid $30 for their participation.

P1-4 are designers and casual users (two females and two
males). P1 is an amateur singer who has used Adobe After
Effects [1] to create a simple slide show for her music video;
P2 is an amateur illustrator who has no prior experience in

Figure 9. JSON-formatted text for saving the animation.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3409

creating videos; P3 is an amateur disk jockey who has
extensive experience in mixing music and recording
narrations for Rakugo (a traditional form of Japanese
storytelling) but no video authoring experience; P4 is an
interaction designer who has used Motion, Final Cut Pro,
openFrameworks, and Unity [22] for creating videos.

P5-7 are programmers and are all male; P5 has a small
amount of experience creating demonstration videos for his
software; P6 is an experienced user of Adobe After Effects (>
2 years) and has created music videos; P7 has a hobby of
writing songs and has created music videos with AviUtl,
which is freeware for casual video authoring.

Experimental setup
All participants used a standard set of laptop computers with
a full HD (1920 x 1080 pixels) display and a mouse (Figure
10). Some of the participants brought their headphones or
earphones; others used earphones we provided. The
TextAlive system occupied the entire screen during the study.
The experiment followed the steps described below and took
2-3 hours for each participant.

Pre-experiment questionnaire: Each participant was asked to
fill out a form asking his/her experience in authoring songs,
narrations, videos, and programming.

Introduction and demonstration: Each participant was given a
5-15 minute introduction to the TextAlive system by the
instructor. The instructor then demonstrated the timing
correction, font and animation template assignment, and
animation customization using the GUI widgets. For the
programmers (P5-7), the instructor also demonstrated the use
of the integrated source code editor to modify and create an
animation template.

Kinetic typography design: Each participant was given 2
hours maximum to create a kinetic typography video of
his/her favorite subject with the system. The participant was
allowed to bring data of a song, narration, or image to be
used in the video or could choose from a list of the songs we
prepared. Since it is usually impossible to create a video for
an entire song or narration in 2 hours, the participant was
asked to work on his/her favorite part of the song or narration.
During this open-ended task, the participant was free to ask
any questions about the usage of the system, including how
to use the preset animation templates and APIs for
implementing animation templates. The participant was

allowed to end the study when he/she was satisfied playing
with the system.

Post-experiment questionnaire: Each participant was asked to
fill out a form asking five questions about the usability of the
system (selected answers on a 7-point Likert scale), and three
questions about the good and bad points of the user interface.

Results and Lessons Learned
All participants could successfully create kinetic typography
videos for their favorite part of a song or narration, some of
whose screenshots are shown in Figure 11. Two participants
used a song we prepared, while the others used their favorite
song or narration. The results of the post-experiment
questionnaire consisting of the mean, standard deviation, and
percentage of positive responses (>4 on a 7-point Likert
scale) are shown in Table 1.

Everyone who participated in the study was positive about
how suitable TextAlive is for authoring kinetic typography
videos (Q5). There were no answers representing negative
impressions of the TextAlive system on Q1-3, but there were
several neutral answers (= 4 points). The neutral answers
were found to come from non-critical reasons such as the
participant not being enthusiastic enough in creating kinetic
typography videos (P1) and practical reasons that can be
addressed by making minor revisions to the system such as
adding keyboard shortcuts to frequently used commands (P7).
Those who used the live programming feature (P5 and P7)
indicated they felt the need for technical support in order to
use the system. Their negative answers stem from the
programming experience described later.

Automatic video composition was useful for both novice and
experienced users: All participants liked the automatic video
composition feature a lot. P7 commented “automatically
estimating timing information and synthesizing a playable
video is extremely useful, reducing the effort always needed
for existing tools I have used.” P3 commented “it is nice that
we no longer need to create but just edit the video.”

The abstraction of phrases, words, and characters was
welcomed: Participants with prior experience of creating
videos with text information such as subtitles (P1, P4, P6)
especially favored the hierarchical abstraction, enabling
assignment of different animation templates to each phrase,
word, and character. P1 noted that “the capability of
modifying the properties of each character is very useful.”
This feature is often missing from existing video authoring
tools.

The abstraction of animation templates suggested potential
applications: While animating text in a specific time period
requires manual parameter tuning in existing authoring tools,
animation templates in TextAlive adapt the animation to fit
in the period. This allows the user to almost instantly animate
text in synchrony with sound. P3 and P4 expressed their
desire to play “text jockey” during their live disc jockey
performances. P3 also foresees using it for Rakugo
storytelling. Figure 10. Setup of the user study. (a) A participant using our

system. (b) A screenshot taken during the study.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3410

No need to stop the video, enabling a fluid experience: Many
users appreciated that almost every operation on the system
interactively updates the resulting video. P5 commented that
“there was no need to pause or stop the video. With
TextAlive, I could select the time region of interest and play
the video continuously while editing it. The only exception
was when I got too tired to listen to the same part of the song.”
P6 appreciated that “animation templates can be edited in-
place (without launching external editors.)”

Having a variety of animation templates counts: P6
appreciated that the system allows novice users to create
good looking videos simply by choosing animations from a
list of preset templates. P1 and P7 requested more variety of
templates. P4 wrote that “more variety of animation
templates would make TextAlive more appealing, but too
many templates might overwhelm the user.” Actually, P3 and
P7 complained that the current combo box for choosing an
animation template is not informative enough. They
commented that more detailed explanations or graphical
previews would be desirable. In addition, P6 pointed out the
difficulty of predicting the result of combining multiple
animation templates, suggesting that we provide preset
combinations of animation templates.

The Timeline interface is at the heart of synchronizing audio
and video: All users appreciated the usability of the Timeline
interface dedicated to timing correction. P1, P2 and P5
especially appreciated the wave-form visualization of vocal
sound and the visualization of beat information. In addition,
P1 and P5 requested snapping to the beat information while
moving or resizing text units in the Timeline.

The Stage interface should allow (more) direct manipulation:
P3 appreciated that most of the interfaces for customizing
appearance of the selected units are gathered in the Editor
interface. On the other hand, P2 commented that most of the

preset animation templates only use the widgets in the Editor
interface and the animation templates should make more use
of the Stage interface for their customization. Currently, the
“Follow Path” animation is the only preset template that
allows the user to interact with the Stage to interactively
update the tracing path. P1, P3 and P4 requested that simple
animations should be customized by direct manipulation on
the Stage, e.g., allowing drag-and-drop of text units to fix
their positions at a certain timing. However, it is not straight-
forward to support direct manipulation of objects whose
motion is defined by a combination of multiple algorithms.
Since each animation template transforms the coordinates
and does not know how the other templates are implemented,
the parameters for the template to move the assigned unit to
the mouse cursor position cannot be easily retrieved. The
process is identical to finding a set of parameters for an
unknown function that returns a specific value. Similar
problems in physical simulations have been addressed by
introducing novel interaction techniques that might be
applicable to our case [11]. More improvements to the
sketching interaction might also be helpful, as has been
indicated in prior work [15].

Programming ensures extendibility but needs training: Users
who tried the programming interface (P5-7) all appreciated
the extendibility of TextAlive, but at the same time, found it
difficult to learn in 2-3 hours. P5 hesitated to use the feature.
P7 commented that “the live programming feature allows
fine adjustments of animation but requires prior knowledge,
making me procrastinate in its use for some time.” However,
he was the most active person to create animation templates
by the end of the experiment and also commented that “the
changes in code could be instantly applied to the video,
which is nice.” P6 appreciated how easy it is to provide GUI
widgets for tweaking parameters. Given that the live
programming feature itself is not considered harmful, more
software engineering effort to support more “learnable
programming” [24] is desired.

CONCLUSION
We have described TextAlive, a tool for creating kinetic
typography videos. It can automatically estimate the timing
of each character being vocalized. Instead of providing a
blank canvas and forcing the user to create videos from
scratch, TextAlive analyzes a given pair of audio and text
information and creates a playable and editable video. The
video serves as a foundation on which the user can create
his/her own video. The user interface for interactive editing
of the video synchronized with audio signals was highly
appreciated by the participants of the user study who had
various professional backgrounds. The capability of editing
animation templates by writing programs ensures the
extendibility of the TextAlive system as a tool that can
continue to evolve through use. While the user study
confirmed its usefulness, its learning curve should be gentler,
and more software engineering help provided.

Question
The TextAlive system
Mean SD %

1 I would like to use it frequently. 5.57 1.20 5/7
2 I found it unnecessarily complex. 2.71 1.02 0/7
3 I thought it was easy to use. 4.86 0.75 4/7
4 I needed technical support to use it. 3.29 1.74 2/7
5 I thought it is suitable for authoring kinetic

typography videos.
5.57 0.75 7/7

Table 1. Results of the post-experiment questionnaire.

Figure 11. Screenshots of kinetic typography videos in various
styles created by the participants (selected and trimmed.)

Programming Environments CHI 2015, Crossings, Seoul, Korea

3411

Although the number of websites for sharing videos and
audio files is increasing and more people are getting involved
in creating new media content, it is still not easy to create
videos synchronized with audio. Music videos on such
websites typically feature the artists and illustrations. The
lyrics are often placed in the safe area near the edges of the
video or are not rendered on the video at all. Kinetic
typography is effective at expressing the message of a song
or narration visually. The tool described in this paper
enhances the expressiveness of casual users by enabling them
to create kinetic typography videos. While its current
implementation is limited to placing objects on a two-
dimensional plane, we are working on an extension to three-
dimensional space.

TextAlive is available online at http://textalive.jp. Currently,
many songs and narrations and their lyrics and transcriptions
are available on the Internet. Preprocessing such information
allows the user to create kinetic typography videos without
first wading through the synchronization process. Corrected
timing information can be shared with others, enabling
crowdsourcing of such timing information. Animation
templates can also be easily shared with others, meaning that
the integrated design environment can be extended
cooperatively. While this study focused on the experience of
users with different backgrounds, the proposed interaction
design enables various forms of collaboration (e.g.
programmer with designer, designer with end user, etc.).
Investigating such interactions would make an interesting
follow up.

ACKNOWLEDGMENTS
This work was supported in part by JST, CREST.

REFERENCES
1. Adobe After Effects.

http://www.adobe.com/products/aftereffects.html.
2. aescripts + aeplugins. TypeMonkey.

http://aescripts.com/typemonkey/.
3. Chao, C. M. and Maeda, J. Concrete programming

paradigm for kinetic typography. In Proc. IEEE VL 1997,
446-447.

4. Davis, R. C., Colwell, B. and Landay, J. A. K-Sketch: a
“kinetic” sketch pad for novice animators. In Proc. CHI
2008, 413-422.

5. Dragicevic, P., Ramos, G., Bibliowitcz, J.,
Nowrouzezahrai, D., Balakrishnan, R. and Singh, K.
Video browsing by direct manipulation. In Proc. CHI
2008, p.237-246.

6. Edwards, J. Subtext: uncovering the simplicity of
programming. In Proc. OOPSLA 2006, p.505-518.

7. Forlizzi, J., Lee, J. and Hudson, S. The Kinedit system:
affective messages using dynamic texts. In Proc. CHI
2003, 377-384.

8. Fujihara, H., Goto, M., Ogata, J., and Okuno, H. Lyric
Synchronizer: automatic synchronization system between
musical audio signals and lyrics. IEEE Journal of
Selected Topics in Signal Processing, 5(6), 2011.

9. Fukahori, K., Sakamoto, D., Kato, J. and Igarashi, T.
CapStudio: an interactive screencast for visual application
development. Ext. Abstracts CHI 2014, 1453-1458.

10. Goto, M, Yoshii, K., Fujihara, H., Mauch, M. and
Nakano, T. Songle: A web service for active music
listening improved by user contributions, In Proc. ISMIR
2011, 311-316.

11. Ha, S., McCann, J., Liu, C. K. and Popovic, J. Physics
storyboards. Computer Graphics Forum 32, 2 (Proc. EG
2013), 133-142.

12. Hartmann, B., Yu, L., Allison, A., Yang, Y. and
Klemmer, S. Design as exploration: creating interface
alternatives through parallel authoring and runtime
tuning. In Proc. UIST 2008, 91-100.

13. Kato, J., Sakamoto, D. and Igarashi, T. VisionSketch:
Integrated support for example-centric programming of
image processing applications. In Proc. GI 2014, 115-
122.

14. Kazi, R., Chevalier, F., Grossman, T. and Fitzmaurice, G.
Kitty: Sketching dynamic and interactive illustrations. In
Proc. UIST 2014, 395-405.

15. Kazi, R., Chevalier, F., Grossman, T., Zhao, S. and
Fitzmaurice, G. Draco: bringing life to illustrations with
kinetic textures. In Proc. CHI 2014, 351-360.

16. Lee, J., Forlizzi, J. and Hudson, S. The kinetic typography
engine: an extensible system for animating expressive
text. In Proc. UIST 2002, 81-90.

17. Lee, J., Jun, S., Forlizzi, J. and Hudson, S. Using kinetic
typography to convey emotion in text-basesd
interpersonal communication. In Proc. DIS 2006, 41-49.

18. Lewis, J. and Weyers, A. ActiveText: a method for
creating dynamic and interactive texts. In Proc. UIST
1999, 131-140.

19. McDirmid, S. Living it up with a live programming
language. In Proc. OOPSLA 2007, 623-638.

20. Minakuchi, M. and Tanaka, K. Automatic kinetic
typography composer. In Proc. ACE 2005, 221-224.

21. Rubin, S., Berthouzoz, F., Mysore, G. J., Li, W. and
Agrawala, M. Content-based tools for editing audio
stories. In Proc UIST 2013, 113-122.

22. Unity. http://unity3d.com/.
23. Victor, B. Inventing on Principle (2012).

http://vimeo.com/36579366.
24. Victor, B. Learnable Programming (2012).

http://worrydream.com/LearnablePrgramming/.

Programming Environments CHI 2015, Crossings, Seoul, Korea

3412

